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Abstract In this paper, the Hausdorff dimension of the intersection of self-similar fractals
in Euclidean space Rn generated from an initial cube pattern with an (n−m)-dimensional
hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which
ensures that the Hausdorff dimensions of the slices of the fractal sets generated by “multi-
rules” take the value in Marstrand’s theorem, i.e., the dimension of the self-similar sets
minus one. For the self-similar fractals generated with initial cube pattern, this sufficient
condition also ensures that the projection measure µV is absolutely continuous with respect
to the Lebesgue measure Lm. When µV ≪ Lm, the connection of the local dimension of
µV and the box dimension of slices is given.
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1 Introduction

1.1 Dimension of slices

The intersections of Borel sets in Rn with (n−m)-dimensional subspace in random directions

are studied in many publications. The following Marstrand’s theorem (see [12–13]) is well

known: Suppose that A ⊂ Rn is a Borel set with 0 < Hs(A) < ∞ and m < s < n, then for

γn,n−m-almost all (n−m)-dimensional subspace V and Hs-almost all x ∈ A,

dimH [A ∩ (V + x)] = s−m.

For a fixed V , let ΛV = {a ∈ V ⊥ : A ∩ (V + a) 6= ∅}. Wen and Xi [19] studied the slices of

scaling self-similar set

E =
⋃

i

(riE + bi) (ri ∈ (0, 1) ∀i)
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in Rn, and obtained that for a fixed (n − m)-dimensional subspace V , there are constants

c1 ≤ c2 ≤ c3 such that for Hm-almost all a ∈ ΛV ,

dimH [E ∩ (V + a)] = c1, dimB[E ∩ (V + a)] = c2, dimB[E ∩ (V + a)] = c3.

The following examples are intersections of planar sets with lines in the fixed direction.

Example 1.1 Suppose that C is the Cantor ternary set, then dimH C×C = log 4
log 3 (see Figure

1). Let Lk,b = {(x, y) : y = kx+ b} be a line of slope k and Jk = {b ∈ R : Lk,b ∩ (C ×C) 6= ∅}.

According to Marstrand’s theorem, for H1-almost all k ∈ R,

dimH [Lk,b ∩ (C × C)] =
log 4

log 3
− 1 for H1 a.e. b ∈ Jk. (1.1)

However, (1.1) does not hold even for k = 1, since Hawkes, J. showed in [6] that for H1 a.e.

t ∈ [−1, 1],

dimH C ∩ (C + t) =
log 2

3 log 3
<

log 4

log 3
− 1.

Figure 1 Example 1.1.

Example 1.2 Suppose that E is the Sierpinski carpet (see figure 1) with dimH E = log 8
log 3 .

Let Lk,b = {(x, y) : y = kx+ b} be a line of slope k and Jk = {b ∈ R : Lk,b∩E 6= ∅}. According

to Marstrand’s theorem, for H1-almost all k ∈ R,

dimH E ∩ Lk,b =
log 8

log 3
− 1 for H1 a.e. b ∈ Jk. (1.2)

However, the equality (1.2) does not hold for k ∈ Q, since Manning and Simon showed in [11]

that for all k ∈ Q,

dimH E ∩ Lk,b <
log 8

log 3
− 1 for H1 a.e. b ∈ Jk.

Example 1.3 Suppose that ∆ is the right-angle Sierpinski gasket (see Figure 1) with

dimH ∆ = log 3
log 2 . Let Lk,b = {(x, y) : y = kx + b} be a line of slope k and Jk = {b ∈ R :

Lk,b ∩∆ 6= ∅}. According to Marstrand’s theorem, for H1-almost all k ∈ R,

dimH ∆ ∩ Lk,b =
log 3

log 2
− 1 for H1 a.e. b ∈ Jk. (1.3)
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Again, the equality (1.3) does not hold for k ∈ Q. Recently, Báraány, Ferguson and Simon

proved in [1] that for all k ∈ Q,

dimH ∆ ∩ Lk,b <
log 3

log 2
− 1 for H1 a.e. b ∈ Jk.

Remark 1.1 When the slices of a fractal take the value in Marstrand’s theorem? The

above examples show us that this is not an easy question.

1.2 Slices of self-similar fractals

Suppose that p ∈ N with p ≥ 2, Ω = {0, 1, (p− 1)}n and the self-similar set satisfies

E =
⋃

v∈Ω

E + v

p
. (1.4)

Or, we can see that

E =
{ ∞∑

i=1

vi
pi

: vi ∈ Ω for all i
}
. (1.5)

Let V be an (n−m)-dimensional subspace of Rn such that its orthogonal complement

V ⊥ = span{α1, · · · , αm} with αi ∈ Qn for all i. (1.6)

Without loss of generality, we may assume that

αi ∈ Zn for all i and the inner product (αi, αj) = 0 for all i 6= j. (1.7)

Therefore, there are vectors β1, · · · , βn−m ∈ Zn such that (βi, βj) = 0 for all i 6= j. For x ∈ Rn,

write

(x,α) = ((x, α1), (x, α2), · · · , (x, αm)).

Let αi = (a
(i)
1 , a

(i)
2 , · · · , a

(i)
n ) ∈ Zn\{0}. Write

A−
i =

∑

a
(i)
j

<0

a
(i)
j , A+

i =
∑

a
(i)
j

>0

a
(i)
j ,

and set A−
i = 0 if {j : a

(i)
j < 0} = ∅ and A+

i = 0 if {j : a
(i)
j > 0} = ∅.

Given L = Zm ∩
( m∏
i=1

[A−
i , A

+
i )

)
and t ∈ {0, 1, · · · , (p − 1)}m := Θ, let Mt = (ctl,l′)l,l′∈L be

defined by

ctl,l′ = #{v ∈ Ω : pl + t− l′ = (v,α)}. (1.8)

Then the Lyapunov exponent for symmetric independent random product {Mτ}τ∈Θ is a con-

stant λ such that

lim
k→∞

log ‖Mτ1Mτ2 · · ·Mτk‖

k
= λ for µ0-almost all τ1τ2 · · · ∈ Θ∞,

where µ0 is the symmetric Bernoulli measure on Θ∞ given by { 1
pm , · · · , 1

pm }N.

Let Λ = {a ∈ V ⊥ : E ∩ (V + a) 6= ∅}.

We will prove the following result.
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Theorem 1.1 Suppose that E is a self-similar set satisfying (1.4), and V is an (n −m)-

dimensional subspace satisfying (1.6). Then for Hm-almost all a ∈ Λ,

dimB[E ∩ (V + a)] = dimH [E ∩ (V + a)] =
λ

log p
≤ dimH E −m,

where λ is the Lyapunov exponent for the symmetric independent random product of {Mt}t∈Θ

defined in (1.8).

Remark 1.2 The box dimension of the intersection of the Sierpinski carpet with lines of

rational slopes can be computed using the nature cover of the Sierpinski carpet directly, since

if the intersection of the square [0, 1]× [0, 1] with a line is not empty, then the intersection of

the Sierpinski carpet with the same line is not empty (see Figure 2). However, this is not true

for general self-similar sets. Figure 2 shows that there exist lines that pass through the unit

square but do not meet any point of the self-similar set. Therefore, we can not use the nature

cover of the self-similar set directly, which complicates the computation of the box dimension

of the slices.

Figure 2

1.3 The case of absolute continuous µV

Let µ be the natural measure of E, i.e., µ = Hd|E
Hd(E) where d = dimH E and Hd denotes the

d-dimensional Hausdorff measure. When E is a self-similar set satisfying (1.4), µ is the natural

self-similar measure supported on E. Let µV = µ ◦ proj−1
V be the projection measure of µ by

direction V , where projV (x) = (x,α). It is easy to see that sptµ ⊂ Λ. The local dimension of

this self-similar measure is defined as follows:

dimloc µV (x) = lim
δ→0

logµV (B(x, δ))

log δ
, (1.9)

where the existence of the limit on the right of the above equation is proved in [3, Theorem 2.12]

by Feng and Hu. They also showed that the local-dimension is almost everywhere constant.

Moreover, Young proved in [22] that this constant is the Hausdorff dimension of the measure,

i.e., for µV almost all x,

dimloc µV (x) = dimH µV = inf{dimH A : µV (A) = 1}.

Let Lm denote the m-dimensional Lebesgue measure.
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Proposition 1.1 Suppose that E is a self-similar set satisfying (1.4) and V is an (n−m)-

dimensional subspace satisfying (1.6). If µV ≪ Lm, then for µV almost all a ∈ Λ, we have

dimloc µV (a) = dimH E − dimB[E ∩ (V + a)].

Remark 1.3 By Proposition 1.1 and [3, Theorem 2.12], if V is an (n − m)-dimensional

subspace satisfying (1.6) and µV ≪ Lm, then for µV almost all a ∈ Λ, we have

dimB[E ∩ (V + a)] = dimH E − dimloc µV (a) ≥ dimH E −m. (1.10)

Our second result will show that under some suitable conditions, the equality in (1.10) will

hold. First, we give the following s-star condition, which was introduced in [21] (see also [18]).

Definition 1.1 A set Ω ⊂ {0, 1, · · · , p − 1}n (n ≥ 2) is said to satisfy s-star condition if

there exists an integer s > 1, such that for all t ∈ {0, 1, · · · , p− 1}m,

#{v ∈ Ω : (v,α) ≡ t mod p} = s. (⋆)

Example 1.4 Suppose n = 2, m = 1 and p = 3. Let α = (−3, 4) and Ω = {(0, 0), (1, 1),

(2, 2), (2, 0), (0, 1), (0, 2)}. Note that

α · Ω = {0, 1, 2,−6, 4, 8}.

Hence Ω satisfies the 2-star condition (see Figure 3).

Figure 3 The intersection of the limit set generated by a rule satisfying the 2-star condition

with the line −3x+ 4y = b for some b ∈ [0, 1].

Theorem 1.2 Suppose that E is a self-similar set satisfying (1.4). If V satisfies µV ≪ Lm,

then for Lm-almost all a ∈ Λ,

dimB[E ∩ (V + a)] = dimH E −m. (1.11)

In addition, if the conditions in Theorem 1.1 hold and Ω in (1.4) satisfies the s-star condition,

then µV ≪ Lm.

Remark 1.4 Theorem 1.2 shows that the projection defined by projV (x) = (x,α) is di-

mension conserving (see [5, Definition 1.1]). Precisely, let δ := dimB[E ∩ (V + a)], then

δ + dimH{a ∈ Λ : dimH [E ∩ (V + a)] ≥ δ} ≥ dimH E.
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Namely,

dimH{a ∈ Λ : dimH [E ∩ (V + a)] ≥ δ}

≥ dimH{a ∈ Λ : dimB[E ∩ (V + a)] = dimH [E ∩ (V + a)] ≥ δ}

≥ dimH µV = dimH E − δ.

Remark 1.5 In fact, the converse of the first part of Theorem 1.2 is true. That is, in

case of self-similar sets satisfying (1.4), the slices take the typical value in Marstrand’s theorem

if and only if the projection measure is absolutely continuous with respect to the Lebesgue

measure. This result is proved by Feng [4] in a more general case recently. When we turn to the

Sierpinski carpet, which does not satisfy the s-star condition, Niu and Xi proved in [14] that

the projection of the self-similar measure on Sierpinski carpet onto a line with rational slope is

singular.

The s-star condition is easy to verify. However, the following example shows that it is not

a necessary condition to ensure the continuity of the projection measure.

Example 1.5 Consider a planar set intersect with a line, i.e., n = 2 and m = 1. Let

p = 6, α = (5, 1), V ⊥ = span{α} and Ω = {(0, 0), (0, 1), (0, 3), (0, 4), (1, 1), (1, 2), (1, 4), (1, 5),

(2, 2), (2, 3), (3, 0), (3, 1)}. Then

{(v, α) : v ∈ Ω} = {0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16}

≡ {0, 1, 3, 4} mod 6,

which implies that Ω does not satisfy the s-star condition. We will prove in Section 6 that µV

is absolutely continuous with respect to the 1-dimensional Lebesgue measure L1. Figure 4 is

the first two steps in generating the self-similar set satisfying (1.4).

Figure 4 The case that the s-star condition does not hold.

1.4 Fractals generated by rules

Let p ∈ N with p ≥ 2 and Q be the unit cube [0, 1]n in Rn. We regard Ω ⊂ {0, 1, · · · , (p−1)}n

as a “rule” for defining a subset of Q.
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Definition 1.2 (see [2]) For a rule Ω, we replace any cube S(Q) with #Ω smaller cubes⋃
v∈Ω

S(p−1(Q+ v)), where S : x 7→ ax+ b (0 < a < 1) is a similitude.

The way that we construct a fractal by a sequence of rules Ω1Ω2Ω3 · · · is as follows:

1. Start with Q and replace Q by #Ω smaller cubes
⋃
v∈Ω

p−1(Q + v) of side length p−1.

2. Inductively, for k ≥ 1, replace each small cube of side length p−k obtained in the k-th

step by #Ω smaller cubes of side length p−(k+1) using the rule Ωk+1.

The above procedure leads to the limit set—a fractal. The precise definition is showed as

follows.

Definition 1.3 For any rule sequence ω = Ω1Ω2Ω3 · · · , denote by ω|k the prefix of ω of

length k, i.e., ω|k = Ω1Ω2 · · ·Ωk. For any v ∈ {0, 1, · · · , (p − 1)}n, let fv : x 7→ x+v
p be a

similitude on Rn. For k ≥ 1,

Eω|k =
⋃

v1···vk∈ω|k

fv1···vk(Q) and Eω =
⋂

k≥1

Eω|k ,

where fv1···vk = fvk ◦ · · · ◦ fv1 .

Remark 1.6 The set Eω|k+1
is generated by Eω|k with respect to the rule Ωk+1, that is

Eω|k+1
=

⋃

v∈Ωk+1

fv(Eω|k).

Remark 1.7 If the rule sequence ω is chosen to be a constant sequence, say ΩΩ · · · , then

the limit set Eω is a self-similar set satisfying the open set condition. In this case, for the sake

of simplicity, we denote the sets Eω and Eω|k by E and Ek respectively.

Example 1.6 Let Ω = {0, 2}2 and ω = ΩΩ · · · , then the limit set Eω is the self-similar set

C × C, where C is the Cantor ternary set (see Figure 5).

Figure 5 C × C.

Example 1.7 Let Ω = {0, 1, 2}2\{(1, 1)}. The Sierpinski carpet E ⊂ R2 is generated by

only one rule Ω (see Figure 6).

Example 1.8 Let Ω = {0, 2}2, Ω0 = {(0, 1), (1, 0), (2, 2)} and ω = ΩΩ0Ω · · · . Figure 7

illustrates the first two steps in the construction of Eω .

1.5 Slices of fractals generated by multi-rules
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Figure 6 The Sierpinski Carpet.

Figure 7 The limit set generated by the rule sequence ΩΩ0Ω · · · .

Further, we discuss the box dimension for the following fractal sets which are generated by

multi-rules. For any fixed s ∈ [1, pn−1], let

Os := {Ω ⊂ {0, 1, · · · , p− 1}n : Ω satisfies s-star condition}.

It is easy to see that #O < ∞. Then Os can be represented as follows:

Os = {Ω(1), · · · ,Ω(#O)}.

Consider the infinite product space (O∞
s , P ) equipped with a probability measure P . For any

ω = Ω1Ω2 · · · ∈ O∞
s , let

Fω =
{
x =

∞∑

i=1

vi
pi

: vi ∈ Ωi for all i
}
. (1.12)

Example 1.9 Let α = (1, 3), Ω(1) = {0, 1, 2}2\{(0, 0), (1, 2), (2, 0)} and Ω(2) = {0, 1, 2}2\

{(0, 2), (1, 0), (2, 2)}. It is easy to verify that both Ω(1) and Ω(2) satisfy the 2-star condition.

Suppose ω = Ω(1)Ω(2)Ω(1) · · · . The first two steps of Eω are showed in Figure 8.

For b ∈ Rm, let Πb = {x ∈ Rn : (x,α) = b} be an (n − m)-dimensional hyperplane, and

ΛFω
= {b ∈ Rm : Fω ∩ Πb 6= ∅}.

Theorem 1.3 Hm(ΛFω
) ≥ 1 and for every b ∈ Rm,

dimB

( ⋃

z∈b+Zm

Fω ∩ Πz

)
=

log s

log p
= dimH Fω −m.

Remark 1.8 The projection of the Sierpinski carpet E in any direction is an interval. This

good property ensures that if the intersection of the Ek with a line, say L, is not empty, then
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Figure 8 Example 1.9.

the intersection of E with the line is also not empty. However, the limit set F generated by rules

may not hold this good property. That is to say, even if L ∩ Fk 6= ∅, we can not deduce that

L∩ F 6= ∅. In fact, for some line L and the limit set F , although L∩ Fk 6= ∅, the intersection

L ∩ Fk+1 may be empty (see Figure 9).

Figure 9 The intersection of the limit set E generated by the rule Ω with the line −2x+ 3y = − 13

4
,

where Ω = {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2)}.

Combining Theorem 1.1 and Theorem 1.3, we have the following corollary which tells us

that when the s-star condition holds, then the Hausdorff dimension of slices of self-similar sets

take the Mastrand’s value.

Corollary 1.1 Suppose that E is a self-similar set satisfying (1.4) and V is an (n − m)-

dimensional subspace satisfying (1.6). If Ω in (1.4) satisfies the s-star condition, then λ = log s

and for Hm-almost all a ∈ Λ,

dimB[E ∩ (V + a)] = dimH [E ∩ (V + a)] =
log s

log p
= dimH E −m.

This paper is organized as follows. Section 2 gives some preliminary information such as

definitions and basic lemmas. The box dimension of slices is discussed in Section 3. The

equivalence of the box dimension and the Hausdorff dimension of the slices and Theorem 1.1
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are proved in Section 4. In Section 5, we discuss slices of the fractal generated by multi-rules

satisfying the s-star condition, and prove Theorem 1.3. In the last section, we focus on the case

that the projection measure is absolutely continuous with respect to the Lebesgue measure, and

prove Theorem 1.2 and other remaining results.

2 Preliminaries

Fix a V such that V ⊥ = span{α1, · · · , αm} satisfying (1.7). Let αi = (a
(i)
1 , a

(i)
2 , · · · , a

(i)
n ) ∈

Zn\{0}. Write

A−
i =

∑

a
(i)
j

<0

a
(i)
j , A+

i =
∑

a
(i)
j

>0

a
(i)
j ,

and set A−
i = 0 if {j : a

(i)
j < 0} = ∅ and A+

i = 0 if {j : a
(i)
j > 0} = ∅. Write

J =

m∏

i=1

[A−
i , A

+
i ] (⊂ Rm).

For x = (x1, · · · , xn) ∈ Rn, denote ‖x‖1 =
n∑

i=1

|xi| and write

(x,α) = ((x, α1), (x, α2), · · · , (x, αm)).

For b ∈ Rm, let Πb be an (n−m)-dimensional hyperplane in Rn defined by

Πb = {x ∈ Rn : (x,α) = b}.

An easy observation shows that

[0, 1]n ∩ Πb 6= ∅ if and only if b ∈ J. (2.1)

For E =
⋃
v∈Ω

E+v
p , we denote the slices

Eb = E ∩ Πb.

Given v ∈ {0, 1, · · · , (p− 1)}m, let

fv(x) =
x+ v

p
.

We define Tv : Rm → Rm by

Tv(x) = px− (v,α),

and Sv(x) = T−1
v (x) = x+(v,α)

p . Note that

f−1
v (Πb) = ΠTv(b).

Using the above formula, we can check that for any set A ⊂ Rn,

fv1···vk(A) ∩Πz = fv1···vk(A ∩ΠTvk···v1 (z)
), (2.2)
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where fv1···vk = fv1 ◦ · · · ◦ fvk and Tvk···v1 = Tvk ◦ · · · ◦ Tv1 .

When v ∈ {0, 1, · · · , (p− 1)}n and b = (b1, · · · , bm) ∈ J, we have

(v, αi) ∈ [(p− 1)A−
i , (p− 1)A+

i ]

and bi ∈ [A−
i , A

+
i ]. Hence for any b ∈ J ,

(Sv(b))i =
bi + (v, αi)

p
∈ [A−

i , A
+
i ],

which implies

Sv(J) ⊂ J. (2.3)

Noting that Tv = S−1
v , we obtain that

Tv(J
c) ⊂ Jc. (2.4)

For any b ∈ Rm, let

Γb = J ∩ (b+ Zm) (⊂ J). (2.5)

Then Γb = Γb′ if b ≡ b′ ( mod 1). For any b ∈ Rm, we have

m∏

i=1

(A+
i −A−

i ) ≤ #Γb ≤
m∏

i=1

(A+
i −A−

i + 1).

Since (v,α) ∈ Zm, we obtain the following lemma.

Lemma 2.1 If z ∈ Γb and Tv(z) ∈ J , then Tv(z) ∈ Γpb.

For b ∈ R, the integer matrix M(b) = (ci,j)i∈Γb,j∈Γpb
is defined by

ci,j = #{v ∈ Ω : Tv(i) = j}, (2.6)

where ci,j is the number of reduced copies of Ej contained in Ei as in (2.11). Let

D = {b = (b1, · · · , bm) ∈ Rm : pkbi /∈ Z for all integers k ≥ 0 and i ≤ m},

and L = Zm ∩
( m∏
i=1

[A−
i , A

+
i )

)
. Then for any b ∈ J ∩D, there exists l = (l1, · · · , lm) ∈ L so that

b ∈

m∏

i=1

(li, li + 1) =: Il.

It is easy to see that

Hm(Dc) = 0, (2.7)

and pD ⊂ D, pDc ⊂ Dc.

For b ∈ D, we have

#Γb =

m∏

i=1

(A+
i −A−

i ) = #L,
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and we can list the elements of Γb, i.e.,

Γb = {Γb(l)}l∈L with Γb(l) ∈ Il.

Now M(b) = (cl,l′)l,l′∈L is a #L×#L integer matrix for any b ∈ D, where

cl,l′ = #{v ∈ Ω : Tv(Γb(l)) = Γpb(l
′)}. (2.8)

Since

M(b) = M(b′) if b ≡ b′ (mod 1) with b, b′ ∈ D, (2.9)

without loss of generality, we only focus on M(b) for b ∈ [0, 1]m.

For all t = (t1, · · · , tm) ∈ {0, 1, · · · , (p− 1)}m, let

c(t) =

m∏

i=1

( ti
p
,
ti + 1

p

)
.

Recall that Il =
m∏
i=1

(li, li + 1) = l + (0, 1)m.

Lemma 2.2 Given t ∈ {0, 1, · · · , (p− 1)}m, for all l ∈ L,

M(b) is constant on b ∈ D ∩ c(t).

Further, for b ∈ D ∩ c(t), we have Mt := M(b) = (ctl,l′)l,l′∈L, where

ctl,l′ = #{v ∈ Ω : pl + t− l′ = (v,α)}. (2.10)

Proof In fact, by (2.8), we have

ctl,l′ = #{v ∈ Ω : Tv(l + c(t)) = Il′)

= #
{
v ∈ Ω : Tv

(
l+

t

p
+

(0, 1)m

p

)
= l′ + (0, 1)m

}

= #
{
v ∈ Ω : Tv

(
l+

t

p

)
= l′

}

= #{v ∈ Ω : pl + t− l′ = (v,α)}.

By Lemma 2.2, we get an equivalent definition of the integer matrix Mt = (ctl,l′)l,l′∈L as

follows:

ctl,l′ = #{v ∈ Ω : Tv(I
t
l ) = Il′ },

where Itl := l + c(t) =
m∏
i=1

(
li +

ti
p , li +

ti+1
p

)
.

We will use the nested structure of the slices {Eb}b∈J , which is characterized in the following

lemma.

Lemma 2.3 For any b ∈ J ,

Eb =
⋃

v∈Ω

fv(ETv(b)) =
⋃

v∈Ω

ETv(b) + v

p
. (2.11)

Further, for k ≥ 1,

Eb =
⋃

v1···vk∈Ωk

fv1···vk(ETvk···v1(b)
) =

⋃

Tvk···v1(b)∈Γ
pkb

fv1···vk(ETvk···v1(b)
). (2.12)
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Proof Notice that f−1
v (Πb) = ΠTv(b). Hence for any b ∈ J , we have

Eb = E ∩ Πb =
[ ⋃

v∈Ω

fv(E)
]
∩ Πb

=
⋃

v∈Ω

[fv(E) ∩ Πb] =
⋃

v∈Ω

fv(E ∩ f−1
v (Πb))

=
⋃

v∈Ω

fv(E ∩ ΠTv(b)) =
⋃

v∈Ω

fv(ETv(b)).

By induction, we have

Eb =
⋃

v1···vk∈Ωk

fv1···vk(E ∩ ΠTvk···v1(b)
).

Further, if Tvk···v1(b) ∈ Jc, then [0, 1]n ∩ ΠTvk···v1(b)
= ∅ by (2.1), and thus

E ∩ ΠTvk···v1(b)
= ∅,

which implies Eb =
⋃

Tvk···v1(b)∈Γ
pkb

fv1···vk(ETvk···v1(b)
).

Remark 2.1 Some ETv(b) in (2.11) may be empty.

When is the slice Eb non-empty?

Lemma 2.4 For any b ∈ J,

Eb 6= ∅ ⇐⇒ ∃ v1v2 · · · vk · · · ∈ Ω∞, s.t. Tvk···v1(b) ∈ J for all k ≥ 1.

Proof The sufficiency. By Lemma 2.3, the non-empty set

Eb =
⋃

v∈Ω

fv(E ∩ ΠTv(b)).

Then there exists v1 ∈ Ω such that E∩ΠTv1 (b)
6= ∅. Since E ⊂ [0, 1]n, we have [0, 1]n∩ΠTv(b) 6=

∅, which implies Tv1(b) ∈ J due to (2.1).

Inductively, if we get v1 · · · vk ∈ Ωk such that E ∩ ΠTvk···v1(b)
6= ∅, then the non-empty set

E ∩ ΠTvk···v1(b)
=

⋃

v∈Ω

fv(E ∩ ΠTvvk···v1(b)
).

Then there exists vk+1 ∈ Ω such that E ∩
∏

Tvk+1vk···v1 (b)

6= ∅. In the same way, we have

Tvk+1vk···v1(b) ∈ J. Then we can obtain an infinite word in Ω∞.

The necessity. Suppose v1v2 · · · vk · · · ∈ Ω∞, s.t. Tvk···v1(b) ∈ J for all k ≥ 1. Then we

claim that

∞∑

i=1

vi
pi

∈ E = E ∩ Πb.

Certainly,
∞∑
i=1

vi
pi ∈ E, we only need to show that

∞∑
i=1

vi
pi ∈ Πb, i.e.,

b =
( ∞∑

i=1

vi+k−1

pi
,α

)
. (2.13)
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Notice that for any k,

∥∥∥b −
( k∑

i=1

vi
pi
,α

)∥∥∥
1
=

∥∥∥pb− (vk,α)

p
−
( k∑

i=2

vi
pi
, α

)∥∥∥
1

=
∥∥∥1
p
Tvk(b)−

( k∑

i=2

vi
pi
, α

)∥∥∥
1

= · · · =
∥∥∥Tvk···v1(b)

pk

∥∥∥
1

≤

m∑
i=1

max{A+
i , |A

−
i |}

pk
→ 0 as k → ∞.

Therefore we obtain (2.13).

3 Box Dimension of Slices

For b ∈ D, let Nk(b) be the number of p-adic cubes of side length p−k which intersect⋃
z∈Γb

[E ∩Πz ]. Denote

Vk(b) =
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : fv1···vk(E) ∩Πz 6= ∅},

Uk(b) =
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : fv1···vk([0, 1]
n) ∩ Πz 6= ∅}.

It is easy to see that

Vk(b) ≤ Nk(b). (3.1)

We also have

Uk(b) =
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ J}, (3.2)

since

fv1···vk([0, 1]
n) ∩ Πz 6= ∅ ⇐⇒ [0, 1]n ∩ ΠTvk···v1 (z)

6= ∅

⇐⇒ Tvk···v1(z) ∈ J

due to (2.1)–(2.2).

Moreover, we have the following auxiliary lemma about Uk(b) which will be used in esti-

mating the upper bound of the box dimension of the slices.

Lemma 3.1

Uk(b) =
∑

z∈Γb

∑

v1···vk∈Ωk

1Sv1···vk
(J)(z),

1

Lm(J)

∫

J

Uk(b)dL
m = c

(#Ω

pm

)k

,

where c =
m∏
i=1

(A+
i −A−

i ) is a constant.
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Proof By (3.2), we have

Uk(b) =
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ J}

=
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : z ∈ Sv1···vk(J)}

=
∑

z∈Γb

∑

v1···vk∈Ωk

1Sv1···vk
(J)(z)

and

1

Lm(J)

∫

J

Uk(b)dL
m =

1

Lm(J)

∑

v1···vk∈Ωk

∫

J

∑

z∈Γb

1Sv1···vk
(J)(z)dL

m

=
1

Lm(J)

∑

v1···vk∈Ωk

{∫

J∩D

∑

z∈Γb

1Sv1···vk
(J)(z)dL

m

+

∫

J\D

∑

z∈Γb

1Sv1···vk
(J)(z)dL

m
}

=
1

Lm(J)

∑

v1···vk∈Ωk

{( m∏

i=1

(A+
i −A−

i )
)Lm(J)

pmk
+ 0

}

=
( m∏

i=1

(A+
i −A−

i )
)(#Ω

pm

)k

.

Lemma 3.2 Nk(b) ≤ 3
n
Uk(b).

Proof Given a p-adic cube of side length p−k intersecting E ∩Πz , we denote it by B, then

B ∩ E ∩Πz 6= ∅, i.e.,

B ∩
( ⋃

v1···vk∈Ωk

fv1···vk(E)
)
∩ Πz 6= ∅.

Then for some v1 · · · vk ∈ Ωk,

B ∩ fv1···vk(E) ∩ Πz 6= ∅

=⇒ B ∩ fv1···vk(E) 6= ∅ and fv1···vk(E) ∩Πz 6= ∅

=⇒ B ∩ fv1···vk([0, 1]
n) 6= ∅ and fv1···vk([0, 1]

n) ∩ Πz 6= ∅,

which implies Nk(b) ≤ 3
n
Uk(b).

For a matrix M = (dl,l′)l,l′∈L, denote its norm ‖M‖1 =
∑

l,l′∈L

|dl,l′ |.

The following lemma shows us how to compute Uk(b).

Lemma 3.3 For any integers k ≥ 1, we have

Uk(b) = ‖M(b)M(pb) · · ·M(pk−1b)‖1.

Proof First, by (3.2), we only need to show that

‖M(b)M(pb) · · ·M(pk−1b)‖1 =
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ J}.
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In fact, we obtain that

‖M(b)M(pb) · · ·M(pk−1b)‖1

=
∑

(i1,··· ,ik)∈Γb×···×Γ
pk−1b

( t−1∏

h=1

#{vh ∈ Ω : Tvh(ih) = ih+1}
)

=
∑

(i1,··· ,ik)∈Γb×···×Γ
pk−1b

#{v1 · · · vk ∈ Ωk : Tvh(ih) = ih+1 ∀ h}

=
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : Tv1(z) ∈ Γpb, Tv2v1(z) ∈ Γp2b, · · · , Tvk···v1(z) ∈ Γpkb}

=
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ Γpkb},

where the last equality follows from (2.4).

Lemma 3.4 For Lm almost all b ∈ J ,

lim
k→∞

logUk(b)

k
= λ ≤ log

(#Ω

pm

)
.

Proof By the definition of the set D, we know that D mod 1 is a set of full measure

contained in (Rn/(mod 1),Lm) which is an ergodic dynamic system under the transformation

x 7→ px. Moreover,

logUk+l(b) = log ‖M(b)M(pb) · · ·M(pk+l−1b)‖1

≤ log(‖M(b)M(pb) · · ·M(pk−1b)‖1‖M(bk+l)M(pb) · · ·M(pk+l−1b)‖1)

≤ log ‖M(b)M(pb) · · ·M(pk−1b)‖1

+ log ‖M(pkb)M(pk+1b) · · ·M(pk+l−1b)‖1

= logUk(b) + logUl(p
kb).

According to the sub-additive ergodic theorem (see [17, Theorem 10.1]), there exists a constant

λ such that

λ = lim
k→∞

logUk(b)

k

= lim
k→∞

1

k

∫
logUk(b)dL

m(b)

≤ lim
k→∞

1

k
log

∫
Uk(b)dL

m(b) by the convexity of log(x)

for Lm almost all b ∈ mod 1. Therefore for Lm almost all b ∈ J ,

λ ≤ lim
k→∞

1

k
log

∫
Uk(b)dL

m(b)

= lim
k→∞

1

k
log

[ 1

Lm(J)

∫

J

Uk(b)dL
m(b)

]

= lim
k→∞

1

k
log

[( m∏

i=1

(A+
i −A−

i )
)(#Ω

pm

)k]
(by Lemma 3.1)

= log
(#Ω

pm

)
.
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Let K = {(x, α) : x ∈ E}. We claim that

Hm(Λ) > 0 if and only if Hm(K) > 0, (3.3)

where Λ = {a ∈ V ⊥ : E ∩ (V + a) 6= ∅}. In fact, for a ∈ V ⊥,

a =

m∑

i=1

(a, αi)

(αi, αi)
αi,

then f(Λ) = K, where

f(a) = (a, α)

is a bi-Lipschitz mapping from V ⊥ to Rm which ensures that claim (3.3).

Without loss of generality, we assume that

Hm(K) > 0.

We also assume that the Lyapunov exponent

λ > 0.

Otherwise, we assume that λ = 0, then by the definition of the box dimension, we have

dimB

( ⋃

z∈Γb

Ez

)
= lim sup

k→∞

logNk(b)

k log p

≤ lim sup
k→∞

log 3nUk(b)

k log p
(by Lemma 3.2)

= lim sup
k→∞

logUk(b)

k log p
.

We notice that for Hm-almost all b ∈ Rm,

lim
k→∞

logUk(b)

k
= lim

k→∞

log ‖M(b)M(pb) · · ·M(pk−1b)‖1
k

= λ = 0. (3.4)

Therefore, for Hm-almost all b ∈ Rm,

0 ≤ dimH

( ⋃

z∈Γb

Ez

)
= dimB

( ⋃

z∈Γb

Ez

)
≤ 0.

Then Theorem 1.1 follows in this case.

Lemma 3.5 If the Lyapunov exponent λ > 0, then

Hm
(
(0, 1)m\

( ⋃

j∈L

(K − j)
))

= 0.

Furthermore, for Hm-almost all b ∈ (0, 1)m,

⋃

j∈L

Eb+j =
⋃

z∈Γb

Ez 6= ∅.
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Proof Fix ε ∈ (0, λ). Then by (3.2) and Lemma 3.3, for Hm-almost all b ∈ (0, 1)m, there

exists k(b) such that

Uk(b) =
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ J} ≥ (λ− ε)k for any k ≥ k(b). (3.5)

On the other hand, it follows from Lemma 2.4 that
⋃

z∈Γb

Ez = ∅ ⇐⇒
∑

z∈Γb

#{v1 · · · vk ∈ Ωk : Tvk···v1(z) ∈ J} = 0 for some k ≥ 1,

⇐⇒ Uk(b) = 0 for some k ≥ 1,

which contradicts (3.5).

For b ∈ D ∩ [0, 1]m, we suppose

b =
t1
p
+

t2
p2

+ · · ·+
tk
pk

+
tk+1

pk+1
+ · · · ,

where ti ∈ {0, 1, · · · , (p− 1)}m for all i. Let

{pkb} =
tk+1

p
+

tk+2

p2
+ · · · .

Assume that

Tvk···v1(b+ i) = {pkb}+ j with i, j ∈ L. (3.6)

Then

pk
(( t1

p
+ · · ·+

tk
pk

)
+ i

)
+ {pkb} −

k∑

i=1

pk−i(vi,α) = {pkb}+ j,

i.e.,

pk
(( t1

p
+ · · ·+

tk
pk

)
+ i

)
− j =

k∑

i=1

pk−i(vi,α) ∈ Zm.

Given b ∈ D ∩ [0, 1]m, for i, j ∈ L, let

Mi,j(b, k) = #{v1 · · · vk : Tvk···v1(b+ i) = {pkb}+ j},

Ni,j(b, k) = #{v1 · · · vk : Tvk···v1(b+ i) = {pkb}+ j and fv1···vk(E) ∩ Πb+i 6= ∅}.

Then for all b ∈ D ∩ [0, 1]m,

Uk(b) =
∑

i,j∈L

Mi,j(b, k) = ‖M(b)M(pb) · · ·M(pk−1b)‖1,

Nk(b) ≥ Vk(b) =
∑

i,j∈L

Ni,j(b, k).

For notational convenience, we also write
∑

i∈L

Ni,j(b, k) = Nj(b, k) and
∑

i∈L

Mi,j(b, k) = Mj(b, k).

Let 1 be the row vector in R#L with its every coordinate 1.

For the union
⋃

z∈Γb

Ez of slices, we have the following result.
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Proposition 3.1 For Hm-almost all b ∈ (0, 1)m, we have

dimB

( ⋃

z∈Γb

Ez

)
=

λ

log p
≤

log#Ω

log p
−m = dimH E −m.

Proof It follows from Lemma 3.5 that for almost all b ∈ [0, 1]m,

b ∈
⋃

j∈L

(K − j),

i.e.,

Hm
(
[0, 1]m ∩

( ⋃

j∈L

(K − j)
))

= 1. (3.7)

By (3.7), we can select a subset Ξ ⊂ L such that

Hm
(
[0, 1]m ∩

( ⋂

j∈Ξ

(K − j)
))

> 0

and

Hm
(
[0, 1]m ∩

( ⋂

j∈Ξ

(K − j)
)
∩ (K − i)

)
= 0 for any i /∈ Ξ.

Notice that

{b : b /∈ K − i} =
⋃

k≥1

Bk,i,

where Bk,i = {b :
∑
j∈L

Mi,j(b, k) = 0} satisfying

B1,i ⊂ · · · ⊂ Bk,i ⊂ Bk+1,i ⊂ · · · .

Then there exists an integer k0 large enough so that

ρk0 = Hm
(
[0, 1]m ∩

( ⋂

j∈Ξ

(K − j)
)
∩
( ⋂

i/∈Ξ

Bk0,i

))
> 0. (3.8)

Note that the following self-mapping of [0, 1]m,

b → {pb} for b ∈ (0, 1)m

is ergodic. Applying ergodic theorem to (3.8), we obtain that for Hm-almost all b ∈ (0, 1)m∩D,

there is a sequence

n1(b) < n2(b) < · · · < nq(b) < nq+1(b) < · · ·

satisfying

lim
k→∞

#{i : ni(b) ≤ k}

k
= ρk0 ,

where {ni(b)}i =
{
k : {pkb} ∈

( ⋂
j∈Ξ

(K − j)
)
∩
( ⋂
i/∈Ξ

Bk0,i

)}
.
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Taking a subsequence mi(b) = n2ik0(b), then we have for every k = mq,

{pkb} ∈ K − j for any j ∈ Ξ,

{pkb} ∈ Bk0,i for any i /∈ Ξ,

and

mi+1(b)−mi(b) ≥ 2k0.

We also have

lim
k→∞

#{i : mi(b) ≤ k}

k
=

ρk0

2k0
,

which implies

lim
q→∞

mi+1(b)−mi(b)

mi+1(b)
= 0. (3.9)

As we know, given j ∈ Ξ, if Tvk···v1(b + j′) = {pkb}+ j, then

E ∩ ΠTvk···v1(b+j′) = E ∩ Π{pkb}+j 6= ∅

due to {pkb}+ j ∈ K, and thus

fv1···vk(E) ∩ Πb+j′ 6= ∅.

As a result, we have

Mj′,j(b,mq(b)) = Nj′,j(b,mq(b)) for any j ∈ Ξ and j′ ∈ L,

which implies

Mj(b,mq(b)) = Nj(b,mq(b)) for any j ∈ Ξ. (3.10)

Now, we obtain that

Umq(b)(b) =
∑

j∈L

Mj(b,mq(b)) ≥
∑

j∈Ξ

Nj(b,mq(b)). (3.11)

On the other hand, we obtain that

Umq+1(b) = ‖1M(b) · · ·M(pmq+1(b)−1b)‖1

= ‖(1M(b) · · ·M(pmq(b)−1b))(M(pmq(b)b) · · ·M(pmq+1(b)−1b))‖1

= ‖(M1(b,mq(b)), · · · ,M#L(b,mq(b))) · Tq‖1, (3.12)

where Tq = M(pmq(b)b) · · ·M(pmq+1(b)−1b).

We note that there is a constant C > 0 such that for every k,

‖M(pkb)‖1 ≤ C, (3.13)

which implies

‖Tq‖1 ≤ Cmq+1(b)−mq(b). (3.14)

Since {pkb} ∈ Bk0,i and |mq+1(b)−mq(b)| > k0, we have the following claim.
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Claim 3.1 Every entry of Tq in the row respect to i /∈ Ξ is zero.

Therefore, by (3.10), (3.12) and (3.14), we have

Umq+1(b)(b) ≤ Cmq+1(b)−mq(b)
∑

j∈Ξ

Mj(b,mq(b))

= Cmq+1(b)−mq(b)
∑

j∈Ξ

Nj(b,mq(b)). (3.15)

Recall that for Hm-almost all b ∈ (0, 1)m,

logUmq+1(b)(b)

mq+1(b)
,
logUmq(b)(b)

mq(b)
→ λ as q → ∞, (3.16)

where lim
q→∞

mi+1(b)−mi(b)
mi+1(b)

= 0.

It follows from (3.11) and (3.15)–(3.16) that

log
∑
j∈Ξ

Nj(b,mq(b))

mq(b)
→ λ as q → ∞.

Noticing that

log
∑
j∈Ξ

Nj(b,mq(b))

mq(b)
≤

logNmq(b)(b)

mq(b)
≤

log 3nUmq(b)(b)

mq(b)
,

we have

lim
q→∞

logNmq(b)(b)

mq(b)
= λ. (3.17)

Since lim
q→∞

mi+1(b)−mi(b)
mi+1(b)

= 0, it follows from (3.17) that

lim
k→∞

logNk(b)

k
= λ.

That means for Hm-almost all b ∈ (0, 1)m,

dim
( ⋃

z∈Γb

Ez

)
= lim

k→∞

logNk(b)

k log p
=

λ

log p
.

According to Lemma 3.4,

dimB

( ⋃

z∈Γb

Ez

)
=

λ

log p
≤

log#Ω

log p
−m = dimH E −m.

4 Sections in Torus

Let Tn = Rn/Zn be the n-dimensional torus and P : Rn → Tn the map defined by

P (x1, · · · , xn) = (y1, · · · , yn) ∈ Tn,
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where yi = {xi} the fractional part of xi for every i. For y, y′ ∈ Tn, the metric d on Tn is

defined as follows:

d(y, y′) = min
P (x)=y

P(x′)=y′

|x− x′|.

Let τ : Tn → Tn be the map τ(y) = py.

Suppose E =
⋃
v∈Ω

E+v
p . Set

∆ = P
( ⋃

v∈Ω

fv([0, 1]
n)
)
⊂ Tn.

Suppose K = {y ∈ Tn : τk(y) ∈ ∆, ∀k ≥ 0}, then

K = P (E).

Then K is τ -invariant. For b ∈ Rm, write

Kb = K ∩ {y ∈ Tn : (y,α) ≡ b (mod 1)}.

Lemma 4.1 For any b ∈ Rm, we have

P
( ⋃

z∈Γb

Ez

)
= Kb.

Proof Suppose x ∈
⋃

z∈Γb

Ez . We have (x,α) ≡ b (mod 1) since αi ∈ Zm for every i. Let

y = P (x). Then y ∈ K and (y,α) ≡ b (mod 1). Hence P
( ⋃
z∈Γb

Ez

)
⊂ Kb.

On the other hand, suppose y ∈ Kb with (y,α) ≡ b (mod 1). Since P (E) = K, there exists

x ∈ E such that P (x) = y. Then z = (x,α) ∈ b + Zm. Note that x ∈ E ⊂ [0, 1]n, we have

Πz ∩ [0, 1]n 6= ∅, which implies z ∈ J due to (2.1), i.e., z ∈ Γb = J ∩ (b+Zm). Hence y = P (x),

where x ∈ E ∩ Πz = Ez with z ∈ Γb. Therefore Kb ⊂ P
( ⋃
z∈Γb

Ez

)
.

Notice that E ⊂ [0, 1]n and there exists a constant δ > 0 such that

d(P (x), P (x′)) = |x− x′|

whenever |x− x′| < δ. Therefore, we have the following result.

Lemma 4.2 For any b ∈ Rm, we have

dim
( ⋃

z∈Γb

Ez

)
= dimKb,

where dim stands for any one of dimH , dimB.

Now, we will show that the Hausdorff dimension of the slice equals its box dimension almost

everywhere. During the proof, we will use the following result provided by Ledrappier (see [8,

Proposition 2.6]).

Lemma 4.3 (Ledrappier) Let Tp denote the endomorphism Tpx = px (mod 1) of the (n−

m)-dimensional torus Tn−m, and let S be a continuous transformation of a metric space Y .
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Assume that Λ ⊂ Tn−1 × Y is compact and invariant under the map Tp × S, and that ν is an

S-invariant probability measure on Y . Then for ν-a.e. y, we have

dimH [π−1(y)] = dimB[π
−1(y)],

where π : Λ → Y is the projection onto the second coordinate.

Remark 4.1 This lemma implies for ν-a.e. y,

dimB[π
−1(y)] = dimB [π

−1(y)] = dimB [π
−1(y)].

Proof of Theorem 1.1 It follows from the result of [19] that there are constants c1 ≤

c2 ≤ c3 such that for Hm-almost all b with Eb 6= ∅,

dimH Eb = c1, dimBEb = c2, dimBEb = c3.

By Proposition 3.1, we only need to show that for Hm-almost all b ∈ [0, 1]m,

dimH

( ⋃

z∈Γb

Eb

)
= dimB

( ⋃

z∈Γb

Eb

)
. (4.1)

Let Tp denote the endomorphism Tpx = px (mod 1) of the (n−m)-dimensional torus Tn−m,

S(x) = px (mod 1) the map on m-dimensional torus Tm, and g : Tn → Tn the map

g(x) = ((x, β1), · · · , (x, βn−m), (x, α1), · · · , (x, αm)) (mod 1).

Then τ = Tp × S. Both K and g(K) are τ -invariant, i.e., K = τ(K) and

τ(g(K)) = g(τ(K)) = g(K)

since g ◦ τ = τ ◦ g.

Since Rn = span{β1, · · · , βn−m, α1, · · · , αm}, we obtain that g is a local bi-Lipschitz map

on the compact set Tn, which implies

dim g(Kb) = dimKb, (4.2)

where dim stands any one of dimH , dimB.

Now, let Y = Tm = [0, 1]m/Zm equipped with Lebesgue measure ν on (0, 1)m. Since

π−1[b (mod 1)] = g(Kb),

then by the previous lemma, for ν-almost all b ∈ T,

dimH g(Kb) = dimBg(Kb).

Therefore, it follows from (4.2) that for Hm-almost all b ∈ [0, 1]m,

dimH Kb = dimBKb.

By Lemma 4.2, we obtain (4.1).
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5 Sections of Fractal Generated by Multi-rules

In this section, we will prove Theorem 1.3.

Fix a sequence {Ωi}i≥1 satisfying s-star condition. We will discuss the slices of following

sets

F k =
{ ∞∑

i=k

vi
pi−k+1

: vi ∈ Ωi for all i ≥ k
}
.

Then F = F 1 and

F k =
⋃

v∈Ωk

F k+1 + v

p
=

⋃

v∈Ωk

fv(F
k+1). (5.1)

Denote Fk,b = F k ∩ Πb.

Given integers k′ ≥ k ≥ 1, let

Θk,k′ = {vkvk+1 · · · vk′−1 : vi ∈ Ωi for all k ≤ i ≤ k′ − 1},

and Θk,∞ = {vkvk+1 · · · : vi ∈ Ωi for all i ≥ k}.

The following two lemmas are similar to Lemmas 2.3–2.4. The first one is again the nested

structure of the slices {Fk,b}b∈J .

Lemma 5.1 For any b ∈ J and k ≥ 1,

Fk,b =
⋃

v∈Ωk

fv(Fk+1,Tv(b)) =
⋃

v∈Ωk

Fk+1,Tv(b) + v

p
. (5.2)

Further, for any k′ ≥ k,

Fk,b =
⋃

v∈Θk,k′

fv(Fk′,Tv(b)) =
⋃

v∈Θ
k,k′

Tv(b)∈Γ
pk

′−k(b)

fv(Fk′,Tv(b)). (5.3)

The second one tells us when the slice Fk,b is not empty.

Lemma 5.2 For any b ∈ J,

Fk,b 6= ∅ ⇐⇒ ∃ vkvk+1 · · · ∈ Θk,∞, s.t. Tvk′ ···vk(b) ∈ J for all k′ ≥ k.

We record the number of copies with a non-negative integer matrix.

Given b ∈ Rm and k ≥ 1, the integer matrix Mk(b) = (cki,j)i∈Γb,j∈Γpb
is defined by

cki,j = #{v ∈ Ωk : Tv(i) = j}. (5.4)

Then Mk(b) is a #Γb ×#Γpb non-negative integer matrix.

Let 1b = (1, · · · , 1) be a vector in R#Γb with every coordinate 1.

Lemma 5.3 For any b ∈ Rm, every column sum of the matrix Mk(b) equals to s, i.e.,

1bMk(b) = s1pb. (5.5)
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Proof We need to show that for every j ∈ Γpb,
∑

i∈Γb

cki,j = s.

Let

j = pb+ q with q ∈ Zm.

By (5.4), we have
∑

i∈Γb

cki,j =
∑

i∈Γb

#{v ∈ Ωk : Tv(i) = j}

= #{v ∈ Ωk : ∃ z ∈ Γb, s.t. Tv(z) = pb+ q}.

Suppose that z = b+ q′ with q′ ∈ Zm. Then

Tv(z) = pb+ q =⇒ p(b+ q′)− (v,α) = pb+ q

=⇒ (v,α) ≡ −q (mod p).

Hence,
∑

i∈Γb

cki,j = #{v ∈ Ωk : ∃ z ∈ Γb, s.t. Tv(z) = pb+ q}

≤ #{v ∈ Ωk : (v,α) ≡ −q (mod p)} = s.

Conversely, for any v ∈ Ωk with (v,α) ≡ −q (mod p), we have

Sv(j) = Sv(pb + q) = b+
q + (v,α)

p
∈ b + Zm.

By (2.3), we know that Sv(j) ⊂ Sv(J) ⊂ J. That means

Sv(j) ∈ (b + Zm) ∩ J = Γb,

i.e., there exists z ∈ Γb, such that Tv(z) = j. Therefore,

s = #{v ∈ Ωk : (v,α) ≡ −q (mod p)}

≤ #{v ∈ Ωk : ∃ z ∈ Γb, s.t. Tv(z) = j} =
∑

i∈Γb

cki,j.

This completes the proof.

Given k ≥ 1 and t ≥ 1, we denote

Nk,t(b) =
∑

z∈Γb

#{vk · · · vk+t−1 ∈ Θk,k+t : fvk···vk+t−1
([0, 1]n) ∩Πz 6= ∅}. (5.6)

We also have

Nk,t(b) =
∑

z∈Γb

#{vk · · · vk+t−1 ∈ Θk,k+t : Tvk+t−1···vk(z) ∈ J}, (5.7)

since

fvk···vk+t−1
([0, 1]n) ∩ Πz 6= ∅ ⇐⇒ [0, 1]n ∩ ΠTvk+t−1···vk

(z) 6= ∅

⇐⇒ Tvk+t−1···vk(z) ∈ J

due to (2.2) and (2.1).

The following proposition shows us how to compute Nk,t(b).
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Lemma 5.4 For any integers k, t ≥ 1, we have

Nk,t(b) = ‖1bMk(b)Mk+1(pb) · · ·Mk+t−1(p
t−1b)‖1. (5.8)

Proof First, by (5.7), for any k > 0, we obtain that

Nk,t(b) =
∑

z∈Γb

#{vk · · · vk+t−1 ∈ Θk,k+t : Tvk+t−1···vk(z) ∈ Γptb}. (5.9)

Now we will show that

‖1bMk(b)Mk+1(pb) · · ·Mk+t−1(p
t−1b)‖1

=
∑

z∈Γb

#{vk · · · vk+t−1 ∈ Θk,k+t : Tvk+t−1···vk(z) ∈ Γptb}.

We obtain that

‖1bMk(b)Mk+1(pb) · · ·Mk+t−1(p
t−1b)‖1

=
∑

(ik,··· ,ik+t)∈Γb×···×Γptb

( k+t−1∏

h=k

#{vh ∈ Ωh : Tvh(ih) = ih+1}
)

=
∑

(ik,··· ,ik+t)∈Γb×···×Γptb

#{vk · · · vk+t−1 ∈ Θk,k+t : Tvh(ih) = ih+1 ∀h}

=
∑

z∈Γb

#{vk · · · vk+t−1 ∈ Θk,k+t : Tvk(z) ∈ Γpb, · · · , Tvk+t−1···vk(z) ∈ Γptb}

=
∑

z∈Γb

#{vk · · · vk+t−1 ∈ Θk,k+t : Tvk+t−1···vk(z) ∈ Γptb},

where the last equality follows from (2.4).

Proposition 5.1 Every column sum of Mk(b)Mk+1(pb) · · ·Mk+t−1(p
t−1b) is st. Further,

Nk,t(b) = (#Γptb)s
t.

Proof It follows from Lemma 5.3 that

(1bMk(b))Mk+1(pb) · · ·Mk+t−1(p
t−1b) = s(1pbMk(pb)) · · ·Mk+t−1(p

t−1b)

= · · · = st1ptb.

By Lemma 5.4, we have

Nk,t(b) = st‖1ptb‖1 = (#Γptb)s
t.

Corollary 5.1 For any b ∈ Rm and any integer k ≥ 1, we have

⋃

z∈Γb

Fk,z 6= ∅.

Proof Suppose on the contrary that
⋃

z∈Γb

Fk,z = ∅. Then by Lemma 5.2, there exists an

integer t such that

Tvk+t−1···vk(z) /∈ J for all z ∈ Γb and any vk · · · vk+t−1 ∈ Θk,k+t.



Dimension of Slices Through Fractals with Initial Cubic Pattern 1171

It follows from (5.7) that Nk,t(b) = 0. However, by Proposition 5.1, Nk,t(b) = (#Γptb)s
t > 0. It

is a contradiction.

Let

Vk,t(b) =
∑

z∈Γb

#{vk · · · vk+t−1 ∈ Θk,k+t : fvk···vk+t−1
(F k+t) ∩ Πz 6= ∅}.

Corollary 5.2 For any b ∈ Rm and integers k, t ≥ 1,

Vk,t(b) ≥ st.

Proof The last corollary implies that there exists z ∈ Γb such that F k ∩ Πz 6= ∅. In the

same way, there exists z∗ ∈ Γptb such that F k+t ∩ Πz∗ 6= ∅.

By Lemma 5.1, we obtain that
⋃

z∈Γb

F k ∩ Πz =
⋃

z∈Γb

⋃

vk···vk+t−1∈Θk,k+t

fvk···vk+t−1
(F k+t ∩ ΠTvk+t−1···vk

(z))

=
⋃

z′∈Γptb

⋃

z∈Γb

⋃

Tvk+t−1···vk
(z)=z′

fvk···vk+t−1
(F k+t ∩ Πz′).

Then

fvk···vk+t−1
(F k+t ∩ Πz∗) = fv1···vk(F

k+t) ∩ Πz 6= ∅

for any Tvk+t−1···vk(z) = z∗ with z ∈ Γb. Denote

δt = #{vk · · · vk+t−1 ∈ Θk,k+t : fvk···vk+t−1
(F k+t ∩ Πz∗) 6= ∅ with

Tvk+t−1···vk(z) = z∗ for some z ∈ Γb}.

Hence Vk,t(b) ≥ δt.

For the matrix Mk(b)Mk+1(pb) · · ·Mk+t−1(p
t−1b), when we consider its column sum with

respect to z∗, by Proposition 5.1 we have δt ≥ st, which implies Vk,t(b) ≥ st.

By the result in [20], this fractal set F k have dimension log spm

log p = log s
log p +m.

Consider the union
⋃

z∈Γb

[F k ∩ Πz] of slices. We have the following proposition.

Proposition 5.2 For all b ∈ Rm and integer k ≥ 1,

dimB

( ⋃

z∈Γb

Fk,z

)
=

log s

log p
= dimH F k −m.

Proof Let Uk,t(b) be the number of p-adic cubes of side length p−k which intersect
⋃

z∈Γb

[F k∩

Πz]. By the definition of the box dimension, we have

dimB

( ⋃

z∈Γb

[F k ∩ Πz ]
)
= lim sup

t→∞

logUk,t(b)

t log p
,

dimB

( ⋃

z∈Γb

[F k ∩ Πz ]
)
= lim inf

t→∞

logUk,t(b)

t log p
.

We notice that

Uk,t(b) ≥ V k,t(b) ≥ st. (5.10)
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On the other hand, it suffices to verify

Uk,t(b) ≤ 3nNk,t(b) ≤ 3n
( m∏

i=1

(A+
i −A−

i + 1)
)
st. (5.11)

In fact, by (5.10)–(5.11), we have

dimB

( ⋃

z∈Γb

[F k ∩ Πz]
)
= lim

t→∞

logUk,t(b)

t log p
=

log s

log p
.

To verify (5.11), given a p-adic cube of side length p−(k+t) intersecting F k ∩Πz, we denote

it by B, then B ∩ F k ∩Πz 6= ∅, i.e.,

B ∩
( ⋃

vk···vk+t−1∈Θk,k+t

fvk···vk+t−1
(F k+t)

)
∩ Πz 6= ∅.

Then for some vk · · · vk+t−1 ∈ Θk,k+t,

B ∩ fvk···vk+t−1
(F k+t) ∩ Πz 6= ∅

=⇒ B ∩ fvk···vk+t−1
(F k+t) 6= ∅ and fvk···vk+t−1

(F k+t) ∩ Πz 6= ∅

=⇒ B ∩ fvk···vk+t−1
([0, 1]n) 6= ∅ and fvk···vk+t−1

([0, 1]n) ∩ Πz 6= ∅,

which implies

Uk,t(b) ≤ 3
n
Nk,t(b).

Hence (5.11) holds.

Let

ΛF = {b ∈ J : F ∩ Πb 6= ∅}.

Suppose Ψ = Zm ∩
m∏
t=1

[A−
i , A

+
i ) with #Ψ = N. For any i = (i1, · · · , im) in Ψ, we denote

Ii =

m∏

t=1

(it, it + 1).

Then Hm(J) =
∑
i∈Ψ

Hm(Ii).

Proposition 5.3 Hm(ΛF ) ≥ 1.

Proof Then Hm(ΛF ) =
∑
i∈Ψ

Hm(Ii ∩ ΛF ).

By Corollary 1, we have
⋃

z∈Γb

Fz =
⋃

z∈Γb

F1,z 6= ∅ for any b ∈ J. That means

N = Hm(J) ≤
∑

i∈Ψ

∑

p∈Z
m

Ii+p⊂[0,1]m

Hm(Ii ∩ ΛF )

≤
∑

i∈Ψ

NHm(Ii ∩ ΛF )

= N
∑

i∈Ψ

Hm(Ii ∩ ΛF )

= NHm(ΛF ),

which implies Hm(ΛF ) ≥ 1.

Proof of Theorem 1.3 Theorem 1.3 follows from Propositions 5.2–5.3.
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6 The Case of Continuous Projection Measure

6.1 Proof of Proposition 1.1

6.1.1 The local dimension of µV

Suppose that E is the attractor of the IFS {fv}v∈Ω. Write Ψ : ΩN → E for the natural

projection

Ψ(w) := lim
n→∞

fw1···wn
(0)

and the natural measure µ on E can be also defined as the push forward measure of the Bernoulli

measure on ΩN given by { 1
#Ω , · · · ,

1
#Ω}

N. Recall that µV = µ ◦ proj−1
V satisfying

µV =
∑

v∈Ω

1

#Ω
µV ◦ S−1

v . (6.1)

Let BV ⊂ Λ be the set of all ‘bad’ points in Λ that the number of appearance of digits 1

and (p− 1) in the p-adic expansion is finite, i.e.,

BV = {x = (x1, · · · , xm) ∈ Λ : ∃ N0, s.t. x
(N0)
i x

(N0+1)
i · · · ∈ {2, · · · , (p− 2)}N},

where for i = 1, · · · ,m, xi = x
(1)
i x

(2)
i · · · is the p-adic expansion. Roughly speaking, ‘bad’

points are located near the boundary of squares. It is easy to see that Lm(Λ\BV ) = 0.

Proof of Proposition 1.1 For any x = (x1, · · · , xm) ∈ BV , supposet that the p-adic

expansion is xi = x
(1)
i x

(2)
i · · · . Then, denote the p-adic square of level j that contains x by

�j(x), i.e.,

�j(x) =

m∏

i=1

( j∑

l=1

x
(l)
i

pl
,

j∑

l=1

x
(l)
i

pl
+

1

pj

)
.

Then by the definition of BV , for j > N0, we have

�j+1(x) ⊂ B(x, p−j) ⊂ �j−1(x).

Hence

µV (�j+1(x)) ≤ µV (B(x, p−j)) ≤ µV (�j−1(x)).

Since µV = µ ◦ proj−1
V , then

µV (�j(x)) = µ{y ∈ E : projV (y) ∈ �j(x)}

=
1

#Ωj
#{v1 · · · vj ∈ Ωj : fv1···vj ([0, 1]

n) ∩ proj−1
V (�j(x)) 6= ∅}

=
1

#Ωj
1xM(x)M(px) · · ·M(pj−1x)et, (6.2)

where et = (0, · · · , 0, 1, 0, · · · , 0)T with the t-th coordinate 1 and t is dependent on x.

According to the equation (6.2), we have for all x ∈ BV ,

log#Ω

log p
− o(j) ≤

logNj(x)

log pj
+

logµV (B(x, p−j))

log p−j
≤

log#Ω

log p
+ o(j). (6.3)
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Similarly with Lemma 3.3, for x ∈ sptµV ,

dimB[E ∩ (V + x)] = lim
j→∞

log[1xM(x)M(px) · · ·M(pj−1x)et]

log pj
. (6.4)

According to (6.3)–(6.4), letting j → ∞, we obtain

dimH E = dimB [E ∩ (V + x)] + dimloc µV (x).

6.2 Proof of Theorem 1.2

Recall that E =
⋃
v∈Ω

E+v
p , and µV is a self-similar measure satisfying

µV =
∑

v∈Ω

1

#Ω
µV ◦ S−1

v .

Lemma 6.1 If µV ≪ Lm, then for Lm almost all x ∈ sptµV ∩ Λ, dimloc µV (x) = m.

Proof Notice that µV is a self-similar measure and µV is absolutely continuous with respect

to the Lebesgue measure. By [16, Proposition 3.1], which tells us that a self-similar measure is

either equivalent to the Lebesgue or singular, we have µV ∼ Lm.

Since for all x ∈ sptµV , µV (B(x, r)) > 0 for sufficiently small r (if µV (B(x, r)) = 0, then

µV ((sptµV )
c ∪B(x, r)) = 0, which contradicts the definition of the support of a measure), the

local dimension of µV is

dimloc µV (x) = lim
r→0

logµV (B(x, r))

log r
= lim

r→0

logLm(B(x, r))

log r
= m.

According to Proposition 1.1 and Lemma 6.1, we obtain (1.11).

Now we will prove the rest of Theorem 1.2.

The self-similar measure µV satisfies (6.1). Applying Fourier transform to the both sides of

(6.1), we obtain

µ̂V (ξ) = φ
( ξ
p

)
µ̂V

(ξ
p

)
, (6.5)

where

φ(ξ) =
∑

v∈Ω

1

#Ω
e−iξ(v,α) (6.6)

is the characteristic function of (6.1). Iterating the equation (6.5) j times (j ≥ 2), we obtain

µ̂V (ξ) = φ
( ξ
p

)
· · ·φ

( ξ

pj

)
µ̂V

( ξ

pj

)
. (6.7)

To show that µV ≪ Lm, we need the following lemma which is a higher-dimensional version

of [15, Lemma 2]. We give the proof here for consistency.

Lemma 6.2 µV ≪ Lm if and only if the following equation holds:

µ̂V (2πk) = δk, k ∈ Zm,

where δk = 1 if k = (0, · · · , 0) and δk = 0 otherwise.
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Proof The necessity. By (6.7), we have

µ̂V (2πkp
j) = (φ(0))j µ̂V (2πk) = µ̂V (2πk).

Since µV is absolutely continuous with respect to Lm by the assumption, applying the Riemann-

Lebesgue lemma, we have

µ̂V (2πkp
j) → 0 as j → ∞.

Therefore, µ̂V (2πk) = 0 for every k 6= 0. The necessity is proved.

The Sufficiency. Denote by S(Rm) the Schwartz space of all indefinitely differentiable rapid-

ly decreasing functions f on Rm :

S(Rm) = {f ∈ C∞(Rm) : ‖f‖α,β < ∞, ∀α, β},

where α, β are multi-indices and ‖f‖α,β = sup
x∈Rm

|xα( ∂
∂x )

βf(x)|. And denote by Er the space of

infinitely differentiable functions with period 1:

Er = {g ∈ C∞(Rm) : g(x+ ej) ≡ g(x), for j = 1, · · · ,m}.

Every function g ∈ Er can be decomposed into a Fourier series that converges to g in the space

Er:

g(x) =
∑

k∈Zm

ak(g)e
2πik·x, ak(g) =

∫

Q1

g(x)e−2πik·xdx,

where Q1 denote the closed cube

Q1 = {x ∈ Rm : 0 ≤ xj ≤ 1, for j = 1, · · · ,m}.

Now we consider the periodization operator taking a function f(x) ∈ S to the function f̃(x) =∑
k∈Zm

f(x+ k). It is a continuous operator from S to Er.

For any cube

Q = {x ∈ Rm : aj ≤ xj ≤ bj , for j = 1, · · · ,m},

Qε = {x ∈ Rm : aj − ε < xj < bj + ε, for j = 1, · · · ,m},

where bj − aj < 1
2 for j = 1, · · · ,m and 0 < ε < 1

4 , consider a function fε ∈ S(Rm) such that

fε(x) = 1 on Q and fε(x) ≡ 0 on Rm\Qε and 0 < fε(x) < 1 otherwise. Then

∑

k∈Zm

∫

Rm

fε(x+ k)dµV =

∫

Rm

f̃ε(x)dµV =

∫

Rm

∑

k∈Zm

ak(f̃ε)e
2πik·xdµV

=
∑

k∈Zm

ak(f̃ε)

∫

Rm

e2πik·xdµV =
∑

k∈Zm

ak(f̃ε)µ̂V (−2πk)

=
∑

k∈Zm

ak(f̃ε)δ−k = a0(f̃ε) =

∫

Q1

f̃ε(x)dx

=

∫

Rm

fε(x)dx <

m∏

j=1

(bj − aj + 2ε).
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Since
∫
Rm fε(x+ k)dµV ≥ 0 for all k ∈ Zm, we have

∫

Rm

fε(x)dµV <

m∏

j=1

(bj − aj + 2ε).

Consider the sequence of functions {f 1
n
}n≥5. Letting n → ∞, we obtain

f 1
n
(x) → 1Q(x), ∀x ∈ Rm,

where 1Q denotes the characteristic function of Q. By Fatou’s lemma, we have
∫

Q

dµV ≤ lim inf
n→∞

∫

Rm

f 1
n
(x)dΦ

≤ lim inf
n→∞

m∏

j=1

(
bj − aj +

2

n

)

=

m∏

j=1

(bj − aj),

which implies µV ≪ Lm.

Now we will show that µV ≪ Lm of Theorem 1.2.

Proof of continuity Take k ∈ Zm. By (6.7), we have

µ̂V (2πk) = (φ(0))j µ̂V (2πk) = µ̂V (2πkp
j),

we only need to consider k ∈ Zm with the form k = ptq where t ≥ 0, q = (q1, · · · , qm) and

0 < |qj | < p for j = 1, · · · ,m. Substituting ξ = 2πk into (6.7), we obtain

µ̂V (2πk) = φ(2πpt−1q) · · ·φ(2πq)φ
(2πq

p

)
µ̂V

(2πq
p

)
= (φ(0))tφ

(2πq
p

)
µ̂V

(2πq
p

)
.

For j = 1, · · · ,m, let zj = e−i2πqj/p 6= 1 then zpj = 1 and 1 + zj + · · ·+ zp−1
j = 0. Hence

φ
(2πq

p

)
=

∑

v∈Ω

e−
2πiq·dv

p =
∑

v∈Ω

z
d(1)
v

1 · · · z
d(m)
v

m

= sm
∑

l∈{0,1,··· ,p−1}m

zl11 · · · zlmm (by s-star condition)

= sm
m∏

j=1

(1 + zj + · · ·+ zp−1
j ) = 0,

which implies µ̂V (2πk) = 0. Therefore, by Lemma 6.2, the proof is finished.

6.3 Proof of Example 1.5

To prove Example 1.5, we need some notations and results in [15].

A tree is said to be the tree of order p (p ≥ 2), if it is constructed as follows:

1. Put 2π at the root;

2. Put the number 2πt
p , t = 1, · · · , p− 1 at the vertices on the first level;

3. Inductively, let a number α be associated to a vertex on the l-th level, then the numbers

α+ 2πt

p
, t = 0, 1, · · · , p− 1

are associated to its neighbours on the (l + 1)-th level.
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Definition 6.1 (see [15]) A subset A of vertices of the tree of order p is a blocking set if

the following conditions are satisfied:

(a) 2π /∈ A;

(b) α ∈ A ⇔ 2π−α ∈ A;

(c) every infinite path starting at the root of the tree includes exactly one element of A.

From [15, Theorem 1], we have the following lemma.

Lemma 6.3 (see [15]) The solution of (6.1) is absolutely continuous if and only if there is

a blocking set that consists of roots of (6.6).

Proof of Example 1.5 According to Lemma 6.3, we only need to show that there is a

blocking set consisting of the roots of the following equation:

φ(ξ) =
∑

v∈Ω

1

#Ω
e−iξ(v,α).

Let z = e−iξ, the above equation turns to

g(z) = 1 + z + z3 + z4 + z6 + z7 + z9 + z10 + z12 + z13 + z15 + z16

= (z + 1)2(z2 − z + 1)(z6 + z3 + 1)(z6 − z3 + 1).

By some simple calculation, we have the roots of equation φ(ξ) as follows:

{ξ : φ(ξ) = 0} = 2π
[{1

6
,
3

6
,
5

6

}
∪
{ 2

6 + t

6
,
4
6 + t

6
: t = 0, · · · , p− 1

}]
,

which is a blocking set.
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