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1 Introduction

Graph theory is the basic theory of the study of graphs and networks. The spectral graph

theory, which is used for describing the structure and characteristic of graphs by adjacency

matrix or the spectral density of Laplacian matrix, is the classical method for studying graph

(see [1]).

We have already known that we can find the curvature by some way, and there are many

examples for the geometric analysis such as the famous Li-Yau gradient estimate. Moreover,

we can use some data to describe the graphs and optimize it such as the Cheeger constant on

graphs.

The Laplacian on graph has always been an important research topic. In fact, the Laplacian

can be seen as the generator of symmetric Markov process. Laplacians always appear in the

topics on the research of discrete structure for heat equations as in [2].

As for the Laplacians on graphs, the properties are different on different occasions, such as

finite graphs, locally finite graphs and infinite graphs. If we assume that the graph is finite,

then the properties of Laplacians are simple and good. But for some problems, the assumption

of finite graph is obviously too narrow, so locally finite graphs or some infinite graphs can be a

better research object. We still can get good enough properties on them. In recent years, some

research topics are as follows on Laplacians on infinite graphs:

(a) Definition of the operators and essential selfadjointness.

(b) Absence of essential spectrum.

(c) Stochastic incompleteness.

The results on metric space can be seen in [3] and meanwhile, it also has a similar geometric

structure as the manifold. Obviously, the graph can also be seen as a kind of metric space.

We can define the distance between two vertices of the graph as the natural metric, which is
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the number of the minimum edges connecting them. Then, we should consider whether the

theories of Riemannian manifold can be extended to the graph, especially those about Ricci

curvature. Many results in geometry analysis come from the Ricci curvature, especially the

lower bound of Ricci curvature, such as the heat kernel estimation, Harnack inequalities and

Sobolev inequalities. These conclusions have been made in [4].

On Riemannian manifolds, There exists an identical Bochner formula for any smooth func-

tion:
1

2
△|▽ f |2 = 〈▽f,▽△f〉+ ‖Hessf‖22 +Ric(▽f,▽f).

When its Ricci curvature has a lower bound, we can make a conclusion that for any η ∈ TM

there exists a K ∈ R that satisfies Ric(η, η) > K|η|2. Unfortunately in the discrete situation we

can not define ‖Hessf‖2. But on Riemannian manifolds we can make use of Cauchy-Schwarz

inequalities to get an inequality ‖Hessf‖22 >
1
n
(▽f)2. Then the Bochner inequality can be

rewritten into
1

2
△|▽ f |2 ≥ 〈▽f,▽△f〉+

1

n
(△f)2 +K| ▽ f |2.

The inequality above is the so-called curvature-dimension inequality on Riemannian mani-

folds, and we call it CD inequality for short. Using this inequality, the ”Ricci curvature” in the

discrete situation can be defined. Bakery and Emery have already proved that if the chain rule

is satisfied, the CD inequalities can be extended to the Markov operators on some metric space.

Yet obviously the chain rule is not always true for discrete functions. Fortunately when p = 1
2 ,

up satisfies the chain rule even on the discrete condition. So, [4] introduced an improved CD

inequality—CDE inequality. This definitely is a key for the research of the discrete geometry

analysis.

This paper gives an introduction of the CD inequality and several equivalent conditions of

the CD inequality for unbounded Laplacians on the graph. It is organized into three parts.

Chapter 1 gives the introduction of the graph, the Laplacians and CD inequalities on it.

Chapter 2 introduces some basic conclusions in order to get the main result, and some

definitions such as the locally finite graph, the weighted graph and the domain of the operators.

Chapter 3 gives the main conclusion of this paper which includes some equivalent conditions

of the CD inequalities.

2 Graphs, Laplacians and CD Inequalities

Given a graph G = (V,E), for an x ∈ V , if there exists another y ∈ V that satisfies

(x, y) ∈ E, we call them neighbors, and write as x ∼ y. If there exists an x ∈ V satisfying

(x, x) ∈ E, we call it a self-loop. In this paper we allow graphs to have self-loops.

Now we will introduce some basic definitions and theorems before we get the main results.

Definition 2.1 (Locally Finite Graph) We call a graph G a locally finite graph if for any

x ∈ V , it satisfies #{y ∈ V |y ∼ x} < ∞. Moreover, it is called connected if for any x, y ∈ V

there exists a sequence {xi}
n
i=0 satisfying x = x0 ∼ x1 ∼ · · · ∼ xn = y.

Definition 2.2 (Weighted Graph) Given a graph G = (V,E), µ : E → [0,+∞) and

m : V → [0,+∞) are two mappings on it. µ is symmetric on V . For convenience, we extend µ

onto V × V , that is to say, for any x, y ∈ V , if x ≁ y, µ(x, y) = 0.
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Definition 2.3 (lp(V,m) Space) Let m be a measure defined as above. Then (V,m) is a

measure space. We define an lp(V,m) (0 < p < +∞) space as follows:

{

u : V → R :
∑

x∈V

m(x)|u(x)|p < ∞
}

and write lpm for simplicity.

Obviously, l2(V,m) is a Hilbert space, the inner product is naturally defined as: 〈u, v〉 :=
∑

x∈V

m(x)u(x)v(x), and the norm is defined as: ‖u‖ := 〈u, u〉
1

2 .

In addition, we use l∞(V ) to define a set including all the bounded functions on V, and we

can easily know that this space is not influenced by the measure m. The norm on it is defined

as: ‖u‖ := sup
x∈V

|u(x)|.

Definition 2.4 (Finitely Supported Function) For a graph G = (V,E), we define a set of

finitely supported functions as: C0(V ) := {f : V → R|#{x ∈ V |f(x) 6= 0} < ∞}.

Let D is a dense subspace of l2(V,m). We define a symmetric nonnegative bilinear form Q

on D ×D to R. D is called the domain of Q, and it is written as D(Q).

In fact, this mapping is determined by its values on the diagonal line. Then if we want to

define such a mapping Q, we can just define the values on the diagonal line as

Q(u) :=

{

Q(u, u), u ∈ D,

∞, u 6∈ D.

If Q is lower semicontinuous, we call it closed. If Q has a closed extension it is called closable

and the smallest extension is called the closure of Q as defined in [5].

Definition 2.5 (Dirichlet Form) Q is called a Dirichlet form if it is closed and for all the

contractions C and u ∈ l2(V,m), it satisfies Q(Cu) 6 Q(u).

More details can be seen in [6].

On the graph we define the Dirichlet form as

f 7→ Q(f) :=
1

2

∑

x,y∈V

µxy(f(y)− f(x))2.

Then we will introduce some kinds of operators on graphs.

Definition 2.6 (Laplacians on Locally Finite Graphs) On a locally finite graph G =

(V,E, µ, m), the Laplacian has a form as follows

△f(x) =
1

m(x)

∑

y∈V

µxy(f(y)− f(x)), ∀f ∈ C0(V ).

Definition 2.7 (Gradient Operator Γ) The operator Γ is defined as follows

Γ(f, g)(x) =
1

2
(△(fg)− f△g − g△f)(x).

Always we write Γ(f, f) as Γ(f).
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Definition 2.8 (Gradient Operator Γ2) The operator Γ2 is defined as follows

Γ2(f, g) =
1

2
(△Γ(f, g)− Γ(f,△g)− Γ(g,Γf)).

Also we have Γ2(f) = Γ2(f, f) =
1
2△Γ(f)− Γ(f,△f).

Definition 2.9 (Nondegenerate Measure) A measure m is called to be nondegenerate if it

satisfies δ := infx∈V m(x) > 0.

Now we can introduce some results we need.

Lemma 2.1 For any f ∈ lp(V,m),p ∈ [1,∞), we have Ptf ∈ lp(V,m) and

‖Ptf‖lp 6 ‖f‖lp .

And for any f ∈ l2(V,m), we have Ptf ∈ D(△).

Lemma 2.2 For any f ∈ D(△) we have △Ptf = Pt△f .

Theorem 2.1 Let m be a nondegenerate measure on V. Then for any f ∈ lp(V,m), p ∈

[1,∞),

|f(x)| 6 δ−
1

p ‖f‖lp , ∀x ∈ V.

Moreover, for any p < q 6 ∞, lp(V,m) →֒ lq(V,m).

The proofs of Lemmas 2.1–2.2, and Theorem 2.1 are given by Bobo Hua and Yong Lin in

[7].

Now we will introduce the definition of the completeness of the graph.

Definition 2.10 (Complete Graph) A weighted graph (V,E, µ,m) is called to be complete

if there is a nondecreasing sequence of finitely supported functions {η}∞k=1 such that

lim
k→∞

ηk = 1 and Γ(ηk) 6
1

k
.

Next we will introduce two important lemmas as follows.

Lemma 2.3 (Green’s Formula) Let (V,E,m, µ) be a complete weighted graph. Then for

any f ∈ D(Q) and g ∈ D(△),
∑

x∈V

f(x)△g(x)m(x) = −
∑

x∈V

Γ(f, g)(x)m(x).

Lemma 2.4 Let (V,E,m, µ) be a complete graph. Then for any f ∈ C0(V ) and T > 0,

we have max[0,T ] Γ(Ptf) ∈ ℓ1m and

∥

∥

∥
max
[0,T ]

Γ(Ptf)
∥

∥

∥

ℓ1
m

≤ C1(T, f),

where C1(T, f) is a constant depending on T and f . Moveover,

max
[0,T ]

∣

∣

∣
Γ
(

Ptf,
d

dt
Ptf

)
∣

∣

∣
∈ ℓ1m and

∥

∥

∥
max
[0,T ]

|Γ
(

Ptf,
d

dt
Ptf

)

|
∥

∥

∥

ℓ1
m

=
∥

∥

∥
max
[0,T ]

|Γ(Ptf,∆Ptf)|
∥

∥

∥

ℓ1
m

≤ C2(T, f).
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These two lemmas are proved in [7].

Now we will introduce some basic CD inequalities (also see [4, 8]).

Definition 2.11 (CD(K,∞) Condition) We say that a graph satisfies CD(K,∞) condition

if for any x ∈ V , we have

Γ2(f)(x) > KΓ(f)(x), K ∈ R.

For the finite-dimensioned situation, we have the CD(K,n) condition.

Definition 2.12 (CD(K,n) Condition) We say that a graph satisfies CD(K,n) condition

if for any x ∈ V , we have

Γ2(f) >
1

n
(△f)2 +KΓ(f), K ∈ R.

Moreover, we have another condition called CDE(x,K, n).

Definition 2.13 (CDE(x,K, n) Condition) Let f : V → R
+ satisfy f(x) > 0, △f(x) < 0.

We say that a graph satisfies CDE(x,K, n) condition if for any x ∈ V , we have

Γ2(f)(x) − Γ
(

f,
Γ(f)

f

)

(x) >
1

n
(△f)(x)2 +KΓ(f)(x), K ∈ R.

Also, we denote by Pt := et△ the C0-semigroup associated to the Dirichlet form on lp(V,m).

And we let Pt be a Markov semigroup.

3 Main Results

When we look for the equivalent properties of CD inequalities, we often set a condition:

Dµ := max
x∈V

deg(x)
µ(x) < ∞. And the equivalent properties were proved in [9] for these bounded

Laplace operator on graphs. For the unbounded Laplace operator, the following equivalent

properties under the condition of nondegenerate measure were proved in [7] by Bobo Hua and

Yong Lin.

Remark 3.1 Let G = (V,E,m, µ) be a complete graph and m is nondegenerate, i.e.

inf
x∈V

m(x) > 0. Then the following are equivalent:

(a) G satisfies CD(K,∞).

(b) For any finitely supported function f ,

Γ(Ptf) 6 e−2KtPt(Γ(f)).

(c) For any f ∈ D(Q),

Γ(Ptf) 6 e−2KtPt(Γ(f)).

In this section, similarly in [7] we will give some equivalent properties of CD(K,∞) and

CD(K,n).

Theorem 3.1 Let G = (V,E,m, µ) be a complete graph and m is nondegenerate. Then

the following are equivalent:

(a) G satisfies CD(K,∞).
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(b) For any finitely supported function f,

e2Kt − 1

K
Γ(Ptf) 6 Pt(f)

2 − (Ptf)
2
6

1− e−2Kt

K
Pt(Γ(f)).

(c) For any f ∈ D(Q),

e2Kt − 1

K
Γ(Ptf) 6 Pt(f)

2 − (Ptf)
2
6

1− e−2Kt

K
Pt(Γ(f)).

Proof First, for any f, ξ ∈ C0(V ), we set

G(s) =
∑

x∈V

(Pt−sf)
2(x)Psξ(x)m(x).

Taking formal derivative of G(s) in s, we get:

G′(s) =
∑

x∈V

(−2Pt−sf△Pt−sfPs(ξ(x))m(x) + (Pt−sf)
2(x)△Psξ(x)m(x)).

Now we have to show that G(s) is differentiable in s. For the first part:

2
∑

x∈V

|Pt−sf△Pt−sf)||Ps(ξ(x))|m(x)

6 2‖Ps(ξ(x))‖l∞‖△Pt−sf‖l∞
(

∑

x∈V

|Pt−sf |m(x)
)

.

For f, ξ ∈ C0(V ), from Lemma 2.1 we can get:

‖Psξ(x)‖l∞ 6 ‖ξ‖l∞ < ∞.

For f ∈ C0(V ), we know Pt−sf ∈ D(△) and ‖△Pt−sf‖l∞ = ‖Pt−s△f‖l∞ 6 ‖△f‖l∞ < ∞.

So we have

2
∑

x∈V

|Pt−sf△Pt−sf)||Ps(ξ(x))|m(x)

6 2‖ξ‖l∞‖△f‖l∞‖Pt−sf‖l1
m

6 2‖ξ‖l∞‖△f‖l∞‖f‖l1
m
< ∞.

For the second part, notice that f, ξ ∈ C0(V ) and ξ(x) ∈ D(△),

∑

x∈V

(Pt−sf)
2(x)△Ps(ξ(x))m(x)

6 ‖△Ps(ξ(x))‖l∞‖Pt−sf‖
2
l2
m

6 ‖Ps△ξ(x)‖‖f‖2l2
m

6 ‖△ξ‖l∞‖f‖2l2
m

< ∞.

Then we know that G(s) can be differentiable in s, and

G′(s) =
∑

x∈V

(−2Pt−sf(x)△Pt−sf(x)Psξ(x)m(x) + (Pt−sf)
2(x)△Psξ(x)m(x)).
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For f ∈ C0(V ), from Lemma 2.1 and Theorem 2.1 we can easily get (Pt−sf)
2 ∈ D(Q).

Then from Lemma 2.3, we get:

G′(s) =
∑

x∈V

(−2Pt−sf△Pt−sfPsξm(x) − Γ((Pt−sf)
2, Psξ)m(x)).

Now we replace Psξ with h, where h satisfies 0 < h ∈ C0(V ), that is to say, h is a finitely

supported function. Then

∑

x∈V

(−2Pt−sf△Pt−sfh(x)m(x)− Γ(Pt−sf)
2, h(x))m(x))

=
∑

x∈V

(−2Pt−sf△Pt−sfh(x)m(x) +△(Pt−sf)
2h(x)m(x))

=
∑

x∈V

2Γ(Pt−sf)h(x)m(x).

For 0 < h ∈ D(Q), let hk = hηk, where ηk satisfies

lim
k→∞

ηk = 1, Γ(ηk) 6
1

k
, k ∈ N.

We can get 0 < hk ∈ C0(V ). Then letting k → ∞, for any 0 < h ∈ D(Q), we have

∑

x∈V

(−2Pt−sf△Pt−sfh(x)m(x) − Γ((Pt−sf)
2, h(x))m(x))

=
∑

x∈V

2Γ(Pt−sf)h(x)m(x).

For ξ ∈ C0(V ), we easily know Psξ ∈ D(Q). Then setting h = Psξ, we have

G′(s) =
∑

x∈V

2Γ(Pt−sf)Psξm(x).

Integrate the equation from 0 to t by both side

∫ t

0

(

∑

x∈V

2Γ(Pt−sf)Psξm(x)
)

ds

=

∫ t

0

G′(s)ds = G(t)−G(0)

=
∑

x∈V

f2(x)Ptξ(x)m(x) −
∑

x∈V

(Ptf)
2ξ(x)m(x).

Since Pt is a self-adjoint operator on l2m, the right hand side of the equation can be changed

into
∫ t

0

(

∑

x∈V

2Γ(Pt−sf)Psξm(x)
)

ds

=

∫ t

0

G′(s)ds =

∫ t

0

∑

x∈V

2PsΓ(Pt−sf)ξ(x)m(x)ds

=
∑

x∈V

Pt(f)
2ξ(x)m(x) −

∑

x∈V

(Ptf)
2ξ(x)m(x).
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For ξ(x) ∈ C0(V ), let ξ(x) = δy(x) (when y = x, δy(x) = 1, otherwise δy(x) = 0). Then,

the equation is changed into

Pt(f)
2(y)− (Ptf)

2(y) = 2

∫ t

0

PsΓ(Pt−sf)(y)ds.

Now notice that Pt is a Markov semigroup. Then from Remark 3.1 we now have

Pt(f
2)− (Ptf)

2
6 2

∫ t

0

Ps(e
−2K(t−s)Pt−sΓ(f))ds

= 2e−2Kt

∫ t

0

e2Ksds · PtΓ(f)

=
1− e−2Kt

K
PtΓ(f).

Also we have

Pt(f
2)− (Ptf)

2
> 2

∫ t

0

e2KsΓ(Ps ◦ Pt−sf)ds

= 2

∫ t

0

e2Ksds · Γ(Ptf)

=
e2Kt − 1

K
Γ(Ptf).

Now we prove the opposite.

From the definition, we have

Pt = et△ =

∞
∑

p=0

tp△p

p!
.

Then we will obtain

Pt(f)
2 − (Ptf)

2

= 2tΓ(f) + t2
(1

2
△2f2 − (△f)2 − f△2f

)

+ o(t2)

= 2tΓ(f) + t2
[(1

2
△2f2 −△(f△f)

)

+ (△(f△f)− (△f)2 − f△2f)
]

+ o(t2)

= 2tΓ(f) + t2(△Γ(f) + 2Γ(f,△f)) + o(t2).

On the other side, we have

1− e−2Kt

K
PtΓ(f) = (2t− 2Kt2 + o(t2)) · (Γ(f) + t△Γ(f) + o(t2))

= 2tΓ(f) + 2t2(△Γ(f)−KΓ(f)) + o(t2)

and

e2Kt − 1

K
Γ(Ptf) = (2t+ 2Kt2 + o(t2)) · Γ(f + t△f + o(t)f)

= (2t+ 2Kt2 + o(t2)) · (Γ(f) + 2tΓ(f,△f) + o(t))

= 2tΓ(f) + 2t2(2Γ(f,△f) +KΓ(f)) + o(t2).
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Now we set

F1(t) := Pt(f
2)− (Ptf)

2 −
1− e−2Kt

K
PtΓ(f)

and

F2(t) := Pt(f
2)− (Ptf)

2 −
e2Kt − 1

K
Γ(Ptf).

Then we have F1(t) = 2t2(KΓ(f)− Γ2(f)) + o(t2) and F2(t) = 2t2(Γ2(f)−KΓ(f)) + o(t2).

Obviously F1(t) and F2(t) is differentiable. Notice that F1(t) 6 0, F2(t) > 0 and F1(0) =

F2(0) = 0. So we know F ′
1(0) 6 0 and F ′

2(0) > 0, which equals to lim
t→0

F ′
1(t) 6 0 and lim

t→0
F ′
2(t) >

0.

Notice that t > 0. Then we obtain Γ2(f) > KΓ(f). This is just the CD(K,∞) condition.

Also we can get equivalent properties of CD(K,n).

Theorem 3.2 Let G = (V,E,m, µ) be a complete graph and m is nondegenerate. Then the

following are equivalent:

(a) G satisfies CD(K,n).

(b) For any finitely supported function f,

Γ(Ptf) 6 e−2KtPtΓ(f)−
2

n

∫ t

0

e−2KsPS(△Pt−sf)
2ds, 0 < s < t.

(c) For any f ∈ D(Q),

Γ(Ptf) 6 e−2KtPtΓ(f)−
2

n

∫ t

0

e−2KsPS(△Pt−sf)
2ds, 0 < s < t.

Proof First, for any f, ξ ∈ C0(V ), we build this functional equation

G(s) = e−2Ks
∑

x∈V

Γ(Pt−sf)(x)Psξ(x)m(x).

Taking formal derivative of G(s), we define the function as A. Then

A = −2Ke−2Ks
∑

x∈V

Γ(Pt−sf)(x)Psξ(x)m(x)

+ e−2Ks
∑

x∈V

(−2Γ(Pt−sf,△Pt−sf)(x)Psξ(x)m(x)

+ e−2Ks
∑

x∈V

Γ(Pt−sf)△Psξ(x)m(x).

Now we will show that G(s) is differentiable in s.

Without loss of generality, we assume that ǫ < s < t − ǫ for some ǫ > 0. For the first part,

from Lemma 2.4 we have

| − 2Ke−2Ks
∑

x∈V

Γ(Pt−sf)(x)Psξ(x)m(x)|

6 |C1|
∑

x∈V

|Γ(Pt−sf)(x)||Psξ|m(x)

6 |C1|‖Psξ‖l∞‖Γ(Pt−sf)‖l1
m

< ∞,
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where C1 is a constant satisfying | − 2Ke−2Ks| 6 C1.

For the second part, from Lemma 2.4 we have

|e−2Ks
∑

x∈V

(−2Γ(Pt−sf,△Pt−sf)(x)Psξ(x)m(x)|

6 |C2|
∑

x∈V

|(−2Γ(Pt−sf,△Pt−sf)(x)||Psξ(x)|m(x)|

6 |C2|‖Psξ‖l∞‖Γ(Pt−sf,△Pt−sf)‖l1
m

< ∞,

where C2 is some constant satisfying |e−2Ks| 6 C2.

For the last part, from Lemma 2.4 we have

|e−2Ks
∑

x∈V

Γ(Pt−sf)△Psξ(x)m(x)|

6 |C2|
∑

x∈V

|Γ(Pt−sf)||△Psξ(x)|m(x)

= |C2|
∑

x∈V

|Γ(Pt−sf)||Ps△ξ(x)|m(x)

6 |C2|‖△ξ‖l∞‖Γ(Pt−sf)‖l1
m

< ∞,

where C2 is defined as above.

Then we can know that G(s) is differentiable in s, and

G′(s) = −2Ke−2Ks
∑

x∈V

Γ(Pt−sf)(x)Psξ(x)m(x)

+ e−2Ks
∑

x∈V

(−2Γ(Pt−sf,△Pt−sf)(x)Psξ(x)m(x)

+ e−2Ks
∑

x∈V

Γ(Pt−sf)△Psξ(x)m(x).

From Lemma 2.3 we get

G′(s) = −2Ke−2Ks
∑

x∈V

Γ(Pt−sf)(x)Psξ(x)m(x)

+ e−2Ks
∑

x∈V

(−2Γ(Pt−sf,△Pt−sf)(x)Psξ(x)m(x)

+ e−2Ks
∑

x∈V

Γ(Γ(Pt−sf), Psξ(x)m(x).

Now we need to show that for all h ∈ D(Q), we have

− 2
∑

x∈V

Γ(Pt−sf,△Pt−sf)(x)h(x)m(x) +
∑

x∈V

Γ(Γ(Pt−sf), h(x))m(x)

=
∑

x∈V

Γ2(Pt−sf)h(x)m(x).
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Obviously, this equation holds for all the finitely supported functions.

Now taking a series of functions {ηk} in C0(V ) defined as Definition 2.10. Let hk = hηk,

obviously hk ∈ C0(V ), then

− 2
∑

x∈V

Γ(Pt−sf,△Pt−sf)(x)hk(x)m(x) +
∑

x∈V

Γ(Γ(Pt−sf), hk(x))m(x)

=
∑

x∈V

Γ2(Pt−sf)hk(x)m(x).

Let k → ∞, then for all h ∈ D(Q), we can get

− 2
∑

x∈V

Γ(Pt−sf,△Pt−sf)(x)h(x)m(x) +
∑

x∈V

Γ(Γ(Pt−sf), h(x))m(x)

=
∑

x∈V

Γ2(Pt−sf)h(x)m(x).

For ξ ∈ V , Psξ ∈ D(Q), letting h = Psξ, we get

− 2
∑

x∈V

Γ(Pt−sf,△Pt−sf)(x)Psξ(x)m(x) +
∑

x∈V

Γ(Γ(Pt−sf), Psξ(x))m(x)

=
∑

x∈V

Γ2(Pt−sf)Psξ(x)m(x).

Then G′(s) can be rewritten as

G′(s) = e−2Ks
∑

x∈V

(Γ2(Pt−sf)−KΓ(Pt−sf))Psξ(x)m(x).

By use of the equivalent properties of CD(K,n), we get

G′(s) > e−2Ks
∑

x∈V

2

n
(△Pt−sf)

2(x)Psξ(x)m(x).

Now integrate the equation from 0 to t in s by both sides, then we can get

∫ t

0

G′(s) = G(t)−G(0)

= e−2Kt
∑

x∈V

Γ(f)(x)Ptξ(x)m(x) −
∑

x∈V

Γ(Ptf)(x)ξ(x)m(x)

>
2

n

∫ t

0

e−2Ks
∑

x∈V

(△Pt−sf)
2Psξ(x)m(x)ds.

Since Pt is a self-adjoint operator on l2m, we can get

e−2Kt
∑

x∈V

PtΓ(f)(x)ξ(x)m(x) −
∑

x∈V

Γ(Ptf)(x)ξ(x)m(x)

>
2

n

∫ t

0

e−2Ks
∑

x∈V

Ps(△Pt−sf)
2ξ(x)m(x)ds.
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Let ξ(x) = δy(x), then

e−2KtPtΓ(f)(y)m(y)− Γ(Ptf)(y)m(y)

>
2

n

∫ t

0

e−2KsPs(△Pt−sf)
2m(y)ds.

For m(y) > 0,

e−2KtPtΓ(f)− Γ(Ptf))

>
2

n

∫ t

0

e−2KsPs(△Pt−sf)
2ds.

That is to say, Γ(Ptf) 6 e−2KtPt(Γ(f)) −
2
n

∫ t

0
e−2KsPs(△Pt−sf)

2ds.

Now we prove the opposite.

First we set F (t) := Γ(Ptf)−(e−2KtPtΓ(f))−
2
n

∫ t

0 e
−2KsPs(△Pt−sf)

2ds. It is easy to know

that F (t) is differentiable and F ′(0) 6 0. So

F ′(0) = 2Γ(f,△f) + 2KΓ(f)−△Γ(f) +
2

n
(△f)2 6 0.

Then we can get

Γ2(f) >
1

n
(△f)2 +KΓ(f),

which is just the CD(K,n) condition.
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