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Mobius Homogeneous Hypersurfaces with Three
Distinct Principal Curvatures in S*+!*
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Abstract Let x : M™ — S be an immersed hypersurface in the (n 4 1)-dimensional
sphere S"*!. If, for any points p,q € M™, there exists a Mobius transformation ¢ :
§"tt — S™*! such that ¢ o x(M™) = x(M™) and ¢ o x(p) = x(q), then the hypersurface
is called a Mobius homogeneous hypersurface. In this paper, the Mobius homogeneous
hypersurfaces with three distinct principal curvatures are classified completely up to a
Moébius transformation.
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1 Introduction

A diffeomorphism ¢ : S"*! — S"*! is said to be a Méobius transformation if ¢ takes the
set of round n-spheres into the set of round m-spheres. All Mobius transformations form a
transformation group, which is called the Mobius transformation group of S**! and denoted by
M (S™+1). Tt is well-known that, for n > 2, the M&bius transformation group M (S™+1) of S*+!
coincides with the conformal transformation group C(S"*!) of S**1. In [11], Wang introduced
complete Mobius invariants for a submanifold « : M™ — S"*!, and obtained a congruent
theorem of hypersurfaces in S"*! (also see [1]). Recently some special hypersurfaces, including
the Mobius isoparametric hypersurfaces, the Blaschke isoparametric hypersurfaces and so on,
have been extensively studied in the context of Mdbius geometry (see [4-5, 7]).

Another special hypersurface is the Mobius homogeneous hypersurface. A hypersurface x :
M™ — S"H1 s called a Mobius homogeneous hypersurface if for any two points p, ¢ € M™, there
exists a Mébius transformation ¢ € M (S"*1) such that pox(M™) = 2(M™) and oz (p) = z(q).
Let « : M™ — S"*! be a Mébius homogeneous hypersurface, we define

= {¢ € M(S™) | §oa(M") = o(M")},

Then II is a subgroup of the M&bius group M (S™*!), and the hypersurface x is the orbit of the
subgroup II. Thus the Mobius scalar invariants on the hypersurface are constant.

Standard examples of Mobius homogeneous hypersurfaces in S"*! are the image of homoge-
neous hypersurfaces in S**! under the Mdbius transformations. The homogeneous hypersurface
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in St is the isoparametric hypersurface, which was systematically studied (see [2-3]). An-
other standard examples come from homogeneous hypersurfaces in R**!. The inverse of the
stereographic projection o : R**1 — ST is defined by

1—|ul?  2u )

olu) = (1+ 2 T+ [uf?

The conformal map o assigns any hypersurface in R"*! to a hypersurface in S***. In [8],
authors proved that the Mobius invariants on f : M™ — R™t! are the same as the Mobius
invariants on o o f : M™ — S*T1. If f: M™ — R™"! is a homogeneous hypersurface, then the
hypersurface z = o o f is a M&bius homogeneous hypersurface.

Next we give a method to construct the Mobius homogeneous hypersurface in S™+1.

Proposition 1.1 Let v : M™ — S™t! be an immersed hypersurface. We define the cone

over u as

f:M™x R xRV™ 1 SR 1<m<n-—1,

f(p,t,y) = (tu(p), y).

Ifu: M™ — S™t! be a homogeneous hypersurface, then the image of o of the cone hypersurface
f over u is a Mdbius homogeneous hypersurface in S+,

These examples above come from homogeneous hypersurfaces in S"*! or R"*!. But there
are some examples of M&bius homogeneous hypersurfaces which can not be obtained in this
way. In [10], Sulanke constructed a Mdbius homogeneous surface, which is a cylinder over a
logarithmic spiral in R?, and classified the Mobius homogeneous surfaces in R3. In [6], authors
constructed a Mobius homogeneous hypersurface, a logarithmic spiral cylinder, which is a high
dimensional version of Sulanke’s example and classified the Mobius homogeneous hypersurfaces
in S"*! with two distinct principal curvatures. In addition, in [6], authors also classified the
Mébius homogeneous hypersurfaces in S*.

In this paper, the Mobius homogeneous hypersurfaces with three distinct principal curva-
tures are classified, and the main results are as follows.

Theorem 1.1 Let x : M™ — S™"! be a Mdbius homogeneous hypersurface with three
distinct principal curvatures. Then x is Mdbius equivalent to one of the following hypersurfaces:
(1) The isoparametric hypersurfaces in S"+1 with three distinct principal curvatures;

(2) the image of o of the cone over a standard torus
uw:SPr) x SRV —r2) 5 S 1<k<m-—1, k<m<n-—1;
(3) the image of o of the cone over the cartan’s minimal isoparametric hypersurface u :
M"=1 — S™ with three distinct principal curvatures.

Remark 1.1 Two hypersurfaces z, 7 : M™ — S"t! are Mobius equivalent, if there exists a
Mobius transformation ¢ € M (S™*1) such that ¢ o x(M™) = 2(M™).

According to the classification results in [5], combining Proposition 1.1 and our main The-
orem 1.1, we can derive the following corollary.
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Corollary 1.1 A Mdébius homogeneous hypersurface with three distinct principal curvatures
18 a Mdébius isoparametric hypersurface. Conversely, a Mobius isoparametric hypersurface with
three distinct principal curvatures is a Mdbius homogeneous hypersurface.

We organize the paper as follows. In Section 2, we give the elementary facts about Mobius
geometry for hypersurfaces in S**!. In Section 3, we prove Proposition 1.1 and give a charac-
terization of the cone hypersurfaces. In Section 4, we prove that the Mobius form of the Mobius
homogeneous hypersurfaces with three distinct principal curvatures vanishes. In Section 5, we
give the proof of Theorem 1.1.

2 Mobius Invariants for Hypersurfaces in S*11!

In this section, we recall some facts about the M&bius transformation group and define
Mobius invariants of hypersurfaces in S"*1. For details we refer to [11].
Let R’lﬂ'?’ be the Lorentz space, i.e., R"*3 with the inner product (-, -) defined by

(x,y) = —woyo + T1y1 + - + Tnt2Ynt2

for x = (1’0,1’1, e 7xn+2)7 Yy = (y07y17 e 7yn+2) S Rn+3.
Let O(n + 2,1) be the Lorentz group of R?H defined by
O(n+2,1)={T € GLR"") | 'TI,T = I, },
where T’ denotes the transpose of T and Iy = (' 7).
Let C7M = {y = (yo,y1) € R x R"*2| (y,y) = 0,y0 > 0} C RY"™, and OF (n+2,1) denote
the subgroup of O(n + 2,1) defined by

OT(n+2,1)={T €O(n+2,1)| T(C}"?) = CI"?}.
Lemma 2.1 (see [9]) Let T = (¥ 5) € O(n+2,1). then T € OF(n+2,1) if and only if
w > 0.

It is well-known that the subgroup O™ (n+2,1) is isomorphic to the Mobius transformation
group M (S™*1). In fact, for any

_(w u +
T_<v B)EO (n+2,1),

we can define the M&bius transformation L(T) : S**! — "+ by

Bx +v ”
L(T)(z) = i %7 Hay, +  Tnye) € ST

Then the map L : OF(n +2,1) — M(S"*1) is a group isomorphism.
Let = : M™ — S"*! be a hypersurface without umbilical points, and e, 1 the unit normal
vector field. Let IT = > h;;0,0; and H = %Zh” be the second fundamental form and the
i i

mean curvature of x, respectively. The Mobius position vector Y : M™ R?’Lg of = is defined
by
n
Y =p(l,x), p°= m(HHHQ —ni?).
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Theorem 2.1 (see [11]) Two hypersurfaces x,7 : M™ — S are Mdbius equivalent if
and only if there exists T € O (n +2,1) such that Y =YT.

It follows immediately from Theorem 2.1 that
g = (dY,dY) = p*dz - dz

is a Mobius invariant, which is called the Mdbius metric of = (see [11]).
Let A be the Laplacian operator with respect to g, we define

N=—tayv—- Liavary
n 2n2

Then we have
Y, Yy=0, (N,Y)=1, (N,N)=0.

Let {E1, -+, E,} be alocal orthonormal basis for (M™, g) with the dual basis {wy, -+ ,wp },
and write Y; = F;(Y), then we have

(i, Y) =(Y;, N) =0, (¥3,Y;) =0, 1<ij<n
We define the conformal Gauss map of x
G=(H,Hz+ enpt1).
By direct computations, we have
(G,)Y)=(G,N)=(G,Y;) =0, (G,G)=1.

Then {Y,N,Yy,---,Y,, G} forms a moving frame in R’lﬂ'?’ along M™. We use the following
range of indices in this section: 1 < 4,7, k,I < n. We can write the structure equations as
follows:

dy =) Yiws,
dN = Z AywiYj + ) CiwiG,
ay; = —UZ Ajjw;Y —lwiN +) wiY+ Y Bijw;G,
dG = —ijciin—ijBij;i, j
i ij

where w;; is the connection form of the Mobius metric g and w;; + wj; = 0. The tensors
A=Y Ajjw Quwj, C =) Ciw; and B = ) Bjjw; @ w; are called the Blaschke tensor, the
ij i ij

Mobius form and the Mobius second fundamental form of x, respectively. The eigenvalues of
(Bi;) are called the Mdbius principal curvatures of z. The covariant derivative of C;, A;;, Bi;
are defined by

Z C’i,jwj = dCZ + Z Cjwﬁ,
J J

Z Ajjpwy = dAg; + Z Ajpwrj + Z Apjwri,
k k k

Z Bijrwr = dB;; + Z Birwr; + Z By jwri,
k % %
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respectively. The integrability conditions for the structure equations are given by

Aijk — Aik,j = BiCj — BijCk, (2.1)
Cij—Cji=> (BixArj — BjrAi), (2.2)
k
Bij,k — Bik,j = 5ij0k — 5ik0j, Z Bijﬁj = —(n — 1)01', (23)
J
Rijii = BiBji — BuBji + 6 Aji + 00 Air — 6uAji — 0 Aur, (2.4)

L y2_n—1 _ o1 2
;B“_o, > (By)? = —, trA—;A“—Qn(l—i—ns), (2.5)

ij
where R;ji; denote the curvature tensor of g, s = m ZRijij is the normalized Md&bius
ij

scalar curvature. When n > 3, we know that all coefficients in the structure equations are
determined by {g, B}, and we have the following theorem.

Theorem 2.2 (see [11]) Two hypersurfaces x : M™ + S"*! and T : M™ — S"T1 (n > 3)
are Mobius equivalent if and only if there exists a diffeomorphism ¢ : M™ — M"™, which
preserves the Mébius metric g and the Mobius second fundamental form B.

The coefficients of the Mobius second fundamental form can be written by
Bij = p_l(hij - H(S”)

Clearly the number of distinct Mobius principal curvatures is the same as that of its distinct
principal curvatures.

3 A Method to Construct the Mobius Homogeneous Hypersurface

In this section, we prove Proposition 1.1 and our Theorem 1.1 for dimension n = 3.
Let u: M™ — S™*+! be an immersed hypersurface in sphere, then the cone over u is defined
by
foM™x R xR*™ 1 SR f(p,t,y) = (tu(p),y), 1<m<n-—1

The Mébius position vector Y : M™ x Rt x RP—™m~1 — R?H of the cone f is

1 t2 2 1— t2 _ 2

Y = (
po 2 2 1

where p§ = 2= (|11, |* — %HS) :M™ — R, and y : R*~™m~1 — R"="~1 g the identity map.
Let
H"™" = {(yo,y) € R"™" 1 | —yf + |y|* = ~1,y0 > 1} = R x R"™™" 7,

2 2 2 2
then (Ht ;{Iyl , 1_t2;|y| ,4) : RT x Rn=™~1 = H"~™ — H"~™ is nothing else but the identity

map. And from (3.1), the Mébius position vector Y of the cone f can be written as
Y = polu,id) : M™ x H"™™ — §™F1 x H=™ C R} T3, (3.2)

where pg € C*°(M™) and id : H"™™ — H"~™ is an identity map. Thus we have the following
result.
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Proposition 3.1 Let f : M™ — R"™! be an immersed submanifold without umbilical points.
If there exist pg € C°°(M™) and a submanifold u : M™ — S™+! such that the Mébius position
vector of f is
Y = polu,id) : M™ x H"™™ — §™F1 x HP=™ C R} T3,

Then f is a cone over u.

Proof of Proposition 1.1 If v : M™ — S™*! is a homogeneous hypersurface, from (3.2),
we know that Y = po(u,id) : M™ x H*~™ — S™+1 x H*~™ C R?*3 is homogeneous. Thus the

cone f is Mobius homogeneous, and we finish the proof of Proposition 1.1.

Next, we give the proof of Theorem 1.1 for the case n = 3. Let x : M3 — S* be a M&bius
homogeneous hypersurface with three distinct principal curvatures. From [6, 12], we know that
x is Mobius equivalent to the two classes of hypersurfaces. One is the 1-parameter family of
isoparametric hypersurfaces with three principal curvatures. Another is the images of o of the
cone over the 1-parameter family of isoparametric torus in S®. Thus, Theorem 1.1 holds for
the hypersurfaces in S*.

4 The Mobius Homogeneous Hypersurfaces with Three Distinct Prin-
cipal Curvatures in S**!

Let  : M™ +— S""1 (n > 4) be a Mdbius homogeneous hypersurface with three distinct
principal curvatures. We can choose a local orthonormal basis {F1, Es, - - , F, } with respect
to the Mobius metric g such that

(Bij) = diag(bl, s ,bl, bQ, s ,bQ, bg, s ,bg). (41)
—— —— —rn—
mi ma2 ms3
From (2.5), we have
2 2 o n—1
m1by + mabs + m3bs = 0, mlbl + meQ + m3b3 = T (42)

Since x is a M&bius homogeneous hypersurface, the Mobius principal curvatures by, by, b3 are
constant. From ) Bjj; pwi = dBj; + Y Birwk; + > Bijwki and (4.1), we have
k k k

(bz — bj)wij = Z Bij,mwm, Bii,m =0. (43)

Let [b;] = {k | by = b;}. It follows from (4.3) that
Bijr =0, [bi] = [b;], 1<k <m,

_ Bij i
— b, —b;’

(4.4)

Wij

Proposition 4.1 Let 2 : M™ +— S"*1 (n > 4) be a Mdbius homogeneous hypersurface with
three distinct principal curvatures. Then, the Mdbius form of x vanishes, i.e., C' = 0.

The proof of Proposition 4.1 is divided into the following three lemmas.
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Lemma 4.1 Let z: M™ + S™! (n > 4) be a Mobius homogeneous hypersurface with three
distinct principal curvatures. If my > 2, mo > 2, mg3 > 2, then the Mdébius form of x vanishes,
i.e., C=0.

Proof Since m; > 2, for each i fixed, we can choose j, k € [b;] such that j # k. From (4.4),
we have

Bjjk =0, Bjrm=0, 1<m<n,

combining (2.3),
0= Bjjr — Bjrj = Cr, ke bi.

Thus C' = 0, and we finish the proof of Lemma 4.1.

Lemma 4.2 Let x: M™ + S™*! (n > 4) be a Mobius homogeneous hypersurface with three

distinct principal curvatures. If my = mo = 1, mg > 2, then the Mobius form of x vanishes,
i.e., C=0.

Proof The distributions V4 = span{FE;}, Vo = span{Es}, V3 = span{Fs, -, E,}, deter-
mined by eigenvectors of the Mobius second fundamental form are invariant under the subgroup
II. Since dimV; = dim V5 = 1, the eigenvectors F1, E5 are invariant under the subgroup II.
Therefore, the data All = A(El,El), A12 = A(El,Eg), Cl)g == VC(El, Eg), R1212, and so on,
are constants.

Using (4.4) and (2.3), we have

Ca = 07 Bla,l = B2a,2 = 07 3 <a< n, (4 5)
Bla,a = _Cla BQa,a = _CQa Bab,m - 07 3 < a, b <n. ’
From (4.4)—(4.5), we obtain
o — Biam w o Big,2 w Cy "
12 b]_ — b2 mo la bl — b3 2 b3 — bl as
o (4.6)
Baog 1 Cs
Woq = : 3<a<n.

_b2_b3wl+b3_b2wa7 =

Let E = > Bi2.FE, € V5. It follows that F is invariant under the subgroup II. We divide the
a>3
proof into two cases:

Case 1 E =0.
Case 2 F #0.

First, we consider Case 1, E = 0. We have B2, =0, 3 < a < n, and from (4.6), we have

Cy o
wig = w1 + w2z,
by — by by — by (4.7)
G & 3<a< .
Wig = Wa, Wi = ———Wq, <a<n.
T b b % by — by
Note that Ci,Cy are constant, and we use dw;j — > Wim A wWm; = — > Rijriwr A w; and (4.7)
m k<l
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to obtain the following equations:

C%+C2
- ZR12klwk ANwp = —1—2 w1 Aw,
k<l (b1 — b2)
C? C?
— Rigriwr A\ w; = L + 2 w1 N\ Wq
; taklEeR {(bl —b3)2 (b1 — b2)(bs —bg)} '
C10y
— wo AW, a >3, (4.8)
(by —1930)2(51 —by) 7 LT
—ZR2aklwk/\wl=[ 1 + 2 Q]wz/\wa
P (b1 —b3)(b1 —b2) (b3 —b2)
10y
— w1 ANwg, a> 3.
(bo — b3)(ba —b1) '

From (2.4) and (4.8), we can obtain

Ay = Aoy = Agp =0, 3<a,b<mn, a#b,
C1C,
a2a — A = 5 3< < )
Ria2 125 G bs)(clgl ) a<n
ala = Apg = Lz <a<
Haa 2 (522 —b3)(ba — b1) ’2 3sasn, (4.9)
C
Riala = — L+ - , 3<a<n,
tol [(b1 — bg(); (by — bz)(bgc_2 bQ)}
Rya2q = — ! + 2 , 3<a<n
2a2 {(b1 —bs)(by —by)  (bg — b2)2}
From the second and third formula of (4.9), we have
(2b3 — b — bg)Cng =0. (410)

From (2.4) and the fourth and fifth formulas of (4.9), we have
C7 (b2 — b3) n C3 (b1 — b3)
(b1 — b3)%(by — b2) (b — b3)?(b1 — b2)
If Cng 75 O, from (410), 2b3 — bl — b2 = 0. By (42), bl + b2 + (TL — 2)b3 = 0. Thus
we have by = 0 and by = —be. From (4.9), we have Ao = 0211%. On the other hand, from
dAij + > Avjwmi + > AimWmj = Y Aij mWm, we have

Ay — Ay =

+ (by — by )bs. (4.11)

C2C —C,C2
A2 = 1—32, Az = 13 2,
263 - 2by o (4.12)
Ao = (A — A22)b2 —2b1’ Aap = (A — A22)b2 —1b1'

Combining (2.1), (4.11)—(4.12), we obtain
Co[CF + C3 +4bf] =0, C1[CT + C3 + 4b] =0,

which is a contradiction. Thus C1Cy = 0.
Since C1Cy = 0, from (4.9), we have A15 = 0. On the other hand, using 41, = Ay, =0, 3 <
a <n, from dA;; + > Amjwmi + > Aimwm; = Y Aijmwm, we have
CQ Cl

Ap1p=A21=0, A= (A - A22)m, App = (A — A22)m- (4.13)
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Combining (2.1), (4.11) and (4.13), we obtain

C3(by — b3)?

Chlba—bsP 1_,
(bg — b2)?(b1 — ba)?

(b — b1)%(by — b1)2)

02[1+ }:0, 01[1+
Thus Cy = Cy =0, that is C' = 0.

Next we consider Case 2, E # 0. We can rechoose an orthonormal basis {Fs,--- ,E,} in
V3 such that B3 = % Under the orthonormal basis {E1, Ea, E3, - -+, E, }, the equations (4.1),
(4.5) and (4.6) still hold. Moreover,

Bias #0, Bi2a=0, -+, B, =0 (4.14)
and
C. C B
W2 = gt g g
Biags Cq Cq
_ : = ———Wa, >4, 4.15
w13 bl—b3w2+ bg—ble’ w1 b35 blw a ( )
12,3 2 2
= : a = 7 7 Wa, >4
w23 by — bs 1+b3_b2w3, w2 bg_bQW a
Using dwij — Y Wim Awmj = — Y Rijiiwr Aw; and (4.15), we have
m k<l
> Rigmwy Aw,
k<l
_ [ —2C1 Bi2,3 ~ CiBig ]wl Ay — 0, Wy A w3
(b1 —(?23)(51 = bs) (1?52— b3)? 2};21 — b3) (b1 — b2)
+|: L B} + 2 - 12,3 }wl /\LU3,
(b1 —b3)% (b2 —b1)(ba —b3) (b2 — b1)(b2 — b3) (4.16)
— > Rogrwy Aw,
k<l
_ [ 205B12,3 C2Bi12,3 ]wl Ay — 0, w1 A ws
(b2 — b3)(6§22 —b1)  (be —Cfg)z 2}))1923 —b2) (b1 — b2)
+|: L + 2 3 12,3 :|LU2/\LU3,
(bg = b1)(b2 —b1) (b2 —b3)? (b1 — b2)(b1 — b3)
- Z Riariwr N wy
k<l
= [ 012 + 022 }w Nwg — €1 C% wa2 A w
(b1 —53)33 (ba — b1)(b2 — b3) L (b1 — b3)(b1 — b2) 2T
— 2012, w3 A\ Wy — 12,3 wo A\ wze, a >4,
(s — 1) (bs — b3) b — bs (4.17)
- Z Roariwr N wy
= k<l_0102 w1 Aw +[ < + C: w2 A w
(b2 — b3)g2 —b1) P (by —b1)(b3 —b1) (b2 —b3)? 20
— 1 12,3 w3 A\ Wy — 12,3 w1 A wse, a>4.
(by — b3) (b1 — b2) by — b3
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From (2.4) and (4.16), we have

C} C3 2B, 5

_ A A — 1 2 _ 5

Rigiz = bibs + An + Ass {(bl 00 " bs—b1)(ba —bs)  (bs —b1)(ba — b3)}

{ 012 022 23%273 }
(

bs b0 (b2 —b1) T (Bn —ba)2 (b1 —ba)(by —b3) )

Rosos = babsg + Ago + Ass = —

Thus we have

(bl — bg)b?, + All - A22
2. 2(bs — 2B2, ,(2b3 — by — b
_ g (b32 ba) n & (532 b1) n 12,3(203 — b2 — b1) . (4.18)
(bs —b1)*(b —b1) (b3 — b2)* (b2 —b1) (b3 = b1)(b2 — b1)(b2 — b3)

Similarly from (2.4) and (4.17), we have

C?(bs — bo) C2(bs — by)
- Ay — Ay = ! 2 . 4.1
(b1 — b2)b3 + A1y — Agp (s — 60)2(6s — 1) " (b3 = b2)2(b3 — b1) (4.19)
Noting that Bis 3 # 0, and comparing (4.18) and (4.19), we obtain
2b3 — by — b1 = 0.
Since tr(B) = 0, we have
by+by=0, bs=0. (4.20)
Again we use (2.4), (4.16)—(4.17) to obtain
Aoy = Rysty — 2C1Bi2,3 C1Bia23
(b1 — b%(bl —b2) (b1 —b3)*
Ats = — Rysps — 2B12,3 C2B12,3
2 — b3)(b2 — b1 2 — b3
® b)(b by) | (by — b3)%’ (421)
A3 = Rig30 = 23 '
T (by — b (by — b3)’
Ags = Rousy = 12,3
23 2a3 (0 = b3)(b1 by’

From (4.21), we have
(2b1 — by — b3)02 =0, (2()2 — by — b3)cl =0.

Since |B|* = 21, combining (4.20), we deduce that C; = C5 = 0. Thus C' = 0, and we finish
the proof of Lemma 4.2.

Lemma 4.3 Let x: M"™ s S"*! (n > 4) be a Mébius homogeneous hypersurface with three
distinct principal curvatures. If my =1, mo > 2, mg > 2, then the Mdébius form of x vanishes,
i.e., C=0.

Proof In the last of the section, we make the following indices convention:

1<i,jbkbm<n, 2<a,b<mgog+1, me+2<s,t<n. (4.22)
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The distributions Vi = span{E1}, Vo = span{Es, -+, Em,+1}, V3 = span{Ep,42, -, Fn},
determined by eigenvectors of the Mobius second fundamental form, are invariant under the
subgroup II. Since dimV; = 1, the eigenvectors F; are invariant under the subgroup II.
Therefore the data, A1y = A(F1, E1), C, are constants. Since ma,m3 > 2, we can choose
i,7 € [ba] (or 4, j € [b3]) such that i # j. From (4.4), we have

Bii,j = O, Bijnn = 0, 1 S m S n.

By (2.3),
0= Bii,j — Bij,i = Cj.
Thus C, = 0 and Cy = 0. Combining (4.4) and (2.3) again, we obtain
Bij,k:O, QSi,j,kSTL,
Bia1 = B1s,1 =0, By =0,

(4.23)
Bla,b = Bab,l = Bst,l = 07 a 7é ba
Bla7a = Bls,s = _Cl
and
O Bia,t
Wia = b2 — blwa + ; bl — b2wsa
Bisyp Cq
s — . Sy 4.24
w Zb:bl—bgwb+b3—b1w (4.24)
_ Bas,l
Was b2 — b3 1
Since C} is constant and C, = Cs = 0, using dC; + Y Cjw;; = Y C; jw;, we have
J J
Cl7i = 0, Z waj = Clwla, Z CSJ‘WJ' = Clwls. (425)
J J
Combining (4.24) and (4.25), we have
OlBla s ClBls a
Ci1=0C31=0, Cus= 2 COgo = 2, 4.26
* * ' by — b2 ' by — b3 (4.26)
From (2.2), we obtain
C1Bia.s
A=A, =0, Ags= 1ol (4.27)

(b1 — ba)(b1 — b3)’
Using dBijr + > Bmjrwmi + D BimkWmj + > BijmWmk = > Bijkmwm, (4.23)-(4.24), we

obtain

B?,, C? Bias
B a,la — 2 < ! ’ B a,al — 2 = ’
la,1 Xt:b3—b1+b2—b1 ta.al Xt:bB_bZ
B3, C? B,
Bs s:2 2 ! N Bss =2 75, 4.28
o Zb:l)rz—z;lJrz;g—z;1 e Zb:bz—bs .
L2, o b s O
T by — by by — by’ 5T by — by by — b
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and
Bas 5= 2Bls7aBls7b’ Bas be = 2Bls7aBls,b’
’ bl - b3 ’ bl - bQ (4 29)
B 2B1a,sBla7t B 2B1a,sBla7t '
as,at bl — bQ ) as,ta bl — bg
Combining (4.28)—(4.29) and Bij ki — Bijik = Y BmjRmiki + > BimRmjki, we have
R _ Z 2B%a,t o C'12
T L by = b)(bg — b2) (b1 — o)
2 2 2 2
Rlsls = Z 2B1b>5 - Cl 5 Rasas = 231& > Cl 5 (430)
~ (b2 = b1)(ba —b3) (b1 — b3)? (b1 —b2)(b1 — b3)
2Bls aBlsb 231(1 sBlat
Rosps = Aa = ; . , a ba AS = : : y S t.
’ P T b) ) 7 b -t 7

Repeat the above derivation as (4.28), we have

, b b [Bla sBlb t+ Bla tBlb s] a 7& b7 S 7& t,
1T (4.31)
s bl — b [Bla sBlb ¢+ Bla tBlb s] a 7& b7 S 7& t.
The equations (2.4) and (4.1) imply
Rasbt:Oa (l;éb, S#t
Combining Ricci identity and (4.31) yields
Bla,sBlb,t + Bla,tBlb,s = 07 a 7é bv S 7é 2 (432)

Since Bly, = beid and Bly, = bsid, we can rechoose basis {Es,- -+, Ep,41} in Vo and
{Ems+2,+, E,} in V3 such that

Aw =0, a#b Ayg=0, s#t. (4.33)
From the third formula of (4.30), we have
Bls7aBls,b = 07 a 7& b7 Bla,sBlai = 07 S 7& t. (434)

Combining (4.32) and (4.34), it follows that there exists at most one non-zero element in matrix
(Bia,s); 2<a<mg+1, ma+2 <s <n. Thus we can assume that

Bias =0, a#2 or s#n. (4.35)

From (2.4), we have Ris15 — Rasas = (b1 —b2)bs + A1 — Aye. Combining (4.30), we can deduce

PR 2B, 2B},
11 aa — - (bQ _ bl)(bQ — bg) (bl — bQ)(bl — bB)
2 _
Ci (bQ bg) + (b2 . bl)bg,, mo+2<s<n. (4.36)

(b1 — b2)(b1 — b3)?
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Now we take a = 3 in (4.36), and noting (4.35), we have

2B7, C?(ba — b3)
(ba = b1)(b2 —b3) (b1 — b2)(b1 — b3)?

We take s = mo + 2 and s = n in (4.37), respectively and obtain the following two equations:

A — Azz = + (ba — b1)bs. (4.37)

C3?(by — b3)
Ajy — Azg = ! by —b1)b
1= A = T N b)? + (b2 — b1)bs,
282, C2(by — b
Ay — Ass = L2 b2 —bs) 5 + (b2 — b1)bs.

(b2 = b1)(b2 — b3) (b1 — b2)(b1 — b3)
Comparing the two equations, we have Bia, = 0. Thus, the matrix (Bigs), 2 < a < mg +
1, mo 4+ 2 < s < nis zero. From (4.27), we deduce that

(AZJ) = diag(Alla t 7Ann) (438)

Since x is a Mobius homogeneous hypersurface, the eigenvalues A;;,1 < i < n of the tensor A
are constant. Using dA;; + > Apmjwmi + 2 Aimwm; = Y Aij.mwm, we obtain
m m m

Cy

Aii,j = 07 Ala,a = (All - Aaa)m-

(4.39)

Combining (2.1), (4.37) and (4.39), we deduce

C
_bQOl = Aaa,l - Ala,a = _Ala,a = _(All - AAaa)—1
ba — by
_ C3?(by — b3) Cq
- [(bl — ba)(by — bs)? (b2~ bl)b‘”’} by — by’

which implies

CE (s — bs) } _ 0
(b1 — b2)?(b1 — b3)? ’
and C; = 0. Thus C' = 0, and we finish the proof of Lemma 4.3.

Since the dimension of z n > 4, From Lemmas 4.1-4.3, we obtain Proposition 4.1.

01[1+

5 The Proof of the Main Theorem 1.1

When the dimension of the hypersurfaces n > 4. From Proposition 4.1, we know that the
Mobius form of the Mobius homogeneous hypersurfaces vanishes when z has three distinct
principal curvatures. On the other hand, the Mdbius principal curvatures of the Mobius homo-
geneous hypersurfaces are constant. Thus the Mobius homogeneous hypersurfaces with three
distinct principal curvatures are Mobius isoparametric hypersurfaces. In [5], the authors clas-
sified the Mobius isoparametric hypersurfaces in S**! with three distinct principal curvatures.

Theorem 5.1 (see [5]) Let 2 : M™ — S"™ be a Mdbius isoparametric hypersurface with
three distinct principal curvatures. Then x is Mdbius equivalent to an open part of one of the
following hypersurfaces:

(1) The image of o of the warped product embedding

T:8P(a) x S1(\/1—a?) x RT x RPP~a~1 5 Rl
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withp>1, ¢>1, p+q<n—1 defined by
T(u,v,t,w) = (tu,tv,w), u € SP(a), ve S V1—a?), te RT, we R P91

(2) The image of o of the cone T : M"~1 x RY — R defined by Z(x,t) = tx, where
te Rt and x : M"~ ! — S* C R**! s the Cartan’s minimal isoparametric hypersurface in S™
with three distinct principal curvatures.

(3) The Euclidean isoparametric hypersurfaces in S**1 with three distinct principal curva-
tures.

Using Proposition 1.1, we know that the isoparametric hypersurfaces in Theorem 5.1 is
Mobius homogeneous. Thus when the Mobius homogeneous hypersurfaces have three distinct
principal curvatures, the main Theorem 1.1 holds. Combining the result in Section 3, we finish
the proof of the main Theorem 1.1.
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