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Abstract For each real number λ ∈ [0, 1], λ-power distributional chaos has been in-
troduced and studied via Furstenberg families recently. The chaoticity gets stronger and
stronger as λ varies from 1 to 0, where 1-power distributional chaos is exactly the usual
distributional chaos. As a generalization of distributional n-chaos, λ-power distributional
n-chaos is defined similarly. Lots of classic results on distributional chaos can be improved
to be the versions of λ-power distributional n-chaos accordingly. A practical method for
distinguishing 0-power distributional n-chaos is given. A transitive system is constructed to
be 0-power distributionally n-chaotic but without any distributionally (n + 1)-scrambled
tuples. For each λ ∈ [0, 1], λ-power distributional n-chaos can still appear in minimal
systems with zero topological entropy.
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1 Introduction

By a dynamical system (in short, a system) we mean a pair (X, f), where X is a compact

metric space with metric d and f : X → X is a continuous map.

As far as we know, the first topological definition of chaos was introduced by Li and Yorke [6]

to describe the complexity of the orbits of points in a system. The Li-Yorke chaos became one

of the most discussed topics for the last several decades. Various extensions of Li-Yorke chaos

were developed. In 1994, Schweizer B. and Smı́tal J. [9] introduced distributional chaos and

showed that positive topological entropy is equivalent to distributional chaos for interval self-

maps. But the equivalence is no longer valid when a general compact metric space is considered

(see [4, 7]).

In 2007, Li-Yorke chaos and distributional chaos have been unified by Xiong et al [14] into

the frame of F -chaos, where F is a Furstenberg family. Recently, via F -chaos, Xiong et al [13]

have introduced the notion of λ-power distributional chaos to strengthen distributional chaos,

where λ ∈ [0, 1]. The hierarchical relation of these chaos is intensively discussed in [2].

The above definitions of chaos are expressed in terms of dynamics of pairs. Some authors

have realized that notions of chaos can also be stated by means of dynamics of tuples, e.g.,
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n-scrambled tuples (see [5, 12]). Following this idea, we extended distributional chaos to dis-

tributional n-chaos for n ≥ 2 (see [10]). There we discussed several properties of distributional

n-chaos and constructed a transitive system which is distributionally n-chaotic without any

distributionally (n+ 1)-scrambled tuples.

In this paper, we introduce the notion of F -n-chaos generally for a given Furstenberg family

F and n ≥ 2. Then we apply F -n-chaos to the study of λ-power distributional n-chaos.

Our main aim is to extend some classic results on distributional chaos to be the versions of

λ-power distributional n-chaos. This paper is organized as follows. Section 2 is devoted to

preliminaries on Furstenberg families and on topological dynamics. In Section 3, for λ ∈ [0, 1],

λ-power distributional n-chaos is introduced as a generalization of distributional n-chaos via

Furstenberg families, where 0-power distributional n-chaos is the strongest. Then we provide a

simple criterion for a system to be 0-power distributionally n-chaotic. In Section 4, we present

a transitive system which is 0-power distributionally n-chaotic without any distributionally

(n + 1)-scrambled tuples. Finally in Section 5, for each λ ∈ [0, 1], we show that λ-power

distributional n-chaos may exist in minimal systems with zero topological entropy.

2 Preliminaries

2.1 Furstenberg families

We review some notations related to Furstenberg families (see [1]). Denote by Z+,N the set

of positive integers and the set of non-negative integers respectively. Denote by P the collection

of all subsets of Z+.

F ⊂ P is called a Furstenberg family, if it is hereditary upwards, that is, F1 ⊂ F2 and

F1 ∈ F imply F2 ∈ F . Obviously, the family of all infinite subsets of Z+ is a Furstenberg

family, denoted by B.

For a family F , denote

κF = {F ∈ P : Z+ − F 6∈ F} = {F ∈ P : F ∩ F ′ 6= ∅ for all F ′ ∈ F}.

κF is a Furstenber family, called the dual family of F . It is easy to see that κB is the family

of cofinite subsets.

A subset F of Z+ is thick if it contains arbitrarily long runs of positive integers. The family

of all thick subset of Z+ is denoted by τB. The set in κτB is said to be syndetic. So F ⊂ Z+ is

syndetic if and only if it is of bounded gaps, i.e., there is N such that {i, i+1, · · · , i+N}∩F 6= ∅

for every i ∈ Z+.

Let J ⊂ Z+. Define

µ(J) = lim sup
n→∞

#(J ∩ {1, · · · , n})

n

and

BD∗(J) = lim sup
#I→∞

#(J ∩ I)

#I
,

where I ranges over intervals of Z+, µ(J) and BD∗(J) are said to be the upper density of J

and the upper Banach density of J , respectively. The lower density µ(J) and the lower Banach

density BD∗(J) are defined similarly.
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For every t ∈ [0, 1], let M(t) = {F ∈ B : µ(F ) ≥ t}. Obviously, all M(t) are Furstenberg

families and M(0) = B.

2.2 Topological dynamics

A denotes the closure of the set A in X . For given δ > 0, let [A]δ = {x ∈ X : d(x,A) < δ},

where d(x,A) = inf{d(x, y) : y ∈ A}.

Suppose that (X, f) is a system. A ⊂ X is invariant if f(A) ⊂ A. (Y, f) is a subsystem

of (X, f) if Y ⊂ X is nonempty, closed and invariant. For U, V ⊂ X , N(U, V ) = {n ∈ Z+ :

U ∩ f−nV 6= ∅} is called the meeting time set of U and V . Specially, if U is a singleton {x},

N({x}, V ) is simply written as N(x, V ), called the return time set from x to V . (X, f) or f

is said to be transitive if N(U, V ) 6= ∅ for any two nonempty open sets U, V ⊂ X . We write

Orb(x, f) = {x, f(x), f2(x), · · · } and call it the orbit of x. x ∈ X is said to be a recurrent point

if x is a limit point of the set Orb(x, f). Clearly, if x is a recurrent point, then (Orb(x, f), f) is

a transitive system.

(X, f) or f is said to be minimal if there is no proper subsystem of (X, f). If a subsystem

(Y, f) of (X, f) is minimal, then we say that Y is a minimal set of X . Each point in a minimal

set is called a minimal point. It is well known that x ∈ X is a minimal point if and only if

N(x, U) is syndetic for any neighborhood U of x.

For a finite open cover U of X define

h(f,U) = lim sup
k→∞

1

k
logN

( k−1∨

i=0

fk(U)
)
,

where N(C) is the minimal cardinality among all cardinalities of subcovers of C. The topological

entropy of (X, f) is h(f) = sup
U

h(f,U), where the supremum is taken over all finite open covers

of X .

Consider the set E = {0, 1, · · · , n − 1}, n ≥ 2, endowed with the discrete topology. Let

Σn =
∞∏
i=1

E = {x | x = x1x2 · · · , xi ∈ E, i = 1, 2, · · · } with the product topology. Then Σn is

a compact metric space, called a symbolic space (on n symbols). A compatible metric on Σn

is given by d(x, y) = 1
k
, where k = min{i | xi 6= yi, i = 1, 2, · · · } for any x = x1x2 · · · , y =

y1y2 · · · ∈ Σn with x 6= y, otherwise 0 when x = y. Define σ : Σn → Σn by σ(x) = x2x3 · · · for

any x = x1x2 · · · ∈ Σn. It is obvious that σ is continuous. (Σn, σ) is called the full shift (on n

symbols). Any subsystem of (Σn, σ) is called a subshift.

Each A ∈
∞⋃
k=1

Ek is called a word over E, where Ek = {x1x2 · · ·xk | xi ∈ E, 1 ≤ i ≤ k}

is the set of all k-words. If A = a1a2 · · ·al is an l-word, then we call that the length of A is

l, denoted |A| = l. If B = b1b2 · · · bm is an m-word, the catenation of A and B is denoted by

AB = a1 · · ·alb1 · · · bm. Then AB is an (l+m)-word. If A1, A2, · · · is a sequence of words, then

A1A2 · · · is regarded as a point of Σn. For simplicity, denote A · · ·A (k times), AA · · · by A(k)

and A∞ respectively. We say that A occurs in B, denoted A ≺ B, if there is i ≥ 0 such that

aj = bi+j holds for each j = 1, 2, · · · , l. For a point x ∈ Σn, we get the definition of A ≺ x

similarly and say that A occurs in x.

Lemma 2.1 comes from [4].
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Lemma 2.1 Let x = x1x2 · · · ∈ Σn. If for any k ≥ 1, there exists K > 0 such that

x1x2 · · ·xk ≺ xixi+1 · · ·xi+K holds for each i ≥ 1, then x is a minimal point of σ.

Let Y ⊂ Σn. For k ≥ 1, denote

Qk(Y ) = {A ∈ Ek : there is x ∈ Y such that A ≺ x}.

The following Lemma 2.2 is well known, for example see [11].

Lemma 2.2 Suppose that σ|Y : Y → Y is a subshift. Then

h(σ|Y ) = lim
k→∞

log#Qk(Y )

k
.

3 λ-Power Distributional n-Chaos

Suppose that (X, f) is a system and F is a Furstenberg family.

Let A ⊂ X and δ > 0. x ∈ X is said to be an F -attaching point of A if N(x,A) ∈ F ; an

F -adherent point of A if x is an F -attaching point of [A]ε for any ε > 0; an F -δ-escape point of

A if x is an F -attaching point of the set X− [A]δ; an F -escape point of A if x is an F -δ′-escape

point of A for some δ′ > 0.

3.1 F-n-chaos

Let n ≥ 2. Similar to the definition of F -chaos in [14], we introduce F -n-chaos.

Denote by (Xn, f (n)) the n-fold product system (X ×X × · · · ×X, f × f × · · · × f). Put

∆n = {(x, x, · · · , x) ∈ Xn : x ∈ X} and ∆(n) = {(x1, x2, · · · , xn) ∈ Xn : xi = xj for some i 6=

j}.

Let δ > 0. A tuple x̃ ∈ Xn \∆(n) is said to be F -δ-n-scrambled if x̃ is an F -adherent point

of ∆n and an F -δ-escape point of ∆(n) in the product system (Xn, f (n)). A subset C of X is

said to be F -δ-n-scrambled if each tuple x̃ ∈ Cn \∆(n) is F -δ-n-scrambled. A system (X, f) is

said to be uniformly F -n-chaotic if there exists an uncountable F -δ′-n-scrambled set for some

δ′ > 0.

In the same manner, we get the definitions of F -n-scrambled tuples, F -n-scrambled sets

and F -n-chaos.

3.2 λ-power distributional n-chaos

For F ⊂ Z+, denote F c = Z+ − F . Note that

M(1) =
{
F ∈ B : lim sup

n→∞

#(F ∩ {1, · · · , n})

n
= 1

}

=
{
F ∈ B : lim inf

n→∞

#(F c ∩ {1, · · · , n})

n
= 0

}
.

In [13], Xiong et al introduced a new class of Furstenberg families as follows: For each λ ∈ (0, 1],

put

Dλ =
{
F ∈ B : lim inf

n→∞

#(F c ∩ {1, · · · , n})

nλ
= 0

}
, D0 =

⋂

λ∈(0,1]

Dλ.
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Then Dλ is a Furstenberg family for each λ ∈ [0, 1]. It is easy to see that D1 = M(1) ⊂ τB

and that Dλ1 ⊂ Dλ2 for any 0 ≤ λ1 ≤ λ2 ≤ 1.

Recall that a system is distributionally chaotic if and only if it is D1-chaotic (see [14]), which

inspires us to introduce the following intuitive synonyms.

Let λ ∈ [0, 1], n ≥ 2 and δ > 0. By a λ-power distributionally δ-n-scrambled tuple (or

set), we mean a Dλ-δ-n-scrambled tuple (or set respectively). Likewise, (uniformly) λ-power

distributionally n-chaotic systems means (uniformly) Dλ-n-chaotic systems.

Surely, 1-power distributional n-chaos is just distributional n-chaos defined in [10]. λ-

power distributional n-chaos gets stronger and stronger as λ varies from 1 to 0. In [2], Fu

et al constructed examples to demonstrate that λ1-power distributional chaos and λ2-power

distributional chaos are not equivalent for any different λ1, λ2 ∈ [0, 1]. The examples there, in

fact, also show that λ1-power distributional n-chaos and λ2-power distributional n-chaos are

not equivalent for any different λ1, λ2 ∈ [0, 1]. So all of λ-power distributional n-chaos, where

λ ∈ [0, 1], form a hierarchy of distributional n-chaos.

Corollary 4.4 in [13] has offered a criterion for a system to be uniformly 0-power distribu-

tionally chaotic. It can be modified slightly into a version for uniformly 0-power distributionally

n-chaotic systems. For proof of Theorem 4.1 here, we merely present a simplified and practical

criterion as follows.

Proposition 3.1 Suppose that (X, f) is a system and n ≥ 2. If f has n distrinct fixed

points pj , j = 0, 1, · · · , n − 1, such that
∞⋃
i=1

f−i(pj) is dense in X for each j, then (X, f) is

uniformly 0-power distributionally n-chaotic.

In fact, Proposition 3.1 implies that (X, f) is generically uniformly 0-power distributionally

n-chaotic, that is, the set of 0-power distributionally δ-n-scrambled tuples is residual in Xn for

some fixed δ > 0.

We take the most known system (Σn, σ) as an example. Note that all of j = jj · · · ∈

Σn, 0 ≤ j ≤ n − 1 are fixed points of σ and they satisfy the condition stated in Proposition

3.1. Consequently, we give the following example.

Example 3.1 The full shift (Σn, σ) is uniformly 0-power distributionally n-chaotic.

4 0-Power Distributionally n-Chaotic Systems Without

Distributionally (n + 1)-Scrambled Tuples

For n ≥ 2, we have constructed a transitive system which is distributionally n-chaotic

without any distributionally (n + 1)-scrambled tuples (see [10]). Analogously, a transitive

system is constructed, which is 0-power distributionally n-chaotic without any distributionally

(n+ 1)-scrambled tuples. Before doing it, we need some preparations.

4.1 Technical preparations

The following Lemma 4.1 comes from [1, 8].

Lemma 4.1 Suppose that (X, f) is a system, and A ⊂ X is nonempty and closed. Then

x ∈ X is a τB-adherent point of A if and only if A contains a minimal set of Orb(x, f).
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Proposition 4.1 Suppose that (X, f) is a system and n ≥ 2. If there is a τB-escape point

of ∆(n) in the product system (Xn, f (n)), then (X, f) has at least n distrinct minimal points.

Proof Let x̃ ∈ Xn be a τB-escape point of ∆(n). Then x̃ is a τB-attaching point of the

set Xn − [∆(n)]δ for some δ > 0. By Lemma 4.1, Xn − [∆(n)]δ contains a minimal point of

(Xn, f (n)), say ỹ = (y1, · · · , yn). Therefore, y1, · · · , yn are n distrinct minimal points of (X, f).

Corollary 4.1 Suppose that (X, f) is a system and n ≥ 2. If (X, f) has a distributionally

n-scrambled tuple, then (X, f) has at least n distrinct minimal points.

Proof Let x̃ be a distributionally n-scrambled tuple. It follows that x̃ is a D1-escape point

of ∆(n) in the product system (Xn, f (n)). Since D1 ⊂ τB, the corollary holds by Proposition

4.1.

Corollary 4.1 tells us, if a system does not admit n distrinct minimal points, then it has no

distributionally n-scrambled tuple. Needless to say, it is not distributionally n-chaotic.

4.2 Construction of examples

Suppose n ≥ 2. Below, we define a sequence of words {Ak}k∈Z+ inductively.

Let A1 = 1. For k ≥ 2, suppose that Ak−1 is defined, and denote lk−1 = |Ak−1|, the length

of Ak−1. If k = ni+ j, where i ∈ N, 0 ≤ j ≤ n− 1, define

Ak = Ak−1j
(l2k−1)Ak−1.

Let x = lim
k→∞

Ak000 · · · , and X = Orb(x, σ).

Proposition 4.2 The point x defined above is a recurrent point of σ. Therefore, the subshift

(X, σ) is transitive.

By the definition of Ak, it is easy to see that l1 = 1, lk = 2lk−1 + l2k−1, k ≥ 2.

Proposition 4.3 (X, σ) processes the following properties:

(1) For each k ∈ Z+, x can be expressed as

x = Akj
(l2k)
0 Akj

(l2k+1)

1 Akj
(l2k)
0 Akj

(l2k+2)

2 Akj
(l2k)
0 Akj

(l2k+1)

1 Akj
(l2k)
0 Ak · · · ,

where 0 ≤ j0 ≤ n− 1, jp = (j0 + p) mod n, p ∈ Z+.

(2) lim
k→∞

l2k
lk+1

= 1, or equivalently, lim
k→∞

lk
lk+1

= 0.

Suppose that A = a1 · · ·al is a word with length l. For k ≤ l, put

rk(A) = #{i | ai · · · ai+k−1 = j(k) for some 0 ≤ j ≤ n− 1}.

Obviously, j = jj · · · ∈ X, 0 ≤ j ≤ n− 1, are all fixed points of σ.

Put MBD(1) = {F ∈ P : BD∗(F ) = 1}. It is verified that MBD(1) ⊂ κτB.

Proposition 4.4 In the system (X, σ), x is an MBD(1)-adherent point of {j, 0 ≤ j ≤

n− 1}.

Proof Suppose that U is an arbitrary neighborhood of {j, 0 ≤ j ≤ n− 1} in X . Without

loss of generality, assume that U =
n−1⋃
j=0

Uj , where Uj = B(j, 1
p
) for some p ∈ Z+.
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For any given M ∈ Z+, there exists m such that

lm + l2m ≤ M < lm+1 or lm+1 ≤ M < lm+1 + l2m+1.

By Proposition 4.3(1), when lm + l2m ≤ M < lm+1, we have

rk(xi+1 · · ·xi+M )

M
≥

l2m − p

lm+1
= 1−

2lm + p

lm+1
.

Otherwise,

rk(xi+1 · · ·xi+M )

M
≥

l2m +M − lm+1 − 2p

M

= 1−
lm+1 − l2m + 2p

M

= 1−
2lm + 2p

M

≥ 1−
2lm + 2p

lm+1
.

Note that M → ∞ implies m → ∞. Thus, according to Proposition 4.3(2),

lim
M→∞

rk(xi+1 · · ·xi+M )

M
= 1.

Since M and i are arbitrary, x is an MBD(1)-adherent point of {j, 0 ≤ j ≤ n− 1}.

Proposition 4.5 The subshift (X, σ) has exactly n distrinct minimal points, which are the

fixed points j, 0 ≤ j ≤ n− 1.

Proof Firstly, these fixed points j, 0 ≤ j ≤ n− 1, are all minimal points of (X, σ).

Next, we want to show that any minimal point of (X, σ) is just one of Λ = {j, 0 ≤ j ≤ n−1}.

If not, assume that there is another distrinct minimal point ω. Then Orb(ω, σ) ∩ Λ = ∅. Let

U, V be two disjoint neighborhoods of Λ and of Orb(ω, σ) respectively. By Lemma 4.1 and

Proposition 4.4, we have

N(x, U) ∈ MBD(1), N(x, V ) ∈ τB.

Since MBD(1) ⊂ κτB, it follows that N(x, U) ∩N(x, V ) 6= ∅, which contradicts U ∩ V 6= ∅.

Theorem 4.1 The subshift (X, σ) is uniformly 0-power distributionally n-chaotic, without

any distributionally (n + 1)-scrambled tuple. Of course, (X, σ) is not 0-power distributionally

(n+ 1)-chaotic.

Proof For each wordA = a1a2 · · · al ≺ x, there is k such that A ≺ Ak. For any 0 ≤ j ≤ n−1

and any m ∈ Z+, it follows from Proposition 4.3(1) that Akj
(m) ≺ x. Thus, there is a

word B such that ABj(m) ≺ x. It follows that
∞⋃
k=1

σ−k(j) is dense in X for each fixed point

j, 0 ≤ j ≤ n− 1. By Proposition 3.1, (X, σ) is uniformly 0-power distributionally n-chaotic.

However, according to Proposition 4.5 and Corollary 4.1, (X, σ) has no distributionally

(n+ 1)-scrambled tuple.
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5 Minimal Systems

Liao et al [4] constructed in a symbolic space a minimal and distributionally chaotic system

with topological entropy 0. Oprocha [7] obtained an uncountable family of such systems in a

symbolic space. Following the ideas in [4, 7], for each λ ∈ [0, 1] and n ≥ 2, we construct in a

symbolic space a uniformly λ-power distributionally n-chaotic and minimal system with zero

topological entropy.

Let n ≥ 2 and t = (t1, t2, · · · ) ∈ Z
Z+

+ be any given sequence of positive integer. Recall that

E = {0, 1, · · · , n − 1}. Below, we will define a sequence of words over E. Firstly, define a

map η : E → E by η(i) = (i + 1)modn. We can extend η naturally to be defined on any word

A ∈
∞⋃

m=1
Em or on any point x ∈ Σn.

Then, let A10 be a given word over E. For each 1 ≤ j ≤ i− 1, put A1j = ηj(A10). Assume

that for some k ∈ Z+, words Aij , 1 ≤ i ≤ k, 0 ≤ j ≤ n− 1 are all already defined. Let

Jij = A
(ti)
ij .

We define a set Pk ⊂
∞⋃

m=1
Em as follows:

Pk = {J1a1J2a2 · · · Jkak
: a1a2 · · · ak ∈ Ek}.

We enumerate elements of Pk, say Pk = {w1, w2, · · · , wnk}. Put

A(k+1)0 = w1w2 · · ·wnk ,

i.e., A(k+1)0 is a permutation of elements of Pk. For each 1 ≤ j ≤ n− 1, put

A(k+1)j = ηj(A(k+1)0).

Define x(t) = J10J20 · · · and M (t) = Orb(x(t), σ). Denote s
(t)
k = |Ak0|, r

(t)
k = |J10J20 · · · Jk0|

=
k∑

i=1

tis
(t)
i .

Proposition 5.1 For any t = (t1, t2, · · · ) ∈ Z
Z+

+ and any k ∈ Z+, x
(t), s

(t)
k and r

(t)
k are

define as above. Then

(1) s
(t)
k+1 = nkr

(t)
k .

(2) x(t) is an infinite catenation of elements of Pk.

Proposition 5.2 For any t ∈ Z
Z+

+ , x(t) is a minimal point of σ. Namely, (M (t), σ) is a

minimal subshift.

Proof Suppose x(t) = x1x2 · · · . For each k ≥ 1, x1x2 · · ·xk ≺ J10J20 · · · Jk0. By the

definition of A(k+1)0, for each 0 ≤ j ≤ n− 1, one has

J1jJ2j · · · Jkj ≺ A(k+1)0.

Under the action of ηn−j , it follows that

J10J20 · · · Jk0 ≺ A(k+1)(n−j).
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Consequently, whenever J1a1J2a2 · · · J(k+1)ak+1
∈ Pk+1, where a1a2 · · ·ak+1 ∈ Ek+1, one has

J10J20 · · · Jk0 ≺ J(k+1)ak+1
≺ J1a1J2a2 · · · J(k+1)ak+1

.

Then, for given k ≥ 1, we chooseK = 2r
(t)
k+1. By Proposition 5.1, x

(t) is an infinite catenation

of elements of Pk+1. Therefore, for any i ∈ Z+, there is some J1a1J2a2 · · ·J(k+1)ak+1
∈ Pk+1

occurring in xixi+1 · · ·xi+K , that is,

J1a1J2a2 · · · J(k+1)ak+1
≺ xixi+1 · · ·xi+K .

This is because the length of any word in Pk+1 is r
(t)
k+1. So

x1x2 · · ·xk ≺ xixi+1 · · ·xi+K .

By Lemma 2.1, x(t) is a minimal point of σ.

Proposition 5.3 For any t ∈ Z
Z+

+ , the topological entropy of (M (t), σ) is 0.

Proof Every point x ∈ M (t) is an infinite catenation of words in Pk, and all words in Pk

are of the same length lk = r
(t)
k . So each word with length lk, occurring in x, must be a subword

of some uw, where u,w ∈ Pk. This implies that

#Qlk(M
(t)) ≤ lk(#Pk)

2 = lk(n
k)2 = n2klk.

By Lemma 2.2, one has

h(σ|M(t) ) = lim
k→∞

log#Qlk(M
(t))

lk
≤ lim

k→∞

( log lk
lk

+
2k logn

lk

)
= 0.

Theorem 5.1 For t ∈ Z
Z+

+ and λ ∈ (0, 1], if

lim
k→∞

r
(t)
k−1

(tks
(t)
k )λ

= 0,

then (M (t), σ) is uniformly λ-power distributionally n-chaotic.

Proof Choose an uncountable subset C of Σn such that if cj = c
j
1c

j
2 · · · is n distrinct

points of C, where 0 ≤ j ≤ n − 1, then c0p = c1p = · · · = cn−1
p for infinitely many p ∈ Z+ and

cjq, 0 ≤ j ≤ n − 1, are pairwise different for infinitely many q ∈ Z+. By Example 3.1, such a

subset does exist in Σn.

Define ξ : C → Σn such that for any c = c1c2 · · · ∈ C, ξ(x) = J1c1J2c2 · · · . For each fixed

k ∈ Z+, we always have J1c1 · · · Jkck ≺ A(k+1)0 ≺ x(t). Therefore, there is some h ≥ 0 such

that the beginning r
(t)
k -word of σh(x(t)) is J1c1 · · ·Jkck . This implies that ξ(c) ∈ M (t) for any

c ∈ C. Put D = ξ(C). Then D ⊂ M (t). Since C is uncountable and ξ is an injective, D is also

uncountable.

Let

wj = J
j
1c1

J
j
2c2

· · ·

be arbitrary n distrinct points of D, where 0 ≤ j ≤ n − 1. Then there are two strictly

increasing sequences {pk} and {qk} of positive integers, such that for each k, J0
pkcpk

= J1
pkcpk

=

· · · = Jn−1
pkcpk

, and the corresponding components of Jj
qkcqk

, 0 ≤ j ≤ n−1, are pairwise different.
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On the one hand, for given pk > 1, when

tpk−1s
(t)
pk−1 ≤ i ≤ tpk

s(t)pk
− tpk−1s

(t)
pk−1,

the beginning tpk−1s
(t)
pk−1 components of σi(wj), 0 ≤ j ≤ n− 1, are correspondingly identical.

Hence, for any 0 ≤ j 6= m ≤ n− 1, one has

d(σi(wj), σ
i(wm)) ≤

1

tpk−1s
(t)
pk−1

.

So for any given ε > 0, whenever pk is large enough, one has

max
0≤j 6=m≤n−1

d(σi(wj), σ
i(wm)) < ε.

Then

1

[r
(t)
pk

]λ

(
r(t)pk

−#
{
i ∈ Z+ : max

0≤j 6=m≤n−1
d(σi(wj), σ

i(wm)) < ε
})

≤
r
(t)
pk

− tpk
s
(t)
pk

+ 2tpk−1s
(t)
pk−1

[r
(t)
pk

]λ
=

r
(t)
pk−1 + 2tpk−1s

(t)
pk−1

[r
(t)
pk

]λ

≤
3r

(t)
pk−1

[r
(t)
pk−1 + tpk

spk
]λ

=
3r

(t)
pk−1

[tpk
s
(t)
pk ]

λ
·
( r

(t)
pk−1

tpk
s
(t)
pk

+ 1
)−1

=
3r

(t)
pk−1

[tpk
s
(t)
pk ]

λ
·
( 1

npk−1tpk

+ 1
)−1

→ 0, as pk → ∞.

Namely, for any given ε > 0,
{
i ∈ Z+ : max

0≤j 6=m≤n−1
d(σi(wj), σ

i(wm)) < ε
}
∈ Dλ.

On the other hand, for given qk > 1, when

tqk−1s
(t)
qk−1 ≤ i ≤ tqks

(t)
qk

− tqk−1s
(t)
qk−1,

the beginning tqk−1s
(t)
qk−1 components of σi(wj), 0 ≤ j ≤ n − 1 are correspondingly pairwise

distrinct. Hence, for any 0 ≤ j 6= m ≤ n− 1, one has

d(σi(wj), σ
i(wm)) = 1.

Choose ε0 = 1. Then

1

[r
(t)
qk ]

λ

(
r(t)qk

−#
{
i ∈ Z+ : min

0≤j 6=m≤n−1
d(σi(wj), σ

i(wm)) = 1
})

≤
r
(t)
qk − tqks

(t)
qk + 2tqk−1s

(t)
qk−1

[r
(t)
qk ]

λ
=

r
(t)
qk−1 + 2tqk−1s

(t)
qk−1

[r
(t)
qk ]

λ

≤
3r

(t)
qk−1

[r
(t)
qk−1 + tqksqk ]

λ
=

3r
(t)
qk−1

[tqks
(t)
qk ]

λ
·
( r

(t)
qk−1

tqks
(t)
qk

+ 1
)−1

=
3r

(t)
qk−1

[tqks
(t)
qk ]

λ
·
( 1

nqk−1tqk
+ 1

)−1

→ 0, as qk → ∞.
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Namely, {
i ∈ Z+ : min

0≤j 6=m≤n−1
d(σi(wj), σ

i(wm)) = 1
}
∈ Dλ.

So D is a Dλ-1-n-scrambled set. Thus, (M (t), σ) is uniformly λ-power distributionally n-

chaotic.

By Theorem 5.1 and the definition of D0, we have the following theorem.

Theorem 5.2 For t ∈ Z
Z+

+ , if for each λ ∈ (0, 1],

lim
k→∞

r
(t)
k−1

(tks
(t)
k )λ

= 0,

then (M (t), σ) is uniformly 0-power distributionally n-chaotic.

In the final section, we present some examples. For this purpose, it is a key to find the

sequence t ∈ Z
Z+

+ which satisfies the condition of Theorem 5.1 or Theorem 5.2.

Example 5.1 Let λ ∈ (0, 1] and n ≥ 2. Define three sequences {ri}
∞
i=1, {si}

∞
i=1 and {ti}

∞
i=1

inductively as follows.

Let t1 = 1, r1 = s1 = 2. Assume that for k ≥ 2, rk−1, sk−1, tk−1 are defined. Then put

sk = nk−1rk−1, tk = ⌊s
1
λ
−1

k ⌋, rk =
k∑

i=1

tisi,

where ⌊a⌋ denotes the largest integer not greater than the real number a. It follows that

lim
k→∞

rk−1

(tksk)λ
= lim

k→∞

rk−1

(sk⌊s
1
λ
−1

k ⌋)λ
= lim

k→∞

rk−1

sk
= lim

k→∞

1

nk−1
= 0.

Let t = {ti}
∞
i=1. Then t ∈ Z

Z+

+ satisfies the condition of Theorem 5.1. So the minimal

system (M (t), σ) with zero topological entropy is uniformly λ-power distributionally n-chaotic.

Example 5.2 Let n ≥ 2. Define three sequences {ri}
∞
i=1, {si}

∞
i=1 and {ti}

∞
i=1 inductively

as follows.

Let t1 = 1, r1 = s1 = 2. Assume that for k ≥ 2, rk−1, sk−1, tk−1 are defined. Then put

sk = nk−1rk−1, tk = sk−1
k , rk =

k∑

i=1

tisi.

For any λ ∈ (0, 1], we have

lim
k→∞

rk−1

(tksk)λ
= lim

k→∞

rk−1

skλk
= 0.

The last equality holds because kλ ≥ 1 when k is large enough.

Let t = {ti}
∞
i=1. Then t ∈ Z

Z+

+ satisfies the condition of Theorem 5.2. So the minimal

system (M (t), σ) with zero topological entropy is uniformly 0-power distributionally n-chaotic.
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