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Boundedness of Solutions for Duffing Equation
with Low Regularity in Time*
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Abstract It is shown that all solutions are bounded for Duffing equation & + z*" ™% +

2n .

> Pj(t)a? = 0, provided that for each n+1 < j < 2n, P; € C7(T") with v > 1 — 1 and
j=0

for each j with 0 < j <n, P; € L(T") where T' = R/Z.
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1 Introduction

In 1962, Moser [6] proposed to study the boundedness of all solutions (Lagrange stability)
for Duffing equation

i+ Bx® +ar=P(t), PeC(TY), T':=R/Z,

where 8 > 0, a € R are constants.
In 1976, Morris [5] proved the boundedness of all solutions for

i+ 2% = P(t).

Subsequently, Morris’ boundedness results was, by Dieckerhoff-Zehnder [1] in 1987, extended
to a wider class of systems

2n
i 2?4 Pl =0, n>1, (1.1)
=0

where 4
P,eC” v>1+—+][logy] »o00 asn— .
n

Then they remarked that:

“It is not clear whether the boundedness phenomenon is related to the smoothness in the
t-variable or whether this requirement is a shortcoming of our proof.”

In 1989 and 1992, Liu [3-4] proved the boundedness for

i+t fa(t)r +P(t)=0, acC%TH, PecCOT?).
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In 1991, Laederich-Levi [2] relaxed the smoothness requirement of P;(t) (j = 0,1,---,2n)
for (1.1) to
Pj € C°t(TY), e>0.
In his PhD thesis (1995), the present author further relaxed the requirement to C? (see
[12-14]).
In the present paper, we will relax the smoothness requirement to Holder continuity. More
exactly, we have the following theorem

Theorem 1.1 For arbitrary given constant v € (1 — %, 1), assume Pj € C7(T') forn+1 <
J <2n and Pj € L(T") for 0 < j <n. Then every solution z(t) of the equation (1.1),

2n
Ea® 4y Pt =0, n>1,
j=0

is bounded, i.e. it exists for all t € R and sup(|z(t)| + |2(t)]) < C < oo, where the constant
teR

C = C(x(0),2(0)) depends the initial data (x(0),z(0)).

Remark 1.1 In [11], it is proved that there is a continuous periodic function p(t) such that

2

the Duffing equation &% + 22"+1 + p(t)2! = 0 with p(t) € CO(T"), n >2,2n+1>1>n+2
possesses an unbounded solution, which shows that the Holder continuity of the coefficients
Pj’s is necessary for the boundedness of solutions. In this sense, the result is almost sharp.

2 Action-Angle Variable
Replacing « by Az in (1.1), we get

2n
Ar 4 A2n+lx2n+l 4 ZPJ(t)J?JAJ — 0’ (21)
j=0
where A is a constant large enough. That is,
2n
i+A2nx2n+l + ij(t)szj—l —0. (2.2)
=0
Let
y=A""% or z=A"y.
Then
2n _ _ 2mn ‘ ‘
Y= A "G = A—n( _ AZn 241 ZPj(t):ZZJAJ_l) — _Ang2ntl ZPj(t)ijJ_n_l.
j=0 §=0
Thus,
OH OH
b= —— =75 2.3
. ay ’ Y 6x ’ ( )
where
2n
1 1 Pi(t) i1 gj—n—
H = A"(— 2, L 2(n+1)) J 1 gi-n—1. 94
2y+2(n—|—1)x +Z]‘+1x (2.4)

Jj=0
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Let T! = {t € C/Z : [lm t| < s} for any s > 0. Consider an auxiliary Hamiltonian system

OH, OH, 1 1
p=—"0 = __xo, Hy= =y + —— g2(n+1),

27 T 2(n+1) (2:5)

Let (zo(t),y0(t)) be the solution to (2.5) with initial (x¢(0),y0(0)) = (1,0). Then this solution
is clearly periodic. Let Ty be its minimal positive period. By energy conservation, we have

(n+1)y2(t) + 22" 2 (t) =1, teR, (2.6)
by which, we construct the following symplectic transformation

x = c*I%y(0Tp),
\I/O :
y = 1Py (0Ty),

where a = 45, f=1-a= "5, ¢= = and where (I,0) € RT x T is action-angle variables.

n+2’
By calculation, det %g;}’)) = 1. Thus the transformation is indeed symplectic. Clearly ¥o(1,6)

is analytic in (I,0) € R* x T} with some constant so > 0.
Under ¥y, (2.3) is changed

b=—5 I=-75 (2.7)
where H = Hy(I) + R(I,0,t) with
Ho(I) = d A" 120 — g an 22 g (2.8)
0 - - ) - 2(TL+ 1) .
and
2" Py(t) n
1,0,t) = I (o7 30(0Ty) )y AT e 2.
R(1,0,1) ;Hl(c 1 20(0T0)) T (2.9)

Clearly, R(I,0,t) = O(A" 1) for A — oo and fixed I in some compact intervals.

3 Approximation Lemma

First, we cite an approximation lemma (see [9-10] for the detail). We start by recalling
some definitions and setting some new notations. Assume that X is a Banach space with the
norm || - ||x. First recall that C*(R™; X) for 0 < u < 1 denotes the space of bounded Holder
continuous functions f : R™ — X with the form

If o = 0 then || f||cw,x denotes the sup-norm. For £ = k+p with £ € Nand 0 < p < 1, we denote
by C*(R"; X) the space of functions f : R® — X with Holder continuous partial derivatives,

ie, 0%f € CH(R™; X,,) for all multi-indices o = (a1, -+, ) € N with the assumption that
|a] := |aq|+- -+ ]|an| < k and X, is the Banach space of bounded operators T : HM(R") — X
with the norm ||T||x, = sup{[|T (w1, u2, - ,uq))|lx : lus]| =1, 1 < i < |af}. We define the

norm || fllce = sup [0 f]lcw x,-
jaf <t
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Theorem 3.1 (Jackson-Moser-Zehnder) Let f € CY(R"; X) for some £ > 0 with finite C*
norm over R™. Let ¢ be a radical-symmetric, C°° function, having as support the closure of the
unit ball centered at the origin, where ¢ is completely flat and takes value 1, and let K = (E be
its Fourier transform. For all o > 0 define

falw) =Ko f = [

Tn

K (=) f ).

Then there exists a constant C' > 1 depending only on £ and n such that the following holds:
For any o > 0, the function f,(x) is a real-analytic function from C™ to X such that if A7
denotes the n-dimensional complex strip of width o,

Al = {z € C"||Imz;| < 0, 1 < j <n},

then for Yoo € N™ with |a| < £ one has

B+
sup [10°Fo(e) — 3 LB B, < Cllf o™, (3)

n !
veas |Bl<t—Ial p
and for all 0 < s < o,

sup 10% fo () = 0% fo(2)l|x., < Cfllea". (3.2)

The function f, preserves periodicity (i.e., if f is T-periodic in any of its variable x;, so is
fo).

By this theorem, for each P; € C?(T'), j=n+1,n+2,---,2n, and any ¢ > 0, there is a
real analytic function® P;.(t) from T! to C such that

sup |Pjc(t) — P;(t)] < Ce” || Pl e (3.3)
teT?!
and
sup |Pj ()] < C[|Pjllen- (3.4)
teT?
Write
R(1,8,t) = R.(1,0.) + R°(1,0.t), (3.5)
where
2n 1 ) i ) )
Re(1,6,)= Y —— A" nfrentaat (0T0) P (1), (3.6)
) j+1 '
j=n+1
1 p1pdEl G
0,0 =30 g AT e M 6T B 0
2n 1 ) i ) ]
+ Y AT b T (OT)) (P () — Py (1)), (3.7)
j=n+1 J +1 )

1A complex value function f(t) of complex variable ¢ in some domain in C is called real analytic if it is
analytic in the domain and is real for real argument t.
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Now let us restrict I to some compact intervals, [1,4], say. Let A7! < &.
For a sufficiently small g > 0, letting

1
€0\
= (3:8)
by Theorem 3.1, we have the following facts:

(i) R*(I,0,t) is real analytic in (I,0) € [1,4] x T} for fixed t € T* and R*(I,0,-) € L*(T")
for fixed (I,0) € [1,4] x TL , and

S0

sup |R°(1,0,t)| < Cey, (3.9)
(1,6,t)€[1,4] ><']1‘§0><’JI‘1

where C is a constant? depending on only || P;||cn.
(ii) R-(1,0,t) is real analytic in (I,0,t) € [1,4] x T}, x T! and

sup |R.(I,0,t)] < CA™ !, (3.10)
(I,0,t)e[1,4] ><']1‘§O x T}

where C'is a constant depending on only || P;|c~. Therefore, we have

H(I1,0,t) = Ho(I)+ R.(I,0,t)+ R°(1,0,t). (3.11)

4 Symplectic Transformations

We will look for a series of symplectic transformations Wy, --- , Wy such that H®) = H o
Uio0---0Ux = HY +0(ep), where HY (1) ~ A"u% such that Moser’s twist theorem works
for HW),

To this end, let ¥y : (u, @) — (I, 0) is implicitly defined by

08
I=p+ 55
o

with S7 = S1(p, 0,t) to be specified latter. If ¥y is well-defined, then it is symplectic, since

025,

Al Adf = (1+m

)du/\dt?:du/\dqb.

The transformed Hamiltonian function H™M (u, ¢,t) = H o Uy (11, é,t). We express temporarily
in the variable (u, #) instead of (u, ¢):

S a8
m — 21 21
HD (1,0,1) H(;H— i ,9,t)+ o (4.1)
By Taylor’s formula and (3.11)
aS a8 a8
¢ — “o1 “o1 € “o1
HD (1,0,1) HO(;ML ~ ,G,t) +R5(u+ ~ ,G,t) + R0 W (1) +
a8
= HO(:““) + 8MH0(:“)—1 + RE (u’ 97 t) + R; (u’ 97 t) + RE o \Ijl(,ua d)a t)v (42)

00

2Denote by C' a universal constant which may be different in different place.
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where
L S, S,
1 - 2
R_(u,0,t) = /01 78H0u+6979t)(69)d
28, 95, 95,
/aR( aoTﬁt)aodT—i—E (4.3)
Let
95, !
OuHy - 50 + R-(11,0,t) = [R](u, t), [Re](p,t) = Re(p, 0,t)do. (4.4)
0
Then
HY (1,0,) = Ho() + [Re] (1, 1) + RE(p, 0,t) + R 0 Uy (1, b, 1)
= H{(u,t) + RL(p,0.t) + R o W1 (p, ¢, 1), (4.5)
where
Hg () = Ho(p) + [Re] (s 1) (4.6)

We are now in position to solve (4.4). Actually,

0 —
Si(pn,0,t) = /O [RE](“’;:HOf;)(“’G’t)de. (4.7)

By (3.8) and (3.10), 51 is well-defined in (i, 0,t) € [1,4] x Ty, x T¢, and analytic in the domain

sup |S1 (1, 0,1)| < CA™L. (4.8)
(1,0,t)€[1,4] X Ty x T
Thus, by the implicit function theorem, W1 (u, ¢,1) : [ +O(A™1), 4 = O(A™H)] x T, x T —
[1,4] x T% x TL.
(1) Estimate of Hg (u,t).
By (3.10) and (4.9), we have that Hg(u,t) is analytic in [1,4] x T, and

n

n A
CA" > |97 Hy ()] > o teTs, (4.9)
and by Cauchy’s estimate

sup |0 Hg(p,t)] < sup [9[R(p,t)] < sup |0: R (11,0, 1)|
(:t) €[1,4] X TL (1) €[1,4]x TE (0,1 €[1,4]x T, xTL

2 2 1
<- sup |Ro(11,0,t)] < ZCA"™ < Cey " A5 AP
€ (1,0,t)E[1,4]xTL xT2 €

< Cey 7 ADO+), (4.10)

(2) Estimate of R.(u,0,t).
By (4.8) and Cauchy’ estimate,

sup 10051 (12,0, 1)
(1,0,8)€[1,4] X Tso x T €

IN

< CA—l(E_O)_% < OE;%A—H%

, (4.11)



Boundedness of Solutions for Duffing Equation 1043

where

w:zn—n_lzﬁ(ﬂy—(l—l)). (4.12)

By the assumption v € (1 — %, 1),
0<w< 1.
By (3.10) and noting Ho(u) = dA"=1;%%7 | we have
1 e 1
sup  |RL(p,0,t)| < CA"A™2 + CA" P A~ + Cg, TATI <Cegy” A"17%,  (4.13)
(p,0,t)eDy

where
Dy =[1+O0(A™1), 4= O(A™)] x T, , x T%.

By (4.8) and the implicit function theorem, there exist Uy (u, ¢,t), Vi(u, ¢,t) analytic in Dy
such that

sup |U;| < CA™Y, sup |[Vi| < CA™Y, (4.14)
Dl D1
I=p+Ui(p ¢,t),
U it Ui 6,1) (4.15)
0= ¢+ Vl(/lfv(bvt)a
and
H'(p, ¢,t) = Hy (p,t) + R, 6, 1) + RE 0 U(p, 6,1), (4.16)
where
R, ¢,t) = RY(1s, ¢ + Va(, 6,1), 1) (4.17)
and
sup |RL (1, ¢,1)| < C'gy ” AW7177 (4.18)
D1
Similarly, let
a8
n= A+ 8—27
U, : ¢ (4.19)
G=g+ 22
B o\’
where Sy = Sa(A, ¢, t) is defined by
? [RY(\ 1) — RL(A, ¢,1) = s
Sa(\, o, t :/ e e 2dt,  [R(At :/ R\, ¢,t)do. 4.20
2( ) ; D HL (0. 1) [R:](A\ 1) ; ( ) (4.20)

By (4.9) and (4.13),

up[5,(1,6,1) < C A" (%)_ A= < O (%)_ A= (4.21)
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It follows from the implicit function theorem that Wy : (A, a) € Dy — Dy is well-defined, where
Dy=[1+0(A71),4—0(A™")] x T: x Ts. By Cauchy estimate,

C —1l—w 1 % —w—1 1 % E_ 1 % n—2w-—1
w0550, 0,1)| < 7 A (5) <cA (5) A _0(5) A . (4.22)
Let
a5 a5
(2) — 1 2 2
HOO0,0) = H' (A + 52 00t) + F
1 1 95, 1
:HO(/\vt)+8AHO(/\7 )8¢ +R( ad)at)
+ R2(X, ¢,1) + RF 0 Uy 0 Ua(X, 6, 1), (4.23)
where

Rg()\,gb,t):/ol(l—T)afHé()\+ W )(%‘iﬁ) dr

/ ONRL(A+ a‘j;,qs, )8?; +%. (4.24)

By (4.20), OxH3(\, 1) %% + RL(\, 6,1) = [RL(A\.1). Let
H2Z(\t) = HY (M t) + [RY (A ). (4.25)
It follows that
H2(X\, ¢, t) = HZ(A\t) + R2(\, 6,t) + R 0 Wy 0 Wy(X, ¢, 1). (4.26)
(3) Estimate of HZ(\,t).
By (4.9)-(4.10) and (4.13), we have
CA™ > |03HZ(\ )| > %, Ael,4], teTe, (4.27)
sup |0 HE (M, 1)] < CEJ%A("_”(H'%). (4.28)

(A,t)€[1,4]><11‘1%

(4) Estimate of R2(\, ¢, 1).
By (4.13), (4.21)(4.22) (4.24) and (4.27), we have

)%An—l—w Ao (=

2

v 11—
) A" 1-2w
€o

1\2 1
sup [R2(\, 6,1)| < €A™ (=) 7 A7204=) o —
D-> €0 €0

<c (%) T g2 (4.29)

Take N € N with n — w NV < —1. Repeating the above procedure N times, we get a series of
symplectic transformations Wy, -+, Wy such that

N(pagvt) :HO\IJIO"'OWN :Hév(pat)—i_Rév(p?gat)—i_RaoqjlO@N(pvgat)a
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where (p,&,t) € [1+O(A71),4 - O(A™Y)] x TL, x Tl , and
2N N

2

PETV 0 0UN:[14+0(AH,4—-0(A ] x T x T — [1,4] x Tt x T, (4.30)
®=id+0(47"), (4.31)

and HY (p,t) satisfies

A’ﬂ
CA™ > |92HY (p,t)] > T PE [2,3], teT, (4.32)
1
sup |0 HY (p,1)] < Cg, 7 A(=DO+3) (4.33)
(p,t)€[2,3]XT

and RY (p, &, t) satisfies that for 0 < p+ ¢ < 6,

I\5 1\5
sup |858§R£V(p,£,t)|gCA"‘WN(a) gCA‘l(—) < Ceo, (4.34)

(p,€,t)€[2,3]XTXT €0

where C' depends on N and we have assumed that A is large enough such that

1 N
—1( L\~
A (EO) < €p.
Let
Rip, &) = RY (p,€,1) + R oWl o0 Y, (4.35)
Then by (3.9), (4.30)—(4.31), (4.34), we have
1
sup / |0PO¢R(p,€,t)|dt < Ceo, 0<p+q<E6. (4.36)
(p,€)€[2,3]xT J0O
Now,
HY(p,&,1) = Hy (p.t) + R(p, &, 1). (4.37)
5 Proof of Theorem
For HV the Hamiltonian equation is
, oHN OR(p, &t
p=— _ (p,€ )20(60)7
¢ ¢ (5.1)
f=—5—=—0 +— = + O(eo).
P P 3 dp

Note
2(n+1)

HY =d-A"-p n+2 +O(A™ ).

By using Picard iteration and Gronwall’s inequality and noting (4.36), we get that the time-1
map of (5.1) is of the form

{Pl = p(t)]t=1 = po + F'(po, o),
& =£&(t)|i=1 = & + a(po) + G(po, o),

(po;&o) € [2,3] x T*
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with ) N
0H )t .
a(po) = /0 % dt, [0y, a(po)| > C A" >0

and
105,06, F'| < Ceo,  105,06,Gl < Ceo,  pHq <5

Since (5.1) is Hamiltonian, the map P is symplectic. By Moser’s twist theorem at pp. 50-54
of [7] (also see [8]), P has an invariant curve I' in the annulus [2,3] x T!. Since A can be
arbitrarily large, it follows that the time-1 map of the original system has an invariant curve
"4 in the annulus [2 A+ C,3 A — C] x T! with C being a constant independent of A. Choosing
a sequence A = Ap — oo as k — oo, we have that there are countable many invariant curves
I'y4,, clustering at co. Therefore any solution of the original system is bounded. This completes
the proof of theorem.

Remark 5.1 Any solutions starting from the invariant curves I'4, (k =1,2,---) are quasi-
periodic with frequencies (1,wy) in time ¢, where (1,wy) satisfies Diophantine conditions and
w>CAL.
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