Chin. Ann. Math. Ser. B .
38(5), 2017, 1093-1110 Chinese Ar_mals Of_
DOTI: 10.1007/s11401-017-1025-5 Mathematics, Series B
© The Editorial Office of CAM and
Springer-Verlag Berlin Heidelberg 2017

Decomposition of LP(dD,) Space and Boundary
Value of Holomorphic Functions*

Zhihong WEN! Guantie DENG? Cuigiao WANG? Feifei QU?

Abstract This paper deals with two topics mentioned in the title. First, it is proved
that function f in LP(OD,) can be decomposed into a sum g + h, where D, is an an-
gular domain in the complex plane, g and h are the non-tangential limits of functions
in H?(D,) and HP(D,) in the sense of LP(D,), respectively. Second, the sufficient and
necessary conditions between boundary values of holomorphic functions and distributions
in n-dimensional complex space are obtained.
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1 Introduction

Concerning the decomposition, we have known that the decomposition of LP(R) into the
sum of H;(R) and H_(R) is obtained (see [8, 11, 13]), at least for range 1 < p < oo. That is,
for any function f(x) € LP(R), 1 < p < oo, f(x) can be written as the sum of two functions
f+ and f_, where f and f_ are the boundary values of a function in the Hardy spaces for the
upper-half space and lower-half space, respectively. For the difficult case of 0 < p < 1, Qian and
Deng [5] have obtained the analogous result. Naturally, a question will be asked: Whether the
decomposition theorem of L?(R) can be extended to spaces LP(D,)? We will show the positive
answer in Section 2.

Theory of boundary value problems for analytic functions (see [3, 10]) is one of the most
important branches of complex analysis (see [4, 9]). It has wide applications because many
practical problems in mechanics, physics and engineering may be transformed to such problems
or singular integral equations which are closely related to the boundary problems. In the third
section, we will discuss the relationship between boundary values of holomorphic functions and
distributions (see [1]) in n-dimensional complex space. The same conclusions were established

when n =1 in [2]. First we introduce some notations before we state our main results.

Manuscript received March 23, 2015. Revised April 27, 2016.

LCorresponding author. Department of Mathematics and Statistics, Jiangsu Normal University, Xuzhou
221116, Jiangsu, China. E-mail: wenzhihongl1989@163.com

2School of Mathematical Sciences, Key Laboratory of Mathematics and Complex Systems of Ministry of
Education, Beijing Normal University, Beijing 100875, China.
E-mail: denggt@bnu.edu.cn cuiqiaol19880608@126.com qufeifeil025@163.com

*This work was supported by the National Natural Science Foundation of China (No. 11271045) and the
Higher School Doctoral Foundation of China (No.20100003110004).



1094 Z. H Wen, G. T. Deng, C. Q. Wang and F. F. Qu

A measurable function f is said to belong to LP(0D,), 0 < p < oo, if

1 Vnony = [ 17z = [ Ifeenpar+ [ lpeeniar < o,

a

where 0 < a <7, D, ={z=re €C: -a<f<a, 0<r<oo}isan angular domain in the
complex plane.

The Hardy space HP(D,) (0 < p < c0) is defined to consist of of these functions f holomor-
phic in the angular domain D, with the property that

Iflzp(D,y = sup / |f(re'?)[Pdr < oo,
0

—a<6<a

that is
HP(Dy) ={f : f is holomorphic in Dy, || f|la»p,) < o0}

The Hardy space HP(D.,) is defined in the same way as H?(D,), that is
HP(D.) = {f : f is holomorphic in D, 11l g0 2y < 00},

where D, is the complement of D, and

1Plnopy = _swp [ 15GepPar < oc.
0

a<f<2m—a

We denote L%a and L%Z as the non-tangential boundary limits of Hardy space H?(D,) and
H? (D), respectively, and those are

L', = {f: f is the non-tangential boundary limit of a function in H”(D,)}

and

L%2 = {f : f is the non-tangential boundary limit of a function in H?(D,)}.
We fix A and B as open connected subsets of R™. Apg is defined as
Ap ={z+1iy: 2= (21,%2,--+ ,an) €A, y= (Y142, ,yn) € B},
which is a subset of
Ct={z= (21,22, ,2n) 1 25 = +1y;, 1=1,2,--- ,n}.
If A=R", we define the Hardy space on tube Ap based on B as
HP(Tp) ={f € H(Tp) : || f|lur < oo},

where Tp = Ap, ||f|lzr = sup([g. |f(z + iy)|pd:z:)% (see [7, 13-14]) and H(T'g) consists of all
yeB

the holomorphic functions on Tz. The definition above is analogy to the definition in [4, 13-14].
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Definition 1.1 Let S,, = {0} : {1,2,--- ,n} = {+1,-1}}, or = {ok(1),0%(2), - ,01(n)},
ox(j) = £1, 1 <k < 2" We define

QUk = {y: (ylvaa"' 7yn) ERn:ij'k(j) >07 j: 1327"' ,Tl}.

We say that a function f, which is holomorphic in Tq,, , admits a boundary value in the sense
of distributions if the limit

Y0k (5)—04
j=120n

exists for every p € D(R™).
For example, when n = 2, the four quadrants of R? are denoted by Q,,, Q,,, Qs and Q,,,

where
= V1,92 €R2: y1>07 y2>07 g1 1 :+17 g1 2 :+1}3

y1,12) €ER%: 41 >0, y2 <0, 01(1) = +1, 01(2

)
)
)
)

0D 20 D
N
I

{y
{y
{y ER?: 41 <0, y2 >0, 01(1) = —1, 01(2) = +1},

Y1,Y2

(
(
(
Qo ={y=(y1,92) ER?*: 41 <0, 32 <0, 01(1) = —1, 01(2) = —1}.

Correspondingly, C™ can be also decomposed into 2" tubes denoted by TQ% s k=1,2,--. 2™
which with the octants of R™ as bases, that is

To, ={z=z+iyecC": zcR", yeQ,}.

If f is holomorphic in T = T'yn , we write it as (fo,, fou, 5 foun), Where fo, = f|Q .
k=1
We say that f admits a boundary value in the sense of distributions if all f,, admit boundary
value in the sense of distributions.
It follows from ([12], Theorem XIII, p. 74) that the mapping which to each ¢ € D(R™)

(which consists of infinite differentiable functions with compact support) assigns ligrzn
Y€,
Yok (5)—04

Jgn f(x + iy)p(z)dz is a distribution which we denote by, (fo,). If f = (for, fon, s foum)
admits boundary value, we denote the distribution
on
b(f) = Z(_l)mkbak (f(Tk)J
k=1
where my, is the number of —1 in oy,. The distributions b(f), by, (f+, ) are called the distributional

boundary values of f and f,,, respectively.

Definition 1.2 A function f holomorphic in To, is said to be slow growth if, for every

compact subset K of R™, there exist an integer k and two positive constants € and C such that

IO -

< — , ImzeK, 0<|Imzj| <e.
[T [Im z;[*
j=1
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Definition 1.3 Let X C C™ be an open set. A linear form p on the vector space C*>(X)
18 called to be continuous if there is a compact set K C X, a constant ¢ > 0 and a nonnegative
integer N such that, for all ¢ € C*°(X),

[, $) < ¢ Y sup{|D*¢|:z € K}.

lo| <N
The vector space of continuous linear forms on C*(X) is called ' (X).
Remark 1.1 If 4 € &'(X), then 4 is a distribution of finite order.

Definition 1.4 For a distribution T € E'(R™), its Cauchy transform C(T') is the distribu-

tion in C™ given by
n

C(T):<T(§)®5O(77)vinn : >

m =1 Zj _Cj

Note that these distributions are holomorphic in (C™ — suppT’). Moreover, since W—lzj is a

fundamental solution for a%j, and T ® dp(y) has compact support, the following holds

T C(T) = () @ ().

2 Decomposition of L?(0D,) Space

As previously mentioned in introduction, we have known that the functions of LP(R) for all
0 < p < oo, p# 1, can be decomposed into a sum of two functions which are the boundary
values of the functions in the Hardy spaces for the upper-half and lower-half planes respectively.
That is, for a function f(z) € LP(R), there exist two functions f+ and f_, such that

f=ti+ i

where f, and f_ are the boundary values of the functions in the Hardy spaces for the upper-half
and lower-half planes, respectively.

In this section, we generalize the above type decomposition theorem of LP(R) to the spaces
LP(0D,). We obtain the following main theorem.

Theorem 2.1 Suppose that 1 < p < oo and f € LP(0D,). Then there exists a positive
constant A, and two sequences of rational functions {Py(z)} and {Qx(2)}, such that

P, € H?(D,), Qi€ H?(D)).

Meanwhile
Z(llPkllL;;,a +1Qkllze, ) < Apllfllzron.), (2.1)
k=1 “
Tim [|f =D (Pe+ Qu)lloon,) = 0. (2.2)

k=1
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Therefore,
ZPk )€ HP(D ZQk ) e HP(D,). (2.3)

Moreover, g4, g— and hy, h_ are the non-tangential boundary limits of functions for g € HP(D,,)
and h € Hp(ﬁz), respectively, f+ = g4 +hy, f— = g— + h_ almost everywhere, and

If+llropa) < llg+llcy, + hellize, < Apllfrllzr@n.), (2.4)
Il f=llzroDa) < ||9—HL§;Q =+ ||h—||LF'Bg S Al f-llzroDa)- (2.5)
That is, in the sense of LP(0D,,),
LP(0D,) = LY, + L%Z'
In order to prove the main results above we need the following lemmas.

Lemma 2.1 (see [15]) Let0 <p <oo. D ={z=1re? : 0 <r < oo, 6h <0 < 65} is
an angular domain in the complex plane. If f € LP(OD) and f is holomorphic in D, then
f(z) € H?(D).

Lemma 2.2 (see [15]) Let 0 < p < oo and f € HP(D,), then

[f 11w (Da) = max{[| fzll e (0.00): /2 all 220,000}

where f¥ and f*, are the non-tangential limit of f on L, = {z = rel® : 0 < r < oo} and

L_,={z=re"%:0<r < o}, respectively.

Lemma 2.3 Let 0 < a < m, 0 < p < oo0. If f € LP(OD,), for any ¢ > 0, then there
exist rational functions {Ri(2)}, the poles of Ri(z) contained in {1, —1}, such that for the case
0<p<l,

Z 1RE ()50, < L+ OIS 0op,

lim ||f — Z Ri(2)71op,) = 0.
k=1

Meanwhile, for p > 1 there hold

Z [Re(2) | Lrop.) < (1 + )l fllr@D,);

Jm 1 =32 B lsnom,) =0
k=1

Proof We define function fx(z) on 9D, as

1
1), < UFEISN, (2.6)

0, eleswhere,

In(z) =
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then for almost everywhere z € 0D,, we have

lim fn(2) = f(2), |fnl? <|fIP.

N —oc0

As for the case 0 < p < 1, for any ¢y > 0, there exists a positive integer Ny such that when

Ny > Ny, it holds
€0

Hsz - f”ip(apa) < 2_kv
where k is a positive integer.
By the definition of fy, we can deduce

suppf  {= € 9D, % < | < N},

Moreover, the following holds true
fN eLr (A)v

where A = {z € 9D, : % <|f(z)| < N}.
There exists a function g with compact support contained in A. For the above ¢y > 0, there
exists N3 > 0 such that for any N > N3,

€0
||g - fNHip(aDa) = ||g - fNHip(A) < 2_k

For N > max{Ny, N3} we have

€0
If = 9llzsop,) < kT

Denote
Co(0D,) = {h(z) € COD,): lim h(z) = o}

|z|—o00
and

P(z2) . .
B B GO N <% — Wb
B {(22 _— P(z) is a polynomial, degP <2k —1, z € 9D }

Then B is a subalgebra of Cy(0D,). Moreover, it separates the point of Cy(0D,). As a
consequence, B is dense in Cy(0D,). For any g € Cy(9D,), one may conclude

g(z)(22 — 1)l0 € Cy(0D,),

where [y is an integer such that 2ply > 1.
By the density of B, there exist a class of functions {%} which belong to B such that
P(z

)

L

that is

P(2) €0
OB 1)k S @Z-1)
Therefore, one has
P(z) p
R A KeP
Hg(z) (22 — 1)*+lo [l Lr(oD,) < Ko
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where K is a constant satisfying
1
op, |2% —1]r

By direct computation we have

P(z) P
Hf(z) (2= DR llean,)
P(z) P
P
<1 = oWniomy * 96) ~ =y |1 oy
< 2k T+ Kep. (2.7)
Let Qi (z) = %, then we can derive that

!
€0 €
[f(=) — Qk(2)||1£p(apa) < k1 + Kej < 4_k||f||1£p(apa)a

where ¢ = 42]?”?:‘5;{;65
Let
Ri(z) = Qi(2), Ra(z) =Qa2(2) — Qu(2), ---, Ri(2)=Qk(2)— Qr-1(2).

Then we can show

k
=> Rj(2)

j=1
and
Z”Rk Ioap.) = ZHQk_Qk 100,
(1Qx — £, »(0Ds) T |Qr—1 — f”ip(apa))
k=1
/
<) o
<A+ lflirop.)
_ 8¢
where € = 5

In addition, we can also deduce that

lim Hf—Xn:Rk(z)’p -

n—oo LP(O0D,
P (0Da)

By applying the same argument, it is not difficult to show the following conclusions for the case
p>1:

Z [Re(2) | zropa) < (14 )l fllraD.)s

LP(9D,)

n—00

i |7 Y Re(e)
k=1

Thus, the proof is completed.
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Lemma 2.4 Suppose that 0 < p < 1, and R € LP(0D,,) (O <a< %) is a rational function

2ai

whose poles are contained in {1,e**'}, then there exist two rational functions P and Q such that

R(z) = P(2)+ Q(z), P e LP(dD,), P € H(D,) and Q € LP(dD,), Q< H(D,).

Proof For the case 0 < p <1, R € LP(0D,) and R is a rational function, whose poles are
contained in {1,e??}, then R(z) can be written as

n

R(z) = Z cx(B(2))*,  where B(z) =

k=—n

NE

1— 22
1+z

£l

Therefore f(rel®) = e?a(")  B(re=ia) = eif-alr),
For each ¢ € R, we define

_ (BE)"RE) (B:) " R(2)
PED = Gy —ae BE) 7 e e

where m is any positive integer greater than the positive integer n. Now we denote

ap_/ / ¢, o) Pdrdg.

By Fubini’s theorem and direct computation, we can conclude that

Iop = / / 7@ )[Pdrde
/ / = Tela IMIREEDP ) 4
-7 (rele))m — eie|p
/ /_w I —“: ;ez |<i>)|pd¢’d7”
B /0 /_,T md@m(rei“)lpdr
- /OOO /_: mdﬂR(rem)Pdr

o0 T 1 ia
= / / mdQOLR(Te )|pd’f'

< 4/ / dg0|R(7"e )|Pdr
220

2P
<22 [T iRGenpar
—D Jo
Similarly, it results in

T %) . 21—P7T © .
I op= / / |P(re™ ¢)|Pdrde < / |R(re™'*)|Pdr,
—xJo 1- P Jo

™ [ele] . 21_p7T oo .
Ing = / / |Q(re', p)|Pdrde < / |R(re'®)|Pdr,
-7 Jo 1=p Jo

Q(Z, 90) =

o0 . ol=pg [ .
I 00 :/ / |Q(re ', p)|Pdrdp < 1 / |R(re™'*)|Pdr.
A - 0

p
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Therefore, there exists a number ¢ € [—m, 7] such that

2
I-p
2T
I-p
2T
I-p
21w
I—p

P(rel®, p)|Pdr < R(re'%)|Pdr,
; |P(re', o) ;
| imGeypar
0
| irGe e
0

/ |R(re™ ) [Pdr.
0

/ |P(re_ia7 o)Pdr <
0

/ Qe p)Pdr <
0

| 1Qee e ppar <
0
For the specially chosen real number ¢, we define

P(z) = P(z,¢), Qz)=Q(2 ),
then
R(z) = P(2) + Q(2).
Since m > n, P and @ are rational functions, with the poles of P contained in {e?**} | J{zy :
k=0,1,2,--- ,n— 1} and the poles of @ contained in {1} J{zx: k=0,1,2,--- ,n — 1}, where
T = —etan™ (212XT). Thus, P(z) is holomorphic in Dy, and Q(z) is

o= (< itan (252)
holomorphic in D;,. Therefore, one gets

R(z) = P(2)+Q(z), P e LP(@dD,), Pe H(D,)and Q € L?(dD,), Q € H(D,).

Lemma 2.5 Suppose that 1 < p < oo, and R € LP(0D,) (0 < a < 7) is a rational function
whose poles are contained in {1,—1}, then there exist two rational functions P and Q such that

P e H?(D,), Q € H?(D.),
R(z) = P(z) + Q(z).

Meanwhile, we have

1Pl + Qe < AplRlLrop.), (2.8)

where P, and Q. are the non-tangential limit of P and @, respectively.

Proof For the case p > 1, R(z) € LP(0D,) is a rational function whose poles are contained
in {1,—1}. Then

C—N,1 C-1,1 C_N,2 C-1,2
R(z) = —%1 4 . ) : 2
() (2—1)N+ +z—1 (z+1)N+ +z+1
Let
C_N>2 C—1,2
(2) (2+1)N+ +z—|—1’
_ C-N1 o C1a
where c_n 1, -+ ,C-1,1,C-N,2," -+ ,C_1,2 are complex constants. Since p > 1, we have

P e LP(0D,), Q€ LP(0D,).
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It follows from Lemma 2.1 that
P e HP(D,), Q(z)e H?(D,).

By Lemma 2.2, the inequalities (2.3) holds.

Lemma 2.6 Suppose that R € L*(0D,,) is a rational function and satisfies faD R(z2)dz =
whose poles are contained in {1,—1}, then there exist two rational functions P € H*(D,) and
Q € H'(D,) such that

R(z) = P(2) + Q(2)
and
1Pllzy, + 1@z, < AllRILroD,),

where A is a constant, P, and Q. are the non-tangential limits of P and Q, respectively.

Proof Since R(z) is a rational function, then it gives

C_N,1 C—1,1 C_N,2 C—12
R(z) = —&%1 4 . : : =
() (z—l)N+ +z—1 (z—|—1)N+ +z—|—1
where c_n1,- -+ ,c_1,2 are complex numbers. Moreover, faD R(z)dz = 0 implies that

1 1
—_dz=0, —_dz=0
/aDa CEDLA /aDa CEDLA

[ (=)o
oD, Z — 1 z+ 1

for N > 2. Therefore

then c_11+cCc12= 0.
The following fact

C-1,1 C—-1,2 2c_1,
P + P )dZ:/ 7d O
/6Da (z—l z+1 op, (z—1)(z+1)

implies that C-1,1 = 0. Thus C-1,1 =C-12 = 0. Let

C_N,2 C-1,2

(2) = (z+ 1N o z+1’
C_N,1 C-1,1
Q(z)_i(z_l)NjL R

therefore
R(z) = P(2) + Q(2).

It is easy to know that P(z) is analytic in Dg, and Q(z) is analytic in D;,. Moreover,

/ 2)|dz < / |C_k’2|kdz < 00,
oD oD, =5 12 + 1|

k1]
|dz</ dz < 0.
/a oD Z| -1

@ k=2
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AS a consequence,
P(z) € H'(D.), Q(z) € H'(D.).

According to Lemma 2.2, one may easily show
||P*HL1D& + ”Q*”L%g < A|lP||z1(ap,)-

The proof is completed.

Proof of Theorem 2.1 According to Lemma 2.3 and Lemma 2.5, there exist two sequences
of rational functions Py (z) and Qx(z) such that P, € H?(D,), Qx € H?(D,).

For the case 1 < p < oo, we can verify that

Y (IPllzr@n.) + 1@kl ron.)) < Ap(L+ €)llfllLr(on,)
k=1

and

lim Hf - Zn:(Pk + Qk)’

n— o0
k=1

Lr(0D,) -

Moreover, (1.1) implies that (1.3) holds. Therefore, the non-tangential boundary limits g, g—
and hy, h_ of functions for g € H?(D,) and h € H?(D,,) exist almost everywhere, respectively.
(1.2) shows that

f+=9++hy, fo=g-+h_

almost everywhere, and (1.4)—(1.5) hold.
An argument similar to that used in the proof of the case 1 < p < 0o, we can prove the case
for p = 1 by using Lemma 2.1, Lemma 2.3 and Lemma 2.6. We complete the proof.

3 Boundary Value of Holomorphic Function in the Sense of
n-Dimensional Distributions

This section presents several theorems as well as a key lemma, which is the main part of
this section.
First we state a lemma which will be used in the proof of theorems.

Lemma 3.1 If a distribution of the form T(z) ® do(y) in D' (K? ) can be written in the

(_C)C)n

form %U, with supp(U) contained in R™, then T = 0.
Proof Locally U can be written in a unique way as > Uj(z1,22, - ,2,)® 66—;50(3/1, Y2,
0<j<n it
<+ yn) (see [2, p. 260]). Hence
877.
—U
0z1--- 0%,
o1t 0
- — _U ) s Ty RAn )
87207, (821 (21,22, 5 20)

ol 1 i) il i it
Zm(io; 912 ™3 2 Uy © 5 7o)

(217Z27 o 7271)
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877.— .
('9 8zn(22 Z Bxlt?xg 22 Z Bxg J“ 22 Z (%clt?yg
0<j<n 0<j<n
+—QZ—J®—0 Z +150+ ZUj@iﬁ-l 5)
2 05520 01 * 055%n 8y2 oy} 2 S Oyl Oya
(1)" 8j+n
= on Uj @ ——g———=—00
2 Oﬁzén ay{+ ya -+ Oyn,
)" ¢ 0 gitn—1
MR TP D DI il ke s e
i=10<j<n Y1 OY2: - OYi—10Yit+1 - OYn
()2 & 92 9itn—2
+ on Z 050 Ui ® —53 ) ) do
ik=10<j<n O TIOTE Oyl Oy2 - OYi10Yig1 -+ OYr—10yYky1 - Oyn
i<k
+ ......
o7
U; ® —do
O<]Z<n axl 8y{

= T(xlax%" : 7xn) ®50(y17y27" : 7yn)

In view of the uniqueness of the representation, we conclude that

o"Uy . o"Uy 1 o"Uy
n-1_ Y Y0  _

0xy - - 0xy, + 18131 < 0010y O0Tp41 -+ Oy oot () 0x10y2 - - Oy, ’

an ) n—1
Bxl---ﬁxnU1+18x2---8xnU0 =9,

an n—1
— Uy +i———U; =0
dxy -+ Oxy, 2+18$2---8xn e

on an—l
— U, '7Un =0,
0z Oan " Oz 0wy !

an—l ) on— 2
Bxl s an_l Ul + 181‘2 s -an_l UO n 07

an—l an—2

U, +1i U,_1=0,

82131"'82En_1 +18$2"'8$n_1 !
iU1—|—1U0—O e aU+1Unl—0 e, U, =0.
6{,6 ox T

Therefore, T'= 0. This completes the proof.

Theorem 3.1 Let I' = Q,, be the first octant in R™. If f is a holomorphic function of slow

growth in Ty, then it admits a boundary value in the sense of distributions.
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Proof Let K be a compact subset of R™. For any € > 0, and a fixed point 20 = 2° +iy° in

Tt, we denote 7Yo,71, 72, - - - the successive primitives of f in 1t, vanishing at 29,

zZ1 Zn
f}/o(zlzn):/ / f(wl”wn)dwldwn7
2 =
zZ1 Zn
’71(21271):/ / 70(“1;"'7wn)dwl"'dwna
2 =,

One can show by recurrence that there exist some positive constants Cp,--- ,Cy and Cj, such
that, for z =z +1iy, z € K, 0 < [Imz;| <,
CQ Ck—2
70(2)] < SR k—2(2)] £
[Ty [T v,
j=1 j=1

e-1(2)] < Cron [T Nogwil, (=) < Ci [ ] (wsllog ys1) + Ci..
j=1 j=1

Since 7y is bounded, it follows that yx11 can be extended as a continuous function to Ko c)n.
Therefore, the family of distributions T}, € D’(int K) defined by

(T, 0) = /K e (& + i)p(z)dz

admits a limit T in the sense of distributions when y;o1(j) = 04,5 =1,2,--- ,n,0 < [Im z;| <
€, Vj=1,2,---,n. According to
6n(/€+2) 3"(7’”‘2)
0L oght? LT R g, R L T £y

one obtains

on(k+2)
()= [ s
which has the distribution o ﬁz({cf;)kﬂ To as a limit when y;01(j) = 04, 7 =1,2,--- ,n. Hence

f admits the last distribution as boundary value in the sense of D’ (int K). Since K is arbitrary
and a distribution is determined by its value locally, then f admits a boundary value b(f) in
the sense of distributions. We complete the proof.

Under the condition of Theorem 3.1, let us denote by 7,11 the function (and its associated

distribution) defined in K[_o c)» as follows:

Vv (@ + iy)
Vi+1(z + 1y), O<yj<c Vj=1,2,---,n
Yk+1 (il' + 10) = hm ’Yk-l—l(x + 1y)7 y= (0707 e 70)7
_ y;o1(j)—0+ (3 1)
lim 77€+1(x+1y)7 Ogyj<c7y7é07j:1727"'7n7 '
y;o1(j)—04
07 y]<07.7:17277n

where 0 < ¢ < 00, [—00,¢)" = [~00,¢) X -+ X [—00, ).
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Theorem 3.2 Let f be a holomorphic function of slow growth in Tr. For a compact subset
K CR"”, we define a distribution fx € D'(K(O_OO)C)H) as

gn(k+2)

= g g Tkl
Qxh T2 g2

fK

Then we have the following identity:
o i\®

mf}( = (5) (0(f)|x) ® do(y)

in the sense of distributions.

Proof We keep the notation from the previous theorem and let ¢ € D(K (O_oo,c)n)- Denote

]7: fx and ¥ = 4,11 for simplify, therefore

(o 5m%)
= {fm )
n(k+2 n
N (_1)n<8x’f+82 -(--+a);55+27?+/1’ az—la-- fpﬁz>

( 1)n(k+3)<N 8n(k+3) >
N T S ok om0z

(_1)n(k+3) o 8n(k+3) i 4
= ZNdz
(20" /K /<> T ak om0
on(k+3)

i (_1)n(k+3) / / o 4 q
= lim ~—t—— ZAdz,
lell=o04  (20)» K J(eepm s R o Al 3%30

where dZ Adz = (dZ3 Adzy) -+ (dZ, Adz,). The last step used the continuity of 7,11 up to the

boundary. Hence, using

6k+3 87€+2

_C,dz; Ady :d( 7 dz»), =12 .n,
V41 8Ej8x§+2(p J J Ve+1 8ZE§+2 paz; J
and applying Stokes formula, we have
()
0z1---0%Z,’ v
(_1)n(k+3) 0 8n(k+2) 01
=y /K”Ykﬂ(x+1 )—Bx’f+2---6xfl+2(p($+l )dx
(_1)n(k+3) 8n(k+2)

(_1)n 8n(k+2)T0($) ]

T @)
_ (= :

— <(§)"b(f)}K @ 00(y), 2.

which is the desired formula.
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Remark 3.1 If we start with fs, being a holomorphic function of slow growth in Tq, , for
any oy in Sy, we obtain

6nf/;;c _ - i\n
m a (_1) (5) bUk (fak) ®50(y)’

where f; is the extension of fg,.

Theorem 3.3 For every T € £'(R™), the Cauchy transform C(T) has (—21)"T as a bound-

ary value in the sense of distributions.

Proof Let us observe first that, 7' being of finite order m, C(T) is slow growth. In fact,
there are constants C' and R such that
olil
(T, )| < OmesBuoI?R) 0<5|;1|Em P o(z)|,
where By(R) is the ball of radius R with center at the origin, j = (j1, -+ ,Jjn) and |j| =
J1+ -+ + jn. Therefore, if z is not in By(R) we have

) = |16, ) =c [t

7 T (2 — 1) 2€Bo(R) 0<|j|<m
k=1

It follows that, for a conveniently chosen constant C; > 0, we have

Tolty pm—. E—

H |Im 2k |Jk +1
k=1
where Imz 20, k=1,2,---,n
Let us denote by f,, the restriction C(T')|q,, and fs, the extension to D'(C") with support

in {Q,, }. Its existence is a consequence of Theorem 3.1, and we know that

% = (07 (5) b ) 8 oly), G OT) = T 0 000
Then
o (O ifk):(T‘i(‘l)mk(%) orlfo)) © foto)
n k=1 =

By Lemma 3.1 we obtain

The proof is completed.

Theorem 3.4 Every distribution T in D' (R™) is a boundary value of a holomorphic function

of slow growth in Tq.
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Proof Let K,, C K, 1 be compact subsets of R”, and R" = |J K,,. Chosen a sequence
on € DR™), 0 < ¢, <1, ¢, = 1 in a neighborhood of K, and suppp, C K,i1. Let

B=[-¢d" Ts={z=x+iy: 2z € R"y € B}, B, =[—cn,cn]", ¢n = ¢ (n — 00) and
B= ) B,.

DZBE;IQ Ty =011, Ty = (on — n—-1)T for n > 2. We have T = > T,,. For every n > 1 the
function "

C(Ty) = C(Tn(x) @ do(y))

is holomorphic outside supp(7T;,) + i0. In particular, for n > 2, C(T,,) is holomorphic in a
neighborhood of the set

Ly,_1= {Z:$+1y cC":zx an_l, (RS Bn—l}-

Since L, is convex, it is holomorphically convex in C™. Therefore, we can find polynomials
hy, such that

1
sup [C(T)(2) — hp(2)| < —, n>2.
2€Ln—1 2"
Thus, the series
=C(T) + Y (C(T,
n>2
converges in D’ (T2n ) and defines a holomorphic function of slow growth. Furthermore,
o, e
a"s 8 C Tl
= T,) @ do( So(y).
0z --- 0z, Z 321 (Z ®do(y) = T(x) @ do(y)

n>1

For every compact subset K of R™, it leads to

oSy, o (1"
Tz~ U™ (5) B (Sa) @ 8000,

where §Uk denotes the extension of S‘KQ and suppgg,c C Ty
Tk

U 2,
As a result, we get o
n 2" .
e GO ;Sm) = (Tl = (3) o)) © do(w).
which implies that .
re (3

This completes the proof.

Theorem 3.5 Suppose that f € H(Tr) has T € D'(R™) as a boundary value. Then for
every ¢ € D(T(_og,cyn), € = (€1,€2, -+ ,€n), the function g : [0,c)" — C defined by

f(z+ie)p(x +ie)dx, 0<e¢ <e j=1,2,--n,
]Rn
g(€) = <T7 (p(df + 10)>3 €= (0707 e 30)7 (32)
lim flx+ie)p(z+ie)de, 0<e<ec, €#0, j=1,2,---.,n

€501(j)—04 JRrn
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s continuous. Moreover, the integral
S(p) = / ( flz+ie)p(z + ie)dx) de
[0,e)™ R

exists and S defines a distribution in T(_ o cyn with support in (R™)g cyn.

Proof The continuity of g(e) follows from Definition 1.1 and the existence of S(p) follows
from the continuity of g(e). From [12, Theorem XIII, p. 74] we conclude that S is a distribution.

Theorem 3.6 Under the same hypotheses of Theorem 3.5, we conclude that f is slow growth
and s ’ ’
1\" 1\
0% 07 (—) b(f) ©do(y) = (5) T(x) @ 6o(y)

2
with S defined above.

Proof Let Q be an open subset of R”, K CC 2 C R™ and 0 < ¢ < d(K,Q°). Let ¢ be a
standard radial function (see [6]) in C™ with support in B(0,1), ¢s(z) = 551 (%) (6 > 0). For
fixed point z° € K, denote by ¢s(¢) the function 15(¢ — (z° + id)). Since S has a finite order
k in the compact set F' = {z € C" : d(z, K) < €}, there is a positive constant C' such that if
¢ € D(C™) has support in (int F N T), then

ap-l-qsp
S,p)| < ‘/ dm‘ < Csup sup ‘ T -
|< <p>| f(p CEF 0<p+q<k 62?1 ...622"62‘{1 ...azgln

©:

where p=pi 4+ +Dn, ¢=q1 + -+ qn.
On the other hand, it holds

orta 0= orta (C—(x0+16))
9270719 \) = Sorermn 907 5 '

Therefore, there is a constant C'x > 0 such that in the case 0 < § < ¢,

| [es(©r©am(@)] < et

By the mean value property of holomorphic functions, the left-side is precisely |f(z" + i6)]. In
other words,
|f(2° +10)| < Cpo~2 %, 2°c K, 0<d<e

The proof is completed.
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