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Dimension of Slices Through Fractals with
Initial Cubic Pattern*
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Abstract In this paper, the Hausdorff dimension of the intersection of self-similar fractals
in Euclidean space R™ generated from an initial cube pattern with an (n —m)-dimensional
hyperplane V' in a fixed direction is discussed. The authors give a sufficient condition which
ensures that the Hausdorff dimensions of the slices of the fractal sets generated by “multi-
rules” take the value in Marstrand’s theorem, i.e., the dimension of the self-similar sets
minus one. For the self-similar fractals generated with initial cube pattern, this sufficient
condition also ensures that the projection measure py is absolutely continuous with respect
to the Lebesgue measure £™. When py < L™, the connection of the local dimension of
wy and the box dimension of slices is given.
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1 Introduction

1.1 Dimension of slices

The intersections of Borel sets in R with (n—m)-dimensional subspace in random directions
are studied in many publications. The following Marstrand’s theorem (see [12-13]) is well
known: Suppose that A C R™ is a Borel set with 0 < H*(A4) < co and m < s < n, then for
Yn.n—m-almost all (n — m)-dimensional subspace V' and H*-almost all = € A,

dimg[AN(V +2)]=s—m.

For a fixed V, let Ay = {a € VL : AN(V +a) # @}. Wen and Xi [19] studied the slices of
scaling self-similar set

E=JmE+b) (ri€(0,1)Vi)
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in R, and obtained that for a fixed (n — m)-dimensional subspace V, there are constants
c1 < ¢g < e3 such that for H™-almost all a € Ay,

dimg[EN (V4a)] =c1, dimg[EN(V +a)]=co, dimg[EN(V +a)] = cs.

The following examples are intersections of planar sets with lines in the fixed direction.

Example 1.1 Suppose that C' is the Cantor ternary set, then dimy CxC = }ggg (see Figure

1). Let Ly = {(z,y) : y = kx 4+ b} be a line of slope k and J, = {b e R: Ly, N (C x C) # o}.
According to Marstrand’s theorem, for H'-almost all k € R,

log4

g3 1 for H' ae. be Ji. (1.1)

dimH[LkJ, N (C X C)] =

However, (1.1) does not hold even for k = 1, since Hawkes, J. showed in [6] that for H' a.e.
te[-1,1],

log 2 log4

dimHCﬂ(C—i—t): 3log3 < 10g3_

CxC. The Sierpinski carpet. The right-angle Sierpinski gasket.

Figure 1 Example 1.1.

Example 1.2 Suppose that E is the Sierpinski carpet (see figure 1) with dimy F = %.
Let Ly = {(x,y) : y = kxz+ b} be a line of slope k and J, = {b € R: Ly, N E # &}. According

to Marstrand’s theorem, for H'-almost all k € R,

log 8
log 3

dimg BN Lyy, = —1 for H' ae. b e Ji. (1.2)
However, the equality (1.2) does not hold for k € Q, since Manning and Simon showed in [11]
that for all k € Q,

log 8

—1 for H' ae. be J.
log 3

dimyg E'N Lk,b <

Example 1.3 Suppose that A is the right-angle Sierpinski gasket (see Figure 1) with
dimg A = 282 Let Ly, = {(z,y) : y = kx + b} be a line of slope k and J, = {b € R :

log2”
Liy NA # @}, According to Marstrand’s theorem, for H!-almost all k € R,

log 3
log 2

dimyg AN Ly = —1 for H' ae. be J. (1.3)
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Again, the equality (1.3) does not hold for k& € Q. Recently, Baradny, Ferguson and Simon
proved in [1] that for all k € Q,

log 3
log 2

dimy AN Ly, < —1 for H' ae. b€ Jy.

Remark 1.1 When the slices of a fractal take the value in Marstrand’s theorem? The
above examples show us that this is not an easy question.

1.2 Slices of self-similar fractals
Suppose that p € N with p > 2, © ={0,1,(p — 1)}" and the self-similar set satisfies

E+vwv
E=J . (1.4)
vEQN p
Or, we can see that
E:{Z}%:viEQ foralli}. (1.5)
i=1

Let V be an (n — m)-dimensional subspace of R™ such that its orthogonal complement
V+ =span{ay, - ,a,} with a; € Q" for all 4. (1.6)
Without loss of generality, we may assume that
a; € Z" for all i and the inner product (e, ;) =0 for all i # j. (1.7)

Therefore, there are vectors 31, -+ , By—m € Z" such that (3;,3;) = 0 for all i # j. For x € R",
write

(z, @) = ((z,01), (z,a2), -, (2, am))-
Let a; = (agi),ag), I agf)) € Z™\{0}. Write
I SR
al?<0 al?>0
andsetA{inf{j:ay) <O}:®andA;":Oif{j:a§i) >0} =a.
Given L = 2 1 (T1[A7, A7) and t € {0,1,- -, (p— 1)} := ©, let My = (c},)ver be
defined by -
dr=#{veQ:pl+t—1'=(v,a)}. (1.8)

Then the Lyapunov exponent for symmetric independent random product {M;},ce is a con-
stant A such that

1Og HM7'1M7'2 B 'M‘Fk ”

lim =\ for pp-almost all 775 € O,
k—o0 k
where yi is the symmetric Bernoulli measure on ©> given by {z,---, 7= }".

Let A={ac VLt :EN(V +a)#2}.
We will prove the following result.
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Theorem 1.1 Suppose that E is a self-similar set satisfying (1.4), and V is an (n —m)-
dimensional subspace satisfying (1.6). Then for H™-almost all a € A,

dimp[E N (V + a)] = dimg [E N (V + a)] = @ < dimy E — m,

where X\ is the Lyapunov exponent for the symmetric independent random product of {M;}ieco
defined in (1.8).

Remark 1.2 The box dimension of the intersection of the Sierpinski carpet with lines of
rational slopes can be computed using the nature cover of the Sierpinski carpet directly, since
if the intersection of the square [0, 1] x [0,1] with a line is not empty, then the intersection of
the Sierpinski carpet with the same line is not empty (see Figure 2). However, this is not true
for general self-similar sets. Figure 2 shows that there exist lines that pass through the unit
square but do not meet any point of the self-similar set. Therefore, we can not use the nature
cover of the self-similar set directly, which complicates the computation of the box dimension
of the slices.

OO OO
OO OO S
/ L] ﬁ
=m BB O
OO OO i
CxC. The Sierpinski carpet.
Figure 2

1.3 The case of absolute continuous py

Let p be the natural measure of F, i.e., u = ;‘%(‘5) where d = dimy E and H¢ denotes the
d-dimensional Hausdorff measure. When FE is a self-similar set satisfying (1.4), u is the natural
self-similar measure supported on E. Let uy = po proj‘_,1 be the projection measure of u by
direction V', where projy (z) = (z, ). It is easy to see that sptu C A. The local dimension of

this self-similar measure is defined as follows:

dimiee py ({,U) = lim M

50 log 6 ’ (1.9)

where the existence of the limit on the right of the above equation is proved in [3, Theorem 2.12]
by Feng and Hu. They also showed that the local-dimension is almost everywhere constant.
Moreover, Young proved in [22] that this constant is the Hausdorff dimension of the measure,
i.e., for py almost all x,

dimyoe py (2) = dimpy py = inf{dimpg A : py(A) = 1}.

Let £™ denote the m-dimensional Lebesgue measure.
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Proposition 1.1 Suppose that E is a self-similar set satisfying (1.4) and V is an (n —m)-
dimensional subspace satisfying (1.6). If py < L™, then for py almost all a € A, we have

dimyec py (a) = dimg E — dimp[E N (V + a)).

Remark 1.3 By Proposition 1.1 and [3, Theorem 2.12], if V' is an (n — m)-dimensional
subspace satisfying (1.6) and puy < £™, then for py almost all a € A, we have

dimp[EN(V 4+ a)] = dimy E — dimjoc py (@) > dimyg E — m. (1.10)

Our second result will show that under some suitable conditions, the equality in (1.10) will
hold. First, we give the following s-star condition, which was introduced in [21] (see also [18]).

Definition 1.1 A set Q C {0,1,--- ,p— 1}™ (n > 2) is said to satisfy s-star condition if
there exists an integer s > 1, such that for all t € {0,1,---  p —1}™,

#{veQ: (v,a)=t modp}=s. (%)

Example 1.4 Suppose n =2, m =1 and p = 3. Let a« = (—3,4) and Q = {(0,0), (1, 1),
(2,2),(2,0),(0,1),(0,2)}. Note that

a-Q=1{0,1,2,-6,4,8}.

Hence € satisfies the 2-star condition (see Figure 3).

—3z+4y=0>

Rule ©

Figure 3 The intersection of the limit set generated by a rule satisfying the 2-star condition
with the line —3x + 4y = b for some b € [0, 1].

Theorem 1.2 Suppose that E is a self-similar set satisfying (1.4). If V satisfies uy < L™,
then for L™-almost all a € A,

dimp[EN(V +a)] = dimyg E — m. (1.11)

In addition, if the conditions in Theorem 1.1 hold and ) in (1.4) satisfies the s-star condition,
then py < L™.

Remark 1.4 Theorem 1.2 shows that the projection defined by projy () =

x,a) is di-
mension conserving (see [5, Definition 1.1]). Precisely, let § := dimg[E N (V + a)], then

0+ dimg{a € A: dimg[EN(V +a)] > 6} > dimy E.
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Namely,

dimpg{a € A : dimyg[EN(V +a)] >}
>dimy{a € A :dimg[EN(V +a)] =dimyg[EN(V +a)] > §}
Z dlInH Hny = dlmHE - 5

Remark 1.5 In fact, the converse of the first part of Theorem 1.2 is true. That is, in
case of self-similar sets satisfying (1.4), the slices take the typical value in Marstrand’s theorem
if and only if the projection measure is absolutely continuous with respect to the Lebesgue
measure. This result is proved by Feng [4] in a more general case recently. When we turn to the
Sierpinski carpet, which does not satisfy the s-star condition, Niu and Xi proved in [14] that
the projection of the self-similar measure on Sierpinski carpet onto a line with rational slope is
singular.

The s-star condition is easy to verify. However, the following example shows that it is not
a necessary condition to ensure the continuity of the projection measure.

Example 1.5 Consider a planar set intersect with a line, i.e., n = 2 and m = 1. Let
b= 67 o = (57 1)a VL = span{a} and 2 = {(0,0), (07 1)a (073)3 (074)3 (17 1)a (172)3 (174)3 (175)3
(2,2),(2,3),(3,0),(3,1)}. Then

{(v,a) v € Q}={0,1,3,4,6,7,9,10,12,13,15,16}
={0,1,3,4} mod 6,
which implies that € does not satisfy the s-star condition. We will prove in Section 6 that puy

is absolutely continuous with respect to the 1-dimensional Lebesgue measure £. Figure 4 is
the first two steps in generating the self-similar set satisfying (1.4).

Figure 4 The case that the s-star condition does not hold.

1.4 Fractals generated by rules
Let p € Nwith p > 2 and @ be the unit cube [0, 1] in R". We regard Q C {0,1,---, (p—1)}"
as a “rule” for defining a subset of Q.
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Definition 1.2 (see [2]) For a rule Q, we replace any cube S(Q) with #Q smaller cubes
U S(pHQ +v)), where S : x + ax +b (0 < a < 1) is a similitude.
veQN

The way that we construct a fractal by a sequence of rules 2123 - - - is as follows:

1. Start with @ and replace Q by # smaller cubes |J p~1(Q + v) of side length p~*.

vEQ

2. Inductively, for k& > 1, replace each small cube of side length p~" obtained in the k-th
step by #€ smaller cubes of side length p~(*+1) using the rule Q1.

The above procedure leads to the limit set—a fractal. The precise definition is showed as
follows.

Definition 1.3 For any rule sequence w = Q10203 -, denote by wlx the prefix of w of
length k, i.e., wlp = Q1 Qo---Qk. For any v € {0,1,---,(p — 1)}, let f, : x — mTf” be a
similitude on R™. For k > 1,

-Ew|;C = U fvlmvk( and E, m Ew|k7

v VR EW|g k>1

where foy, ., = fop © 0 fo,-

Remark 1.6 The set E,, is generated by E,,|, with respect to the rule 2; 11, that is

w|k+1 - U f’U w\k

VEQL 41

[k+1

Remark 1.7 If the rule sequence w is chosen to be a constant sequence, say Q€2 -- - then
the limit set E, is a self-similar set satisfying the open set condition. In this case, for the sake

of simplicity, we denote the sets E,, and E,,, by E and Ej respectively.

Ik

Example 1.6 Let Q = {0,2}? and w = Q- - -, then the limit set F,, is the self-similar set
C x C, where C is the Cantor ternary set (see Figure 5).

OO OO
T 7S:ce7p71 7S:ce7p72 - = H
1 [
Rule O O O O
OO OO

Figure 5 C x C.

Example 1.7 Let Q = {0,1,2}2\{(1,1)}. The Sierpinski carpet E C R? is generated by
only one rule Q (see Figure 6).

Example 1.8 Let Q = {0,2}%, Qo = {(0,1),(1,0),(2,2)} and w = QQQ--- . Figure 7
illustrates the first two steps in the construction of F,,.

1.5 Slices of fractals generated by multi-rules
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L 0 o
Step 1 Step 2
u R S u
Rule O] [] O]
Figure 6 The Sierpinski Carpet.
O ]
B o B B
Rule © Rule O Iiu_ﬂfe _QU

]

nll 5 5

Figure 7 The limit set generated by the rule sequence Q2Q0Q - - .

Further, we discuss the box dimension for the following fractal sets which are generated by
multi-rules. For any fixed s € [1,p" 1], let

Os:={Qc{0,1,--,p—1}": Q satisfies s-star condition}.
It is easy to see that #0O < co. Then Oy can be represented as follows:
0, = {Q(l)7 e ’Q(#O)}'
Consider the infinite product space (O2°, P) equipped with a probability measure P. For any

w:Qng---EOS‘X’,let

o0

v,

Fw:{xz =y e, forall z} 1.12

; p (1.12)

Example 1.9 Let a = (1,3), QM = {0,1,2}\{(0,0),(1,2),(2,0)} and Q) = {0,1,2}2\

{(0,2),(1,0),(2,2)}. It is easy to verify that both Q) and Q) satisfy the 2-star condition.
Suppose w = QMQRIQM ... The first two steps of E,, are showed in Figure 8.

For b € R™, let I, = {x € R" : (x,) = b} be an (n — m)-dimensional hyperplane, and
AF“, Z{bGRm:FwﬂHb#Q}.

Theorem 1.3 H™(Agr,) > 1 and for every b € R™,

1

dim ( U E mnz) = %5 _ qimpy F, —m.
logp

ZEL+Z™

Remark 1.8 The projection of the Sierpinski carpet E in any direction is an interval. This
good property ensures that if the intersection of the Ej with a line, say L, is not empty, then
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L]
L[]

Rule QM Rule Rule

(T Qm 0@
[

Rule Q®

Figure 8 Example 1.9.

the intersection of F with the line is also not empty. However, the limit set F' generated by rules
may not hold this good property. That is to say, even if L N Fy # &, we can not deduce that
LNF # @. In fact, for some line L and the limit set F', although L N Fy # &, the intersection
LN Fi41 may be empty (see Figure 9).

Rule

Figure 9 The intersection of the limit set £ generated by the rule Q with the line —2z + 3y = —22,

where Q = {(0, 1), (1,0), (1,1), (1,2), (2,1),(2,2), (2, 3), (3,2)}. '

Combining Theorem 1.1 and Theorem 1.3, we have the following corollary which tells us
that when the s-star condition holds, then the Hausdorff dimension of slices of self-similar sets
take the Mastrand’s value.

Corollary 1.1 Suppose that E is a self-similar set satisfying (1.4) and V is an (n —m)-
dimensional subspace satisfying (1.6). If Q in (1.4) satisfies the s-star condition, then A = log s
and for H™-almost all a € A,

_ logs

dimp[EN(V +a)] =dimyg[EN(V +a)] = ogp dimy E — m.

This paper is organized as follows. Section 2 gives some preliminary information such as
definitions and basic lemmas. The box dimension of slices is discussed in Section 3. The
equivalence of the box dimension and the Hausdorff dimension of the slices and Theorem 1.1
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are proved in Section 4. In Section 5, we discuss slices of the fractal generated by multi-rules

satisfying the s-star condition, and prove Theorem 1.3. In the last section, we focus on the case

that the projection measure is absolutely continuous with respect to the Lebesgue measure, and

prove Theorem 1.2 and other remaining results.

2 Preliminaries

Fix a V such that V+ = span{ai,-- -, q,,} satisfying (1.7). Let o

Z™\{0}. Write

- _ (4) + _ (1)
A7 = E a;’, Al = E a;’,
al?<0 al?>0

and set A7 = 0if {j: a0\’ <0} =@ and A} = 0if {j : a}” > 0} = &. White

J=][A7. 4] (crR™).
i=1
For x = (z1, -+ ,x,) € R, denote ||z||1 = > |z;| and write
i=1
(:Ev a) = ((:Ev al)v (ZIJ, aQ)v H) (ZZ?, am))'

For b € R™, let II, be an (n — m)-dimensional hyperplane in R™ defined by

I, ={z e R": (z,) = b}.
An easy observation shows that

[0,1]" NI, # @ if and only if b € J.

For E= | E;”, we denote the slices

veEQ
By = EN1l.
Given v € {0,1,---,(p—1)}"™, let
Tr+v
fo(x) = :
p

We define T, : R™ — R™ by
Ty(z) = pxr — (v, @),

and S,(r) = T, (x) = #. Note that

fo (@) =g, ).

Using the above formula, we can check that for any set A C R™,

fm---vk(A) NI, = fm---vk (A ml_ITq,k,.,vl(z))a

'7a7(’bi))€
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where f’Ul""Uk = fm 0--0 ka and TUk"'Ul = TUk ©---0 Tv1'
When v € {0,1,---,(p—1)}" and b = (b1, -+ ,byn) € J, we have

(v,00) € [(p— DAT, (p — 1)A]]

and b; € [A;, A;]. Hence for any b € J,

bz s Gy —
(Su0)s = 00D ¢ a4y
p
which implies
Sy(J) C J. (2.3)
Noting that T}, = S, !, we obtain that
T,(J%) C J-. (2.4)
For any b € R™, let
Ty=JNB+Z™) (CJ). (2.5)

Then I’y =Ty if b=10' ( mod 1). For any b € R™, we have

m

[TA; — A7) < #1y < TJ(AF — 47 +1).
i=1

i=1
Since (v, @) € Z™, we obtain the following lemma.
Lemma 2.1 If z € T, and T,,(2) € J, then T, (z) € Tpp.
For b € R, the integer matrix M (b) = (cij)ier, .jer,, is defined by
iy = #{v e Q:T,(i) = j}, (2.6)
where ¢; j is the number of reduced copies of Ej contained in Fj; as in (2.11). Let

D={b=(by, - ,by) €ER™:p*b; ¢ Z for all integers k > 0 and i < m},

and L =Z"N( [][A;,A])). Then for any b € JN D, there exists | = (I, ,1,,) € L so that

—

1=

be [l +1) =1L
i=1
It is easy to see that
H™ (DY) =0, (2.7)
and pD C D, pD¢ C D°.
For b € D, we have
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and we can list the elements of 'y, i.e.,
Ty ={Ts(D)} e, with Ty(1) € 1.
Now M (b) = (cri)irer is a #L x #L integer matrix for any b € D, where
ar=#{veQ :T,[Tp)) =Tu(l")}. (2.8)
Since
Mb)=M®O) ifb=0b (mod 1) withb,b" €D, (2.9)

without loss of generality, we only focus on M (b) for b € [0, 1]™.
For all t = (t1,--- ,tm) € {0,1,---,(p— 1)}, let

c(t):ﬁ(z,ti—i_l).

p p

Recall that I; = [[(I;,0; +1) =1+ (0,1)™.
i=1

Lemma 2.2 Givent € {0,1,---  (p—1)}™, for alll € L,
M (b) is constant on b € DN c(t).
Further, for b € D Ne(t), we have My := M (b) = (¢} ;/ )irer, where
qr=#{veQ:pl+t—-1'=(v,0)}. (2.10)
Proof In fact, by (2.8), we have
Gp=#{veQ:T,(I+c(t) =Ir)
- #{v €0: Tv(l+ ]é + (0’;)m)

:#{veQ:Tv(l—l—%):l/}
=#{veQ:pl+t-1'=(v,a)}.

=1+ (0, 1)m}

By Lemma 2.2, we get an equivalent definition of the integer matrix M; = (Czl/)l,l’eL as
follows:
cp=#{veQ:T,(If) =1},
where If :=1+c(t) = 1_1:11 (li 4+ 2,1+ L5,
We will use the nested structure of the slices { Ep }5c .7, which is characterized in the following
lemma.

Lemma 2.3 For any b e J,

ETH b + v
By = folBr,) = 7(19) : (2.11)
e veQ

Further, for k > 1,

Ly, = U .fvl---vk (ETvk,.,,ul(b)) = U f'Ul""Uk (ETvk,.,vl(b))- (212)
vy v €QF Ty, 0y (b)EFpkb
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Proof Notice that f;'(Il;) = Iz, ;). Hence for any b € J, we have

By=EB0T, = [ £(B)] 0L,

veEQ
= Jlr@ nm] = fu(En £, (1)
VEQ vEQ
= J fENn,w) = | fo(Erw)
VEQ vEQ

By induction, we have

E, = U forwo(EO Iy, 0)-

vy v €EQF

Further, if T3, ...,, (b) € J¢, then [0, 1]" N IIz

Vv

by = @ by (2.1), and thus
Enlly, . m) =9,

which implies Ej, = U Jor- o, (ETvk---vl(b))'
Ty vq (D)ET iy,

Remark 2.1 Some Er, () in (2.11) may be empty.
When is the slice Ej non-empty?
Lemma 2.4 For any b € J,

Ey#@ < Jovwg-vp-- €QF) st Typoony (b) €T for all k> 1.
Proof The sufficiency. By Lemma 2.3, the non-empty set

By = fo(ENTIg,@).
veEQ

Then there exists v1 € 2 such that ENIly, ) # @. Since E C [0, 1]", we have [0, 1]" NIz, ) #
@, which implies Ty, (b) € J due to (2.1).
Inductively, if we get v, - - - v, € QF such that EN HTuk...ul(b) # &, then the non-empty set

Enlly, ., o = U fo(EN I, ., )
vEQ

Then there exists vpy1 € Q2 such that E N I1 # . In the same way, we have
T

Vk41Vk VL (b)
Ty rvp--vr () € J. Then we can obtain an infinite word in Q°°.
The necessity. Suppose vivg -« v« - € Q% 8.t. Ty (b) € J for all k& > 1. Then we
claim that
Y Y eE=-EnD,

=1

o0 o0
Certainly, > 2+ € E, we only need to show that > welly, e,
i=1

i=1 =

b:(iw,a). (2.13)
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Notice that for any k,

b v; pb — (v, @) b U4
o= (X5l = === - (X 5,

=[5m0 (5],
1T (D)
==L

> max{Af, |A7[}
i=1

IN

—0 ask — oo.

pk

Therefore we obtain (2.13).

3 Box Dimension of Slices

For b € D, let Ni(b) be the number of p-adic cubes of side length p~* which intersect

J [F NIL,]. Denote
zely

Vi(0) = > #{vr- o € Q8 o0 (B) NI # 2},

z€ly
Ur(b) = > #{vr---v0p € Q¢ fy,0,((0,1]") NI, # 2}
zeTy
It is easy to see that
Vie(b) < Ni(b). (3.1)
We also have
Up(b) = Y #{vr -0, € QF i Ty (2) € T}, (3.2)

zely
since

f’Ul""Uk([O7 1]n) N HZ 7é g [Oa 1]71 N HTvkmm (z) 7é %)
= Ty (2) €J

due to (2.1)-(2.2).
Moreover, we have the following auxiliary lemma about Uj(b) which will be used in esti-
mating the upper bound of the box dimension of the slices.

Lemma 3.1

Ue)=>_ > 1s,., (),

z€lL vy v, €QF
1 m_ (F\E

where ¢ = T[] (A] — A7) is a constant.
i=1



Dimension of Slices Through Fractals with Initial Cubic Pattern 1159

Proof By (3.2), we have

)= #{vi-ve € Q¥ Ty, (2) € T}

zely

= Z H{vy v € Q¥ z2€ 8y, 0, ()}

zely

ZZ Z 1s,, . (1)(2)

z€ly vy v, EQF

and

1 _— 1
Em(J)/JU'“(b)dﬁ - Lm(J) 2 /Z Supoeay (1) ()AL

vl ’UkGQk zely

1 {/
== 1g, .. (J) d,C
Lm(J) . vkem JnD z; R
13 D SRS T
J\D Z;b ' k )

:ml(J) > {(ﬁ(Aj—Ai‘))L:T(kJ)+O}

Lemma 3.2 Ni(b) < 3"Uy(b).
Proof Given a p-adic cube of side length p—*

BNENIL # 2, ie.,

intersecting F NII,, we denote it by B, then

Ba( U fouw(®)NIL£o.

Ul"'vker
Then for some v - - - v3, € QF,

BO furn (B) (I £ 0
— B forou(B) # @ and fo,.0 (B) ML # 2
= BN fy,..0,([0,1]") # @ and fo,.., ([0, 1]") N 1L, # @,
which implies Ny (b) < 3" U(b).
For a matrix M = (d;;/)irer, denote its norm || M|, = Z |dy.1 |-
The following lemma shows us how to compute Uy (b). e

Lemma 3.3 For any integers k > 1, we have

Uk(b) = M (0)M(pb) - - M(p"~*0)|1.

Proof First, by (3.2), we only need to show that

IM©B)M (pb) - M(pF o)1 = Y #{vr-- v € Ty, (2) € T}

zely
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In fact, we obtain that

1M (b) M (pb) - - M (p*~ 1) |

> (ﬁ #{on € Q: T, (in) = ins1})

(il,---,ik)GFbX“'XFPk,”} h=1

= > #{vy - vp € QF T, (i) = iy ¥ A}

(h,“-ﬂk)EFbX'HXFpkflb

=Y #{vrvp € QF Ty, (2) € Ty, T, (2) € Ty, -+, T (2) € T}
zely

= Z #{v1vp € QF 1 Ty (2) € Ty},

zely

where the last equality follows from (2.4).
Lemma 3.4 For L™ almost all b € J,

lim M_)\<lg(#ﬂ)

k— o0

Proof By the definition of the set D, we know that D mod 1 is a set of full measure
contained in (R”/(mod 1), £™) which is an ergodic dynamic system under the transformation
x +— px. Moreover,

log Ug11(b) =1log || M (b)M (pb) - - - M (p"*'="b) s
<log(|| M (b)M (pb) - - - M (p"~ )|+ ||M (b )M (pb) - - - M (P~ ") 1)
<log||M(b)M (pb) - -- M (p"~"b)||x
+ log || M (p"b) M (p"+1b) - - M (p*H0) ||y
=log Uy (b) + log U (p*b).

According to the sub-additive ergodic theorem (see [17, Theorem 10.1]), there exists a constant
A such that

A= lim log Ux(b) Us(b)
k—o00 k

hm %/log Ui (b)dL™ (b)

k—o00

< lim —1og/Uk(b)d£m(b) by the convexity of log(x)

k—oo k

for £™ almost all b € mod 1. Therefore for L™ almost all b € J,

A< lim 2 log / Ui (b)AL™ (b)
k— o0 /€

=z 7 los {,le(J) [,Uk(b)dﬁm(b)}

m

= lim log [( 1(A+ AT ))(ZEQ) ] (by Lemma 3.1)

k—o00 k

= log (Z&Q)

1=
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Let K = {(z,a) : x € E}. We claim that
H™(A) >0 if and only if H™(K) > 0,

where A = {a € V1 : EN(V +a) # @}. In fact, for a € V-,

then f(A) = K, where

is a bi-Lipschitz mapping from V+ to R™ which ensures that claim (3.3).

Without loss of generality, we assume that
H™(K) > 0.
We also assume that the Lyapunov exponent

A>0.

Otherwise, we assume that A = 0, then by the definition of the box dimension, we have

_ log N (b
dimB( U Ez) :hmsuka()
oh, koo Klogp

log 3" Uy (b
< lim sup 1283 Ur(®)
k—oo  klogp
— limsup 285+

k—oo klogp

We notice that for H™-almost all b € R™,

1
lim 208k Uy (b) = lim

(by Lemma 3.2)

log || M (b)M (pb) - -- M(p**b) |1 _

k—o00 k k—o00 k

Therefore, for H™-almost all b € R™,

ogdimH( U Ez)zﬁB( U E) <.

zely zely
Then Theorem 1.1 follows in this case.
Lemma 3.5 If the Lyapunov exponent A > 0, then
we (o™ (Jw-5)) =0
jeL

Furthermore, for H™-almost all b € (0,1)™,

UEb+j: U Ez?’ég'

jeL zely

1161
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Proof Fix ¢ € (0,\). Then by (3.2) and Lemma 3.3, for H™-almost all b € (0,1)™, there
exists k(b) such that

)= > #{vr vk €98 Ty (2) €T} 2 (A —)F for any k > k(D). (3.5)
zely

On the other hand, it follows from Lemma 2.4 that

UEZ:Q(:)Z#{M v € Q8T (2) €T} =0 for some k > 1,
z€ly zely

< Ui(b) =0 for some k > 1,
which contradicts (3.5).

For b € DN |0,1]™, we suppose

t !
b=—+—+ S+ oo
P Pk pkH
where t; € {0,1,---,(p— 1)} for all i. Let
t t
(phpy = Bty Ber2
p?
Assume that
Ty (b +14) = {p*b} +j withi,j € L. (3.6)
Then
t th a
1 . —i .
Pt 5 1)+ 0= o e = (00 4
i=1
i.e.,

k((h tk N e m
p((——f—---—i— )—1—2)— :Zp (v, @) € Z™.

P pk
Given b€ DN [0,1]™, for 4,5 € L, let
M; (b, k) = #{v1 - vp : Ty, (b+ 1) = {pFb} + 4},
Nij(bk) =#{v1- v : Ty, (b+10) = {pkb} +jand fy, .0, (F) Ny # S}
Then for all b€ DN [0, 1]™
U(b) = Y M (b, k) = |[M(b)M(pb)--- M(p"~'b)|1,
i,j€L
N (b) > Vi(b) = Y N; (b, k).
i,jeL

For notational convenience, we also write
> Nij(bk) = N;(bk) and Y M; (b k) = M;(b, k).
€L €L

Let 1 be the row vector in R# with its every coordinate 1.

For the union |J FE, of slices, we have the following result.
zely
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Proposition 3.1 For H™-almost all b € (0,1)™, we have

dimB( U E) A loe# g B m,

ooy logp = logp

Proof It follows from Lemma 3.5 that for almost all b € [0, 1]™,
be U (K - ])7
jeL
i.e.,
Hm([o, 1™ N ( U —j))) —1. (3.7)
jEL
By (3.7), we can select a subset Z C L such that
Hm([o, 1™ N ( ﬂ(K—j))) >0
jEE

and

Hm([o,l]mﬂ(ﬂ(K—j)) ﬂ(K—i)) =0 foranyidE.

JEE

Notice that

{b:bgéK—i}zUBk,i,

k>1

where By, ; = {b: > M, (b, k) = 0} satisfying
jEL

By;C -+ CByiCBgt1,,C -+
Then there exists an integer ky large enough so that
Py = Hm([o, 1™ N ( N - j)) N ( N Bkg,i)) > 0. (3.8)
jEE i¢=
Note that the following self-mapping of [0, 1]™,
b— {pb} forbe (0,1)™

is ergodic. Applying ergodic theorem to (3.8), we obtain that for H"-almost all b € (0,1)™ND,
there is a sequence

n1(b) < na(d) < -+ < ng(b) <ngp1(b) < ---
satisfying
#{i: ni(b) <k}

1. _— =
ey k Phos

where {n;(b)}; = {k {pFv} € ( N (K —j)) N ( N Bko_,i)}.

jeE ig=
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Taking a subsequence m;(b) = naik, (b), then we have for every k = my,

{p*b} € K —j for any j € E,
{p*b} € By, ; foranyi¢ =,

and
mH_l(b) — ml(b) Z 2]€Q.

We also have
#imi) <K _ pig

i 2 " 2%k
which implies
lim mi+1(b) —m;(b) —0.
a=oc miy1(D)

As we know, given j € Z, if Ty, ..., (b + 5') = {p*b} + j, then
ENTr, ., +5) = EN0 ey, 7 9
due to {p*b} + j € K, and thus
Jorove (B) Npq 0 # 2.
As a result, we have
M;r ;(b,mg(b)) = Ny ;(b,mg(b)) for any j € Eand j' € L,
which implies
M;(b,mg(b)) = N;(b,mg(b)) for any j € E.
Now, we obtain that

Unyty () = 3 My (b, mg(8) = 3 Ny (b, my (5)).

jeL je=
On the other hand, we obtain that

U

Mq+1

(b) = [[LM () --- M (p™ e+ @)y
= [[(XM(b)--- M(p™ O~ o) (M (p™b) - M (p™ o+ = 10)) |y
= [[(M(b,mg (b)), - - Myr.(b,mg(0))) - Tyl

where T, = M(pmq(b)b) . M(pmqﬂ(b)—lb)'
We note that there is a constant C' > 0 such that for every k,

1M () < C,
which lmphes
T Nl < Cmat1®)=malb),

Since {p*b} € By, and |mg41(b) — my(b)| > ko, we have the following claim.

Y. Xiong

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Claim 3.1 Every entry of T} in the row respect to ¢ ¢ Z is zero.

Therefore, by (3.10), (3.12) and (3.14), we have

Umq+1(b) (b) < Cmq+1(b)_mQ(b) Z Mj (b7 mq(b))

jEE
= ¢t O =maO) N NG (b, mg (1)), (3.15)

JEE

Recall that for H™-almost all b € (0,1)™
logU,, b) logU,, b
8 Umqia0)( ), 8 Uy () (%) — A asq— oo, (3.16)
mg1(b) (D)
where lim %_(Z;i(b) =0.
q—r 00 Mit1

It follows from (3.11) and (3.15)—(3.16) that

log 3 N, (b,mq (b))

JEE

mg(b)

— A as q— oo.

Noticing that

log > N;(b,mq(D))

je= - log N, (v (b) - log 3" Up,, (1) (b)
mq(b) T me(d) T mg(d) 7
we have
IOg N'mq (b) (b)

lim —————~- =\ 1
v mg(b) A (8:17)

Since lim %_Zni(b) =0, it follows from (3.17) that

g—o00 mit1(b)

lim log N (b)

k—o00 k =X

That means for H™-almost all b € (0,1)™,

. . log Np(b) A
dlm( U Ez) _klggo klogp  logp

zely

According to Lemma 3.4,

dimB( U Ez) _ A < log 7142 —m =dimy E —m.
oty logp logp

4 Sections in Torus

Let T™ = R™/Z™ be the n-dimensional torus and P : R™ — T" the map defined by

P(xlv"' ,ZEn) = (ylv"' 7y'n,) eTn’
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where y; = {a;} the fractional part of x; for every i. For y,y’ € T", the metric d on T" is
defined as follows:

Let 7: T" — T" be the map (y) = py.

Suppose E = |J ££U. Set
e P

A= P( U £.(0, 1]71)) cT"

veN
Suppose K = {y € T" : 7*(y) € A,Vk > 0}, then
K = P(E).
Then K is m-invariant. For b € R™, write
Ky=Kn{yeT": (y,a) =b (mod 1)}.

Lemma 4.1 For any b € R™, we have

P( U E) — K,

zely

Proof Suppose z € |J E.. We have (z,a) = b (mod 1) since a; € Z™ for every i. Let
zely
y=P(z). Theny € K and (y,a) = b (mod 1). Hence P( |J E.) C K.
zely
On the other hand, suppose y € K;, with (y,«) = b (mod 1). Since P(E) = K, there exists

x € E such that P(z) = y. Then z = (z,) € b+ Z™. Note that x € E C [0,1]", we have
I, N[0, 1] # @, which implies z € J due to (2.1), i.e., z € I, = JN(b+Z™). Hence y = P(x),

where z € ENIL; = E, with z € I',. Therefore K, ¢ P( |J E.).
zely

Notice that E C [0,1]™ and there exists a constant 6 > 0 such that
d(P(z), P(2')) = |z — |
whenever |z — 2’| < d. Therefore, we have the following result.
Lemma 4.2 For any b € R™, we have
dim( U E) — dim K,
zeTy
where dim stands for any one of dimg, dimpg.

Now, we will show that the Hausdorff dimension of the slice equals its box dimension almost
everywhere. During the proof, we will use the following result provided by Ledrappier (see [8,
Proposition 2.6]).

Lemma 4.3 (Ledrappier) Let T, denote the endomorphism T,z = px (mod 1) of the (n —
m)-dimensional torus T, and let S be a continuous transformation of a metric space Y .
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Assume that A C T"™! X Y is compact and invariant under the map T, x S, and that v is an
S-invariant probability measure on Y. Then for v-a.e. y, we have

dimg[r ! (y)] = dimp 7~ (y)],

where w: A — Y is the projection onto the second coordinate.

Remark 4.1 This lemma implies for v-a.e. y,

dimp[r~ (y)] = dimp[r~" (y)] = dimp[r~" (y)].

Proof of Theorem 1.1 Tt follows from the result of [19] that there are constants ¢; <
ca < c3 such that for H™-almost all b with E}, # &,

dimpg Ep = c1, dimpF, =c2, dimpFE, = c3.

By Proposition 3.1, we only need to show that for H™-almost all b € [0, 1]™,

dimH( U Eb) :ﬁB( U Eb). (4.1)

zel'y zel'y

Let T}, denote the endomorphism 7,z = px (mod 1) of the (n—m)-dimensional torus T" ™,
S(z) = px (mod 1) the map on m-dimensional torus T™, and ¢ : T" — T™ the map

g(x) = ((x, 1), (x, Bnem), (x, 1), -+, (T, ap))  (mod 1).

Then 7 =T, x S. Both K and ¢g(K) are T-invariant, i.e., K = 7(K) and

since goT =T og.
Since R™ = span{f1, -, Bn—m, @1, - ,Qm}, we obtain that g is a local bi-Lipschitz map
on the compact set T", which implies

dim ¢g(K3) = dim Ky, (4.2)

where dim stands any one of dimy, dimp.
Now, let Y = T™ = [0,1]™/Z™ equipped with Lebesgue measure v on (0,1)™. Since

7o (mod 1)] = g(K),
then by the previous lemma, for r-almost all b € T,
dimpy g(Kp) = dimpg(Kp).
Therefore, it follows from (4.2) that for H™-almost all b € [0, 1]™,
dimpy Ky = dimp K.

By Lemma 4.2, we obtain (4.1).
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5 Sections of Fractal Generated by Multi-rules

In this section, we will prove Theorem 1.3.
Fix a sequence {€2;};>1 satisfying s-star condition. We will discuss the slices of following
sets

oo

Fk:{Z%:vieQiforauizk},
— D
i=k
Then F = F! and
FEl 4y
Py B e o
veEQ p e,

Denote Fk,b =FFn 1I,.
Given integers k' > k > 1, let

Ok = {Vkvky1 g1 v; €Q; forall k <i <k —1},

and Oy oo = {VkVk11 -1 v; € Q; for all i > k}.
The following two lemmas are similar to Lemmas 2.3-2.4. The first one is again the nested
structure of the slices {Fyp }pe .

Lemma 5.1 Foranybe J and k > 1,

Froir,m to

Frp = U Jo(Fag1,m,0)) = U (5.2)
vEQ vEQy p
Further, for any k' > k,
Fov= | ~Fvre) = U fo(Fyr 1y (b)) (5.3)
vEO, 1/ VEO k!
Tv(b)erpk,ik(b)
The second one tells us when the slice F},; is not empty.
Lemma 5.2 For any b € J,
Fip #9 <= I 0pUpy1 - € Opoos 8.t Ty yoon (D) € T for all k' > K.
We record the number of copies with a non-negative integer matrix.
Given b € R™ and k > 1, the integer matrix My, (b) = (cf;)ier, jer,, is defined by
of; = #{v e Y Tu(i) =j}. (5.4)

Then Mj,(b) is a #I'y, x #I',, non-negative integer matrix.
Let 1, = (1,---,1) be a vector in R#I'* with every coordinate 1.

Lemma 5.3 For any b € R™, every column sum of the matriz My (b) equals to s, i.e.,

1ka(b) = Slpb. (5.5)
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Proof We need to show that for every j € I'yp,

E ko _
ci,j —_— S.

iery,
Let
j=pb+q withqeZ™.
By (5.4), we have

Yo=Y #{ve 1) =j)

ier, ier,
=#{veQy:Tzely, st. Ty(z) =pb+q}.

Suppose that z = b+ ¢’ with ¢’ € Z™. Then

To(z) =pb+q = pb+q)— (v,a) =pb+gq
= (v,a) = —¢ (mod p).

Hence,
Z di=#{veQ Iz ey, st. Ty(z) =pb+q}
iel’y
< #{v e : (v,0) = —q (mod p)} = 5.
Conversely, for any v € Q) with (v, a) = —¢ (mod p), we have
Su(i) = Sulpb +q) = b L0 ©:@) oy zm

By (2.3), we know that S, (j) C S,(J) C J. That means
Sp(G) € (b+Z™)NJ =T,
i.e., there exists z € Ty, such that T,(z) = j. Therefore,
s =#{v e : (v,a) = —¢ (mod p)}

<H#{veQp:FzeTy, st. Ty(z)=j} = Z cﬁj.
iel’y

This completes the proof.

Given k> 1 and ¢t > 1, we denote

Nit(b) = Z #{vk Vkgt—1 € Ottt [y, ((0,1]") NIL # o}

zely

We also have

Nk7t(b) = Z #{Uk cUkgt—1 € ®k7k+t : Tvk+t71...vk (Z) S J},
zely

since
.ka"'vk+t—1 ([07 1]n) N HZ 7é G <~ [Oa 1]71 N HTvk+t71.,.uk(Z) 7é %)
— Tvk+t—1"'vk (Z) € J

due to (2.2) and (2.1).
The following proposition shows us how to compute Ny, .(b).

1169
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Lemma 5.4 For any integers k,t > 1, we have
Niet(b) = [[16Mp () My41 () - - - Mige—1. (0" 10) |1 (5.8)

Proof First, by (5.7), for any k > 0, we obtain that
Niea(b) = > #{vk - Vkgr-1 € Opyr + Top sy (2) € T} (5.9)
zely

Now we will show that

([ 1Mo (b) Mi41(pb) - - - Miye—1(p'~0)| 11

= Z #{’U}.@ CUg4t—1 € Gk,k-i-t : T'Uk+t—1”"Uk (Z) € F;Dtb}'
zely

We obtain that

||1ka (b)Mk+1(pb) e 'Mk-‘rt—l(pt_lb)”l
k+t—1

- Z ( H #{vp, € Qp, : T, (in) = ih+1})

(ilm“';ik+t)erb><"'><rptb h=k

= Z #{Uk o Vp4t—1 € Gk,k+t : th (ih) = ih+1 \v’h}
(ks ikt o) €Dy X XT ey

- Z #{Uk T Uktt-1 € ®k>k+t : T”k (Z) € F:va T vTvk+t—1---vk (Z) € F:Dtb}
zely

- Z #{Uk T Uk4t-1 € ®k>k+t : Tvk+t—1"'vk (Z) € Fptb}v
zely

where the last equality follows from (2.4).
Proposition 5.1 Every column sum of My(b)Mj.11(pb) -+ Myr¢—1(pt~1b) is st. Further,
Nk)t(b) = (#Fptb)st.
Proof It follows from Lemma 5.3 that
(15 My, (b)) M1 (pb) - - - M1 (p"~'0) = (1 My (pb)) - - - M1 (7'0)
== st
By Lemma 5.4, we have
Nit(b) = 8" 1pep]l1 = (#pep)s".

Corollary 5.1 For any b € R™ and any integer k > 1, we have

U Fk,z#g'

zely
Proof Suppose on the contrary that |J Fy . = @. Then by Lemma 5.2, there exists an

zely
integer ¢ such that

Topsrrv(2) ¢ J forall z€ 'y and any vy - - Vpyi—1 € Ok pys-
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It follows from (5.7) that Ny .(b) = 0. However, by Proposition 5.1, Ny ;(b) = (#L'ptp)s" > 0. It
is a contradiction.

Let

Vit (b) = Z #{0p Vpt—1 € Ok kst ¢ fopvprs 1 (FFT) NI, # o}
zely

Corollary 5.2 For any b € R™ and integers k,t > 1,
Vk_’t(b) Z St.

Proof The last corollary implies that there exists z € ', such that F*¥ N1I, # @. In the
same way, there exists z* € I',¢, such that FFtOIIL. # @.
By Lemma 5.1, we obtain that

U rrnm= U fowoppes (FFENT, (o)

z€ly 2€0 Vg Vp gt —1€Ok kit

= U U U ka"'vk+t71(Fk+t mHz/).

2/ €Ly, z€l% Tvk+t71...vk(z):z’

Then
Fonevnrey(FFTEATLY) = fopon (FFT NIL £ @
for any Ty, ., ,...0;(2) = 2* with z € I'y. Denote
6t = #{vk Vkrt—1 € Optort © fopevpre o (FFTNIL.) # @ with
Loy (2) = 27 for some z € I'y }.

Hence Vi +(b) > d;.
For the matrix My,(b) M1 (pb) -+ Myi¢—1(p'~'b), when we consider its column sum with
respect to z*, by Proposition 5.1 we have §; > s’, which implies Vj +(b) > s.

By the result in [20], this fractal set F* have dimension l"lgoim = }"ﬁ +m.
5P ogp

Consider the union |J [F*¥ N1I.] of slices. We have the following proposition.
zely

Proposition 5.2 For all b € R™ and integer k > 1,

]
dimB( U Fk) = 8% _ Qimy F* —m.
zely ) 1ng

Proof Let Uy .(b) be the number of p-adic cubes of side length p~—* which intersect (J [F*N
zely
I1.]. By the definition of the box dimension, we have

dimB( U [Fk ﬂﬂz]) = lim sup w,
Lol t—o00 ogp
: . 1og U 4(b)
k _ )

zely

‘We notice that

Ur,e(b) >V, (b) > s". (5.10)
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On the other hand, it suffices to verify

m

Ura(b) < 3" Nia(b) < 3" (TJ(AF = A7 +1))s" (5.11)
i=1
In fact, by (5.10)—(5.11), we have

log Uy, +(b 1
dimB( U [Fkﬂl_[z]) = lim —2 ki) _ 085
pard t—oo  tlogp log p
zely

To verify (5.11), given a p-adic cube of side length p~ 1) intersecting F* N1II,, we denote
it by B, then BN FFNIIL, # @, i.e.,

BN ( U fv,c...vk“fl(F’““)) NI, # 2.
Vi Vgt —1 €Ok kot
Then for some vy, - - Vjt—1 € O f+t,
BN fopovpre (P NIL #£ 2

= BN fopvpre [F*T) # @ and fopn,, (P NIL £ 2

= BN fov 1 ([0,1]") # @ and fo, ..o, ([0,1]") N1I, # @,
which implies

Ukt (b) < 3" Ni+(b).
Hence (5.11) holds.
Let

Ap={be J: FNIl, # o}.

Suppose ¥ = Z™ N [][A;, A]) with #¥ = N. For any i = (i1, -+ ,im,) in ¥, we denote
t=1

m
H Ty 14 + 1
t=1

Then H™(J) = > H™(I;).
iew
Proposition 5.3 H™(Ap) > 1
Proof Then H™(Ap) = Z H™(LNAR).
By Corollary 1, we have IEIJ:P F, = UF Fy . # @ for any b € J. That means
zel'y zely

N=H"(J <Z Z H™(I; N Ap)

icw peZ™
Li+pcC[0,1]™

<> NH™INAf)
iew
=N> H™ILiNAr)
iew
= NH™(Ap),
which implies H™(Ap) > 1.

Proof of Theorem 1.3 Theorem 1.3 follows from Propositions 5.2-5.3.
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6 The Case of Continuous Projection Measure

6.1 Proof of Proposition 1.1

6.1.1 The local dimension of uy
Suppose that E is the attractor of the IFS {f,},eq. Write ¥ : QN — E for the natural

projection

U(w) := lm fu,...w, (0)

n—r oo

and the natural measure i on E can be also defined as the push forward measure of the Bernoulli

measure on QY given by {ﬁ, - ﬁ}N. Recall that py = p o projy,* satisfying
1
=) — St 6.1
/’LV ,UGZQ #Q /,LV o v ( )

Let By C A be the set of all ‘bad’” points in A that the number of appearance of digits 1
and (p — 1) in the p-adic expansion is finite, i.e.,
By ={x= (a1, ,2m) € A: I Ny, s.t. 2NNVt e fo o (p— 23N,
where for i = 1,--- ,m, x; = :z:z(-l)xl@) .-+ is the p-adic expansion. Roughly speaking, ‘bad’
points are located near the boundary of squares. It is easy to see that L™(A\By) = 0.

Proof of Proposition 1.1 For any © = (x1, -+ ,2m) € By, supposet that the p-adic

expansion is 7, = V@ ..
pansion is x; = x; 'x;

Dj(ZE), i.e.,

-. Then, denote the p-adic square of level j that contains x by

ﬁ ix(-l) J x(-l) 1
Oi@) =TT (X = Y5 + ).
== PP P’
Then by the definition of By, for j > Ny, we have
Ojt1(2) € Bla,p™?) € Ojoi ().

Hence

pv (Bj41(2)) < pv (B(z, p~7)) < pv (01 ().

Since py = po proj‘_,l, then

pv(O;(x)) = pfy € E: projy (y) € Uj;(x)}

- # #{vne vy €V fu, ((0,1") O projiy (O;(2)) # 2}
= ﬁle(ﬁC)M(px) e ]\4(]91‘—1%)%7 62)

where e; = (0,---,0,1,0,---,0)T with the ¢-th coordinate 1 and ¢ is dependent on z.
According to the equation (6.2), we have for all x € By,

. —J
log #Q o(j) < log Nj(z) | logpv(B(z,p™7)) < log #2 o).
logp log p? logp=7 logp

(6.3)
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Similarly with Lemma 3.3, for « € sptuy,

log[1, M (x) M c M(pi—1
dimg[EN (V +2)] = lim og[L, M ()M (p) - - M(p''w)e,]
J—ro0 logpj

According to (6.3)—(6.4), letting j — 0o, we obtain
dimy FE = dimg[E N (V + 2)] + dimyec py (2).

6.2 Proof of Theorem 1.2

Recall that £ = | E;“, and py is a self-similar measure satisfying
vEQN

1 _
w=2@uvo5ﬁ-

vEQ
Lemma 6.1 If uy < L™, then for L™ almost all x € sptuy N A, dimee py () = m.

Proof Notice that uy is a self-similar measure and py is absolutely continuous with respect
to the Lebesgue measure. By [16, Proposition 3.1], which tells us that a self-similar measure is
either equivalent to the Lebesgue or singular, we have py ~ L£™.

Since for all z € sptuy, py (B(x,r)) > 0 for sufficiently small » (if py (B(x,r)) = 0, then
wy ((sptpy )€U B(z,r)) = 0, which contradicts the definition of the support of a measure), the
local dimension of py is

log py (B(z, 1)) lim log L™(B(x,7))

. — 1' - @ =~ "7 =
dimioe pv (2) ey log r 50 logr

According to Proposition 1.1 and Lemma 6.1, we obtain (1.11).

Now we will prove the rest of Theorem 1.2.

The self-similar measure py satisfies (6.1). Applying Fourier transform to the both sides of
(6.1), we obtain

iv(© =o(3)av (3). (65)
where
CGEDIE i (6.

vEQ
is the characteristic function of (6.1). Iterating the equation (6.5) j times (j > 2), we obtain
_ £ §N~ (S
fiv () ) 2 )i 5 (6.7)
To show that py < L™, we need the following lemma which is a higher-dimensional version
of [15, Lemma 2]. We give the proof here for consistency.

Lemma 6.2 py < L™ if and only if the following equation holds:
oy (2rk) =0k, keZ™,

where 0, = 1 if k = (0,---,0) and d, = 0 otherwise.
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Proof The necessity. By (6.7), we have
fiv (2rkp’) = (4(0)) v (27k) = fiv (2k).

Since py is absolutely continuous with respect to L™ by the assumption, applying the Riemann-
Lebesgue lemma, we have

fv(2rkp’) = 0 as j — oo.

Therefore, iy (2rk) = 0 for every k # 0. The necessity is proved.
The Sufficiency. Denote by S(R™) the Schwartz space of all indefinitely differentiable rapid-
ly decreasing functions f on R™ :

SR™) ={f € CFR™) : || fllas < 00,Va, B},

where «, 8 are multi-indices and || f|/o,5 = sup |x°‘(a—6m)5f(:z:)|. And denote by &, the space of
reR™

infinitely differentiable functions with period 1:
E={geC®R"): g(x+ej)=g(x), for j=1,--- ,m}.
Every function g € &, can be decomposed into a Fourier series that converges to g in the space
Er
g(x) _ Z ak(g)e%rik:-ac7 ak(g) _ / g(x)e—%rik-acdx7
kezm™ 1
where ()7 denote the closed cube

Qi={zeR™:0<z; <1, forj=1,---,m}.

Now we consider the periodization operator taking a function f(z) € S to the function f(x) =

> f(x+ k). It is a continuous operator from S to &,.
kezm
For any cube

Q={zeR":q; <z; <b;, forj=1,---,m},

Qe={reR":a;—e<z; <bj+e, forj=1,---,m},
where b; —a; < % forj=1,--- mand 0 <e < %, consider a function f. € S(R™) such that
fe(x) =1 on Q and f.(z) =0 on R™\Q. and 0 < f:(x) < 1 otherwise. Then
S [ rerodn = [ Fede = [ afer e
wezm JR™ Rm R™ pzm
= 3 ) [ = 3 anl v (~2nk)
kezm Rm kezm
=Y an(f)dk=ao(f-)= [ fo(z)dw
kezm™ Q1

= fe(z)dz < ﬁ(bj —aj + 2¢).

R™ i
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Since [g,. fe(x +k)dpy >0 for all k € Z™, we have

fe(@)dpy < [ (b; = a; +2¢).

Rm™ j=1

Consider the sequence of functions {f1 },,>5. Letting n — oo, we obtain
fi(z) = 1g(x), VYzeR™,

where 1o denotes the characteristic function of ). By Fatou’s lemma, we have

/ dpy < liminf f1(z)d®
Q n

n—00 Jpm
<1li 'fﬁ(b-— .+E)
<timint [T (b =+
j:

= [T —ay),

which implies py < L™.
Now we will show that puy < L™ of Theorem 1.2.

Proof of continuity Take k € Z™. By (6.7), we have
fiv (27k) = (6(0)) v (2mk) = Tiv k),
we only need to consider k € Z™ with the form k = p'q where t > 0, ¢ = (g1, ,¢m) and
0<|gj| <pforj=1,---,m. Substituting £ = 27k into (6.7), we obtain
27q

(@) — B2 -1q) .¢(2wq>¢(7)av(%q) - (¢<o>>t¢(%7")ﬁv(27;ﬁq)-

For j=1,---,m, let zj:e_m”qi/p;élthen zle andl—l—zj—i----—i—zp_l:O. Hence

J
2wq _ 2mig-dy div dim
¢ _— = e P = Zl e Zm

p vEQ vEQN

=" E 2ozl (by s-star condition)
le{0,1,--- ,p—1}m

j=1
which implies iy (2wk) = 0. Therefore, by Lemma 6.2, the proof is finished.

6.3 Proof of Example 1.5
To prove Example 1.5, we need some notations and results in [15].
A tree is said to be the tree of order p (p > 2), if it is constructed as follows:
1. Put 27 at the root;
2. Put the number %, t=1,---,p—1 at the vertices on the first level;
3. Inductively, let a number « be associated to a vertex on the [-th level, then the numbers
o+ 27t
p

are associated to its neighbours on the (I + 1)-th level.

’ tzoalvap_l
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Definition 6.1 (see [15]) A subset A of vertices of the tree of order p is a blocking set if
the following conditions are satisfied:

(a) 27 ¢ A;

(b) a € A 2n—a € A;

(¢c) every infinite path starting at the root of the tree includes exactly one element of A.

From [15, Theorem 1], we have the following lemma.

Lemma 6.3 (see [15]) The solution of (6.1) is absolutely continuous if and only if there is
a blocking set that consists of roots of (6.6).

Proof of Example 1.5 According to Lemma 6.3, we only need to show that there is a
blocking set consisting of the roots of the following equation:

CGEDIE T

vEQN

Let z = e~ ¢, the above equation turns to

G2) = 14 24 2P 42 4 20 4 2T 429 4 210 4 212 4 13 (154 16
=2+ 1?22 -2+ D)+ 24+ 1) -2 +1).

By some simple calculation, we have the roots of equation ¢(&) as follows:

(6010 =0 [ {722} u{Ert At o o),

which is a blocking set.
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