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Abstract This paper deals with the qualitative behavior of orbits at degenerate singular
point with the method of quasi normal sector, which is a generalization of Frommer’s
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1 Introduction

One of the classic problems in the qualitative theory of the differential system is to charac-

terize the local phase portraits near an isolated singular point. Consider Ck planar differential

system

{
ẋ = X(x, y),
ẏ = Y (x, y),

(1.1)

where the dot denotes derivatives with respect to the variable t, k denotes a positive integer,

+∞ or w, Cw stands for an analytic function, and the origin O(0, 0) is the isolated singular

point such that X(0, 0) = Y (0, 0) = 0.

Concerning the simple singular point (those both eigenvalues of the Jacobian matrix at the

singular point are different from zero), the Hartman-Grobman theorem completely solved them

except when the singularity is monodromic, that is, the solution of the differential system turns

around the singular point. The semi-simple singular points (where one of the eigenvalues equal

to zero) are also classified (see for instance [3]).

Regarding the degenerate singular points (where both eigenvalues of the Jacobian matrix

at the point equal to zero), the situation is much more difficult. The Andreev theorem (see [2])

classifies the nilpotent singular points, whose associated Jacobian matrix is not identically zero,

except the monodromic case. If the Jacobian matrix is identically null, the problem is open. In

this case, the only possibility is studying each degenerate singular point case by case.
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In polar coordinates x = r cos θ, y = r sin θ, the system (1.1) becomes





ṙ =
1

r
(cos θX(r cos θ, r sin θ) + sin θY (r cos θ, r sin θ)),

θ̇ =
1

r2
(cos θY (r cos θ, r sin θ)− sin θX(r cos θ, r sin θ)).

(1.2)

Following Frommer [7], a direction of θ = θ0 at the origin is called a critical direction

of system (1.2) if there exists a sequence of points Pn : (rn, θn) such that θn → θ0, rn →

0, tanαn → 0 as n → ∞, where αn is the angle turning anti-clockwise from the direction θn to

the vector field at Pn.

There are several methods to study the number of orbits tending to the singular point in the

critical direction. The first method is the so-called Z-sector (see [8]). The small neighborhood

U(O, r) near the origin is divided into a finite number of sectors by the branches of Z(x, y) =

xX(x, y) + yY (x, y) = 0, these sectors are called Z-sectors. Within a Z-sector, dr
dt has a fixed

sign and contains a finitely number of critical directions.

The second method is to analysis normal sectors (normal domain) (see [10, 14]). A circular

sector S : 0 ≤ r ≤ r0, θ1 ≤ θ ≤ θ2 is called a normal sector if (i) neither θ1 nor θ2 is a critical

direction, (ii) within S, dr
dt 6= 0, (iii) between θ1 and θ2 there has a finite (possible zero) number

of critical directions. Normal sectors usually construct as a small neighborhood of a critical

direction, so in each normal sector there has at most one critical direction.

The third method is generalized normal sectors (see [12–13]), which is developed from normal

sectors, do not restrict edges of the sectors to the radial lines but even allow orbits, horizontal

isoclines and vertical isoclines to be edges.

A Z-sector possibly has more than one critical direction, so we can not determine which

critical direction an orbit in the sector will be tangent to. Moreover, sometimes Z-branches

of Z(x, y) = 0 are hardly solved, so it is difficult to find all Z-sector branches. For a normal

sector, sometimes it is not always constructible about an critical direction. Construction of

generalized normal sector is a technical task, generally drawing horizontal isoclines and vertical

isoclines is helpful for analysis. We note that the common point in the above three methods is

to apply the classic polar coordinate to analysis.

In this paper we apply the method of quasi normal sectors, which is a generalization of

normal sectors, to determine orbits in the critical direction.

The organization of this paper is as follows: In Section 2, we construct the method of quasi

normal sector and statement some preliminary results. Section 3 contains the main results. In

Section 4, we give two concrete examples to show that our method maybe more effective than

the above three methods in some cases. In the last section, we introduce the method of Newton

polyhedron.

2 Quasi Normal Sector

Given p, q, d ∈ N , we say that a function F (x, y) is called (p, q)-quasi-homogeneous func-

tion of weight degree d if F (λpx, λqy) = λdF (x, y). A vector field (P (x, y), Q(x, y)) is called

(p, q)-quasi-homogeneous of weight degree d if P (x, y) and Q(x, y) are (p, q)-quasi-homogeneous

functions of weight degree d+ p− 1 and d+ q − 1 respectively.

For a given Ck differential system (1.1), if k is sufficiently large, we can always choose

conveniently a pair of positive integers (p, q) by the Newton polyhedron (see [4]), hence the
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system (1.1) can be written as the following differential system:

{
ẋ = X(x, y) = Xm(x, y) + Φ(x, y),
ẏ = Y (x, y) = Yn(x, y) + Ψ(x, y),

(2.1)

where Xm(λpx, λqy) = λm+p−1Xm(x, y), Yn(λ
px, λqy) = λn+q−1Yn(x, y), Φ(x, y) = o((px2q +

qy2p)
m+p−1

2pq ), and Ψ(x, y) = o((px2q + qy2p)
n+q−1

2pq ). This is a different way of writing system

(1.1).

In order to simplify the proof in this paper, firstly we have the following lemma.

Lemma 2.1 Suppose p = kp1, q = kq1, (p1, q1) = 1, then Xm(x, y) and Yn(x, y) are

(p1, q1)-quasi-homogeneous functions of weight degree m1 + p1 − 1 and n1 + q1 − 1 respectively,

where m1 = m−1
k

+1 and n1 = n−1
k

+1. Moreover, Φ(x, y) = o((p1x
2q1+q1y

2p1)
m1+p1−1

2p1q1 ), Ψ(x, y)

= o((p1x
2q1 + q1y

2p1)
n1+q1−1

2p1q1 ).

Proof From [11], we know that m1 and n1 are positive integers. Straight-forward calcula-

tions show that

Xm(λp1x, λq1y) = Xm(λ
p

k x, λ
q

k y) = λ
m+p−1

k Xm(x, y) = λm1+p1−1Xm(x, y),

Yn(λ
p1x, λq1y) = Yn(λ

p

k x, λ
q

k y) = λ
n+q−1

k Yn(x, y) = λn1+q1−1Yn(x, y).

It is obvious that Xm(x, y) and Yn(x, y) are (p1, q1)-quasi-homogeneous functions of weight

degree m1 + p1 − 1 and n1 + q1 − 1 respectively. Moreover,

(px2q + qy2p)
m+p−1

2pq = (kp1x
2kq1 + kq1y

2kp1)
m1+p1−1
2kp1q1 < C(p1x

2q1 + q1y
2p1)

m1+p1−1
2p1q1 ,

where C = k
m1+p1−1
2kp1q1 . In our hypotheses that Φ(x, y) = o((px2q + qy2p)

m+p−1
2pq ), then we have

Φ(x, y) = o((p1x
2q1 + q1y

2p1)
m1+p1−1

2p1q1 ). In a similar way, Ψ(x, y) = o((p1x
2q1 + q1y

2p1)
n1+q1−1

2p1q1 ).

Without loss of generality, we assume p 6 q, otherwise we can interchange the variables x

and y.

In order to study the origin O(0, 0) of the differential system (2.1), following Lyapunov [9],

we introduce the generalized (p, q)-trigonometric functions x(θ) = Cs θ and y(θ) = Sn θ as the

unique solution of the following initial problem:

dx

dθ
= −y2p−1,

dy

dθ
= x2q−1, x(0) = p−

1
2q , y(0) = 0.

We observe that, in the particular case p = q = 1, Sn θ = sin θ, Cs θ = cos θ. Therefore, the

previous definition gives the classic trigonometric functions. We also define

Tn θ =
Snpθ

Csqθ
, Ctnθ =

Csqθ

Snpθ
.

Some properties of these functions are stated in the next lemma.

Lemma 2.2 (see [5]) Function Sn θ and Cs θ satisfy the following properties.

(i) Sn θ and Cs θ are T -periodic functions, where

T = 2p
−1
2q q

−1
2p

Γ( 1
2p )Γ(

1
2q )

Γ( 1
2p + 1

2q )
,

(ii) pCs2qθ + qSn2pθ = 1,
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(iii) Cs(−θ) = Cs θ,

(iv) Sn(−θ) = −Sn θ,

(v) Cs
(
T
2 − θ

)
= −Cs θ,

(vi) Sn
(
T
2 − θ

)
= Sn θ,

(vii) Cs
(
T
2 + θ

)
= −Cs θ,

(viii) Sn
(
T
2 + θ

)
= −Sn θ.

In the generalized (p, q)-polar coordinates x = rpCs θ, y = rqSn θ, (2.1) becomes





ṙ =
rqCs2q−1X(rpCs θ, rqSn θ) + rpSn2p−1θY (rpCs θ, rqSn θ)

rp+q−1(pCs2qθ + qSn2pθ)
,

θ̇ =
prp−1Cs θY (rpCs θ, rqSn θ)− qrq−1Sn θX(rpCs θ, rqSn θ)

rp+q−1(pCs2qθ + qSn2pθ)
.

View θ as the new independent variable, then we can transform the above differential system

into the equivalent differential equation

r
dθ

dr
=

pCs θrpY (rpCs θ, rqSn θ)− qSn θrqX(rpCs θ, rqSn θ)

Cs2q−1θrqX(rpCs θ, rqSn θ) + Sn2p−1θrpY (rpCs θ, rqSn θ)

=
G(θ) + η1(r, θ)

H(θ) + η2(r, θ)
, (2.2)

where η1(r, θ) = o(1), η2(r, θ) = o(1) as r = (px2q + qy2p)
1

2pq → 0,

G(θ) =




−qSn θXm(Cs θ, Sn θ), if m < n,

pCs θYn(Cs θ, Sn θ)− qSn θXm(Cs θ, Sn θ), if m = n,

pCs θYn(Cs θ, Sn θ), if m > n,

(2.3)

H(θ) =




Cs2q−1θXm(Cs θ, Sn θ), if m < n,

Cs2q−1θXm(Cs θ, Sn θ) + Sn2p−1θYn(Cs θ, Sn θ), if m = n,

Sn2p−1θYn(Cs θ, Sn θ), if m > n.

(2.4)

Definition 2.1 If G(θk) = 0 and H(θk) 6= 0, then we say θ = θk is a regular critical

direction.

Proposition 2.1 From (2.3)–(2.4), the following statements hold:

(i) If m < n and Xm(1, 0) 6= 0, then 0 and T
2 are regular critical direction.

(ii) If m > n and Yn(0, 1) 6= 0, then T
4 and −T

4 are regular critical direction.

(iii) Assume m = n.

If p is even and q is odd, then θk is a regular critical direction if and only if −θk is a regular

critical direction.

If p is odd and q is odd, then θk is a regular critical direction if and only if T
2 + θk is a

regular critical direction.

If p is odd and q is even, then θk is a regular critical direction if and only if T
2 − θk is a

regular critical direction.

Proof The statements (i)–(ii) are obvious from the definition of regular critical direction.
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Now we prove the statement (iii). Suppose that p is even and q is odd, then we get that

G(−θ) = pCs(−θ)Ym(Cs(−θ), Sn(−θ))− qSn(−θ)Xm(Cs(−θ), Sn(−θ))

= pCs θYm(Cs θ,−Sn θ) + qSn θXm(Cs θ,−Sn θ)

= p(−1)pCs θYm((−1)pCs θ, (−1)qSn θ)− q(−1)qSn θXm((−1)pCs θ, (−1)qSn θ)

= (−1)m+p+q−1(pCs θYm(Cs θ, Sn θ)− qSn θXm(Cs θ, Sn θ))

= (−1)mG(θ)

and

H(−θ) = Cs2q−1(−θ)Xm(Cs(−θ), Sn(−θ)) + Sn2p−1(−θ)Ym(Cs(−θ), Sn(−θ))

= (−1)m+1(Cs2q−1θXm(Cs θ, Sn θ) + Sn2p−1θYm(Cs θ, Sn θ))

= (−1)m+1H(θ).

It is obvious that θk is a regular critical direction if and only if −θk is a regular critical direction.

If p is odd and q is odd, then in a similar way, we have G
(
T
2 + θ

)
= (−1)m+1G(θ) and

H
(
T
2 + θ

)
= (−1)m+1H(θ). It is obvious that θk is a regular critical direction if and only if

T
2 + θk is a regular critical direction.

If p is odd and q is even, then we haveG
(
T
2 −θ

)
= (−1)mG(θ) andH

(
T
2 −θ

)
= (−1)m+1H(θ).

It is obvious that θk is a regular critical direction if and only if T
2 − θk is a regular critical

direction.

Consider a sector: ∆ÔAB : θ1 ≤ θ ≤ θ2, 0 ≤ r ≤ r0, where

ÔA =
{
(x, y) |

yp

xq
= Tn(θ1)

}
, ÔB =

{
(x, y) |

yp

xq
= Tn(θ2)

}
,

ÂB = {(x, y) | px2q + qy2p = r2pq}.

Definition 2.2 A sector ∆ÔAB is called quasi normal sector (QNS) if

(C1) there are no singular point in closure cl(∆ÔAB) except at O(0, 0),

(C2) dr
dt 6= 0, in cl(∆ÔAB) \ {O},

(C3) between θ1 and θ2 there is at most one regular critical direction, neither θ1 nor θ2 is a

regular critical direction.

Without loss of generality, assume that dr
dt < 0. We need to consider only the three essen-

tially different type of orbit behavior which are distinguished by the behavior of orbits as they

cross the boundary segments with increasing t, as shown in Figure 1. The case dr
dt > 0 is the

same with reversed time −t.

Figure 1 Three types of QNS.
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The following four lemmas are generalization of the results in [14], and the method of proof

these lemmas is similar.

Lemma 2.3 If ∆ÔAB is a QNS of type I, then (2.1) has infinitely many orbits tending

to the origin O(0, 0) in ∆ÔAB as t → +∞.

Lemma 2.4 If ∆ÔAB is a QNS of type II. then (2.1) has either a unique orbit or

infinitely many orbits tending to the origin O(0, 0) in ∆ÔAB as t → +∞.

Lemma 2.5 If ∆ÔAB is a QNS of type III. then (2.1) has either no orbit or infinitely

many orbits tending to the origin O(0, 0) in ∆ÔAB as t → +∞.

Lemma 2.6 If G(θ) 6= 0 in ∆ÔAB : θ1 ≤ θ ≤ θ2, 0 ≤ r ≤ r1 ≤ r0, where r1 is sufficiently

small, then there is no orbit tending to the origin O(0, 0) in ∆ÔAB as t → +∞. The orbits

from one edge θ = θ1, 0 < r ≤ r1 (resp. θ = θ2, 0 < r ≤ r1) to another edge θ = θ2, 0 < r ≤ r1

(resp. θ = θ1, 0 < r ≤ r1).

3 Main Results

For convenience, in this section we say the orbit (x(t), y(t)) of (2.1) tends to the origin if

(x(t), y(t)) → (0, 0) as t → +∞ or t → −∞.

We want to determine the number of orbits tending to the origin O(0, 0) in regular critical

direction. According to the number of real roots of equation G(θ) = 0, we can distinguish to

the following three cases.

3.1 G(θ) = 0 has no real root

Theorem 3.1 If G(θ) = 0 has no real roots, then O(0, 0) is a monodromic.

Proof Let ∆ÔAB : 0 ≤ θ ≤ T, 0 ≤ r ≤ r1 ≤ r0. There is no orbit tending to the origin

O(0, 0) by Lemma 2.6, so O(0, 0) is a monodromic.

3.2 G(θ) ≡ 0, the number of regular critical direction is infinite

In this case, it is obvious that m = n. Assume that Φ(x, y) and Ψ(x, y) are analytic functions

with respect to variables x and y near the origin O(0, 0).

G(θ) = pCs θYm(Cs θ, Sn θ)− qSn θXm(Cs θ, Sn θ)

=
1

rm+p+q−1
[pxYm(x, y)− qyXm(x, y)] ≡ 0.

Applying quasi-homogeneous directional blow-up (see [1]) in the positive (resp. negative) x

direction x = +up ≥ 0, y = uqv (resp. x = −up ≤ 0, y = uqv), (2.1) becomes

dv

du
=

pΨ∗
±(u, v)− qvΦ∗

±(u, v)

Xm(±1, v) + uΦ∗
±(u, v)

, (3.1)

where

Xm(±1, v) =
Xm(±up, uqv)

um+p−1
, Φ∗

±(u, v) =
Φ(±up, uqv)

um+p
, Ψ∗

±(u, v) =
±Ψ(±up, uqv)

um+q
.
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Note that if p is odd, then the positive x directional blow-up provides the information of

the negative x directional blow-up. We only need employ the x directional blow-up x = up ∈

R, y = uqv.

In the following we only consider the positive x directional blow-up, the negative case is

similar.

Case (a) Xm(+1, vk) 6= 0.

Note that (0, vk) is a nonsingular point of system (3.1)+, then there exists one and only one

orbit cutting across the v-axis at (0, vk) in the (u, v)-plane (see Figure 2.1).

Figure 2 Xm(1, vk) 6= 0.

Case (b) Xm(+1, vk) = 0 and pΨ∗
+(0, vk)− qvkΦ

∗
+(0, vk) 6= 0.

In this case, consider the following system

du

dv
=

Xm(+1, v) + uΦ∗
+(u, v)

pΨ∗
+(u, v)− qvΦ∗

+(u, v)
. (3.2)

It is easy to verify that (0, vk) is a nonsingular point of system (3.2) and the unique orbit

through (0, vk) is tangent to the v-axis. Figure 3.1 denotes that the orbit remains in the same

half-plane u ≥ 0 and Figure 4.1 denotes that the orbit cuts across the v-axis at (0, vk).

Since pxYm(x, y) − qyXm(x, y) ≡ 0, then Xm(+1, v) have at most
[
m−1
q

]
real roots, where

[ζ] denotes the integer part function of ζ. The fact follows from

pxYm(x, y)− qyXm(x, y) = pupYm(up, uqv)− quqvXm(up, uqv)

= um+p+q−1(pYm(1, v)− qvXm(1, v)),
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and Ym(1, v) is a polynomial in variable v with degree less than or equal to m+q−1
q

. Therefore

Xm(1, v) is a polynomial in variable v with degree less than or equal to
[
m−1
q

]
.

Figure 3 Xm(1, vk) = 0, pΨ∗

+(0, vk)− qvkΦ
∗

+(0, vk) 6= 0.

The orbit remains in the same half-plane u ≥ 0.

Case (c) Xm(+1, vk) = 0 and pΨ∗
+(0, vk)− qvkΦ

∗
+(0, vk) = 0.

In this case, (0, vk) is a singular point of system (3.1)+, the behavior of solution near such

a singular point may belong to any of the types discussed in the above cases. Since (2.1) is an

analytic system, the desingularization theorem (see [6]) ensures that after a finite number of

such blow-up, it is possible to solve this problem.

To study the behavior of orbits near the critical directions T
4 and −T

4 , we employ the quasi-

homogeneous directional blow-up in the positive (resp. negative) y direction x = ũṽp, y =

+ṽq ≥ 0 (resp. x = ũṽp, y = −ṽq ≤ 0). (2.1) becomes

dũ

dṽ
=

qΦ
∗

±(ũ, ṽ)− pũΨ
∗

±(ũ, ṽ)

Ym(ũ,±1) + ṽΨ
∗

±(ũ, ṽ)
, (3.3)

where

Ym(ũ,±1) =
Ym(ũṽp,±ṽq)

ṽm+q−1
, Φ

∗

±(ũ, ṽ) =
±Φ(ũṽp,±ṽq)

ṽm+p
, Ψ

∗

±(ũ, ṽ) =
Ψ(ũṽp,±ṽq)

ṽm+q
.

Note that if q is odd, then the positive y directional blow-up provides the information of

negative y directional blow-up. So we only need to employ y directional blow-up x = ũṽp, y =

ṽq ∈ R.
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Figure 4 Xm(1, vk) = 0, pΨ∗

+(0, vk)− qvkΦ
∗

+(0, vk) 6= 0. The orbit cuts across the v-axis.

In the following we also only consider the positive y directional blow-up.

Case (d) Ym(0,+1) 6= 0.

There is a unique orbit of system (3.3)+ through the origin O(0, 0) and cuts cross the ũ-axis

on the (ṽ, ũ)-plane (see Figure 5.1).

Case (e) Ym(0,+1) = 0, Φ
∗

+(0, 0) 6= 0.

In this case, consider the following system

dṽ

dũ
=

Ym(ũ,+1) + ṽΨ
∗

+(ũ, ṽ)

qΦ
∗

+(ũ, ṽ)− pũΨ
∗

+(ũ, ṽ)
. (3.4)

We know that (0, 0) is a nonsingular point of system (3.4) and the unique orbit through (0, 0) is

tangent to the ũ-axis. Figures 6.1 and 7.1 denote that the orbit remains in the same half-plane

ṽ ≥ 0 and cuts across the ũ-axis, respectively.

Case (f) Ym(0,+1) = 0 and Φ
∗

+(0, 0) = 0.

In this case, O(0, 0) is a singular point of (3.3)+, finite number of such blow-up will solve

this problem.

From the above analysis, we can obtain the following theorems.

Theorem 3.2 Consider the analytic differential system (2.1) with G(θ) ≡ 0, and assume

that p and q are odd.

(i) If Xm(1, vk) 6= 0, then there is a unique orbit of (2.1) tending to the origin in the direction

θk as well as a unique orbit tending to the origin in the direction T
2 +θk (see F igure 2.2), where
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Figure 5 Ym(0, 1) 6= 0.

Tn θk = v
p
k,−

T
4 < θk < T

4 .

(ii) Let Xm(1, vk) = 0, pΨ∗
+(0, vk)− qvkΦ

∗
+(0, vk) 6= 0.

If the orbit remains in the same half-plane near (0, vk), say in the half-plane u ≥ 0 (resp.

u ≤ 0), then there are exactly two orbits tending to the origin in the direction θk (resp. T
2 +θk),

one on each side of the curve and there is no orbit of (2.1) tending to the origin in the direction
T
2 + θk (resp. θk) (see Figure 3.2).

If the orbit cuts across the u-axis at (0, vk), then there is a unique orbit of (2.1) tending to

the origin in the direction θk as well as a unique orbit tending to the origin in the direction
T
2 + θk (see Figure 4.2).

(iii) If Ym(0, 1) 6= 0, then there is a unique orbit of (2.1) tending to the origin in the direction
T
4 as well as a unique orbit tending to the origin in the direction −T

4 (see Figure 5.2).

(iv) Let Ym(0, 1) = 0, Φ
∗

+(0, 0) 6= 0.

If the orbit remains in the same half-plane ṽ ≥ 0 (resp. ṽ ≤ 0), then there exist two orbit

of (2.1) tending to the origin in the direction T
4 (resp. −T

4 ), one on each side of the y-axis and

there is no orbit of (2.1) tending to the origin in the direction −T
4 (resp. T

4 ) (see Figure 6.2).

If the orbit cuts across the ũ-axis at (0, 0), then there is a unique orbit of (2.1) tending to

the origin in the direction T
4 as well as a unique orbit tending to the origin in the direction −T

4

(see Figure 7.2).
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Figure 6 Ym(0, 1) = 0, Φ
∗

+(0, 0) 6= 0. Orbits remains in the same half-plane ṽ ≥ 0.

(v) If Xm(1, vk) = 0, pΨ∗
+(0, vk) − qvkΦ

∗
+(0, vk) = 0 or Ym(0, 1) = 0, Φ

∗

+(0, 0) = 0, then

successive application of the above transformation can solve this problem.

Proof Because p and q are odd, we only need employ the x directional blow-up x = up ∈

R, y = uqv and y directional blow-up x = ũṽp, y = ṽq ∈ R.

(i) In this case, there exist orbits of system (2.1) tending to the origin along the curve

yp = v
p
kx

q. For every generalized polar direction θk in the (x, y)-plane such that Tn θk =

v
p
k, −T

4 < θk < T
4 , there is a unique orbit of (2.1) tending to the origin in the direction θk as

well as a unique orbit tending to the origin in the direction T
2 + θk.

(ii) In the first subcase, if u ≥ 0 (resp. u ≤ 0), then x = up ≥ 0 (resp. x = up ≤ 0). So

there are exactly two orbits tending to the origin in the direction θk (resp. T
2 + θk), one on

each side of the curve and there is no orbit of (2.1) tending to the origin in the direction T
2 + θk

(resp. θk). The second subcase is similar to case (i).

(iii) If Ym(0, 1) 6= 0, then it is clearly that the orbit of system (3.3) cuts across the ũ-axis.

The statement follows from y = ṽq.

(iv) In the first subcase, if ṽ ≥ 0 (resp. ṽ ≤ 0), then y = ṽq ≥ 0 (resp. y = ṽq ≤ 0). So

there are exactly two orbits tending to the origin in the direction T
4 (resp. −T

4 ), one on each

side of the y-axis and there is no orbit of (2.1) tending to the origin in the direction −T
4 (resp.

T
4 ). The second subcase is similar to case (iii).



1190 S. M. Li and Y. L. Zhao

Figure 7 Ym(0, 1) = 0, Φ
∗

+(0, 0) 6= 0. Orbits cuts across the ũ-axis.

(v) It is obvious from cases (c) and (f).

Theorem 3.3 Consider the analytic differential system (2.1) with G(θ) ≡ 0, and assume

that p and q are even.

(i) If Xm(1, vk) 6= 0, then there is a unique orbit of (2.1) tending to the origin in the direction

θk as well as a unique orbit tending to the origin in the direction T
2 − θk (see Figure 2.2).

(ii) Let Xm(1, vk) = 0, pΨ∗
+(0, vk)− qvkΦ

∗
+(0, vk) 6= 0.

If the orbit remains in the same-half-plane near (0, vk), say in the half-plane u ≥ 0 (resp.

u ≤ 0), then there are exactly two orbits tending to the origin in the direction θk (resp. T
2 −θk),

one on each side of the curve and there is no orbit of (2.1) tending to the origin in the direction
T
2 − θk (resp. θk) (see Figure 3.3).

If the orbit cuts across the u-axis at (0, vk), then there is a unique orbit of (2.1) tending

to the origin O(0, 0) in the direction θk as well as a unique orbit tending to the origin in the

direction T
2 − θk (see Figure 4.3).

(iii) If Ym(0,+1) 6= 0 (resp. Ym(0,−1) 6= 0), then there exist two orbits of (2.1) tending

to the origin in the direction T
4 (resp. −T

4 ) and there is no orbit tending to the origin in the

direction −T
4 (resp. T

4 ), (see Figure 5.3).

(iv) If Ym(0,+1) = 0, Φ
∗

+(0, 0) 6= 0, then there exist two orbit of (2.1) tending to the origin

in the direction T
4 and there is no orbit of (2.1) tending to the origin in the direction −T

4 (see
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Figures 6.3 and 7.3).

(v) If Ym(0,−1) = 0, Φ
∗

−(0, 0) 6= 0, then there exist two orbit of (2.1) tending to the origin

in the direction −T
4 and there is no orbit of (2.1) tending to the origin in the direction T

4 .

(vi) If Xm(1, vk) = 0, pΨ∗
+(0, vk)− qvkΦ

∗
+(0, vk) = 0 or Ym(0,±1) = 0, Φ

∗

±(0, 0) = 0, then

successive application of the above transformation can solve this problem.

Proof Because p is odd, we only need to employ the x directional blow-up. Statements (i)

and (ii) follow from the proof of Theorem 3.2 and the statement (vi) is obvious.

If Ym(0,+1) 6= 0 or Ym(0,+1) = 0, Φ
∗

+(0, 0) 6= 0, employ the quasi-homogeneous directional

blow-up in the positive y direction, then y = ṽq ≥ 0, so the statements (iii) and (iv) are proved.

If Ym(0,−1) 6= 0 or Ym(0,−1) = 0, Φ
∗

−(0, 0) 6= 0, employ the quasi-homogeneous directional

blow-up in the negative y direction, then y = ṽq ≤ 0, so there exist two orbits going into the

origin in the direction −T
4 . The statement (v) is proved.

Theorem 3.4 Consider the analytic differential system (2.1) with G(θ) ≡ 0, and assume

that p and q are odd.

(i) If Xm(+1, vk) 6= 0 (resp. Xm(−1, vk) 6= 0), then there is a unique orbit of (2.1) tending

to the origin in the direction θk (resp. T
2 − θk) as well as a unique orbit tending to the origin

in the direction −θk (resp. T
2 + θk) (see Figure 2.4).

(ii) Let Xm(+1, vk) = 0, pΨ∗
+(0, vk)− qvkΦ

∗
+(0, vk) 6= 0.

If the orbit remains in the same half-plane near (0, vk), say in the half-plane u ≥ 0 (resp.

u ≤ 0), then there are exactly two orbits tending to the origin in the direction sgn(vk)θk (resp.

−sgn(vk)θk), one on each side of the curve and there is no orbit of (2.1) tending to the origin

in the direction −sgn(vk)θk (resp. sgn(vk)θk) (see Figure 3.4), where sgn(vk) denotes the sign

function of vk.

If orbit cuts across the u-axis at (0, vk), then there is a unique orbit of (2.1) tending to the

origin in the direction θk as well as a unique orbit tending to the origin in the direction −θk

(see Figure 4.4).

(iii) Let Xm(−1, vk) = 0, pΨ∗
−(0, vk)− qvkΦ

∗
−(0, vk) 6= 0.

If the orbit remains in the same-half-plane near (0, vk), say in the half-plane u ≥ 0 (resp.

u ≤ 0), then there are exactly two orbits tending to the origin in the direction T
2 + sgn(vk)θk

(resp. T
2 − sgn(vk)θk), one on each side of the curve and there is no orbit of (2.1) tending to

the origin in the direction T
2 − sgn(vk)θk (resp. T

2 + sgn(vk)θk).

If the orbit cuts across the u-axis at (0, vk), then there is a unique orbit of (2.1) tending to

the origin in the direction T
2 + θk as well as a unique orbit tending to the origin in the direction

T
2 − θk.

(iv) If Ym(0, 1) 6= 0, there is a unique orbit of (2.1) tending to the origin in the direction T
4

as well as −T
4 (see Figure 5.4).

(v) Let Ym(0, 1) = 0, Φ
∗

+(0, 0) 6= 0.

If the orbit remains in the same half-plane ṽ ≥ 0 (resp. ṽ ≤ 0), then there exist two orbit

of (2.1) tending to the origin in the direction T
4 (resp. −T

4 ), one on each side of the y-axis and

there is no orbit of (2.1) tending to the origin in the direction −T
4 (resp. T

4 ) (see Figure 6.4).

If the orbit cuts across the ũ-axis at (0, 0), then there is a unique orbit of (2.1) tending to

the origin in the direction T
4 as well as a unique orbit tending to the origin in the direction −T

4

(see Figure 7.4).

(vi) If Xm(±1, vk) = 0, pΦ∗
±(0, vk)− qvkΨ

∗
±(0, vk) = 0 or Ym(0, 1) = 0, Φ

∗

+(0, 0) = 0, then

successive application of the above transformation can solve this problem.
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Proof Because q is odd, we only need to employ the y directional quasi-homogeneous

blow-up, so the statements (iv), (v) and (vi) are obvious from the proof of Theorem 3.2.

If Xm(+1, vk) = 0, pΨ∗
+(0, vk) − qvkΦ

∗
+(0, vk) 6= 0, employ the quasi-homogeneous direc-

tional blow-up in the positive x direction x = up, y = uqv, then x ≥ 0 and θk = ArcTn(vpk) ≥ 0.

For the first subcase, suppose u ≥ 0, vk ≥ 0 (resp. u ≥ 0, vk ≤ 0), then x ≥ 0, y ≥ 0

(resp. x ≥ 0, y ≤ 0). There are exactly two orbits of (2.1) tending to the origin in the

direction sgn(vk)θk (resp. −sgn(vk)θk) and there is no orbit tending to the origin in the direction

−sgn(vk)θk (resp. sgn(vk)θk), so the statement (ii) is proved. The second subcase is similar.

If Xm(−1, vk) = 0, pΨ∗
−(0, vk) − qvkΦ

∗
−(0, vk) 6= 0, employ the quasi-homogeneous direc-

tional blow-up in the negative x direction, the proof of statement (iii) is similar.

The statement (i) is obvious from the above analysis.

3.3 G(θ) = 0 have finite real roots

Assume that θk is a root of multiplicity l of G(θ) = 0, ∆ÔAkBk :| θ − θk |≤ ǫ, 0 < r ≤ r1,

where ǫ, r1 are sufficiently small.

In a similar way, we can obtain the following three propositions from the corresponding

theorems of [14]. The idea of proof of these propositions is similar.

Proposition 3.1 If l is odd and G(l)(θk)H(θk) > 0, then ∆ÔAkBk is a QNS of type I. So

there are infinitely number of orbits tending to the origin O(0, 0) in the direction θk.

Proposition 3.2 If l is odd and G(l)(θk)H(θk) < 0, then ∆ÔAkBk is a QNS of type II.

Hence, there exists either a unique orbit or infinitely number of orbits tending to the origin

O(0, 0) in the direction θk.

Moreover, assume that
Φ(r,θ)
rm+p−1 ,

Ψ(r,θ)
rn+q−1 satisfy the Lipschitz conditions





| Φ(r, θ2)− Φ(r, θ1) |

rm+p−1
≤ C(r) | θ2 − θ1 |,

| Ψ(r, θ2)−Ψ(r, θ1) |

rn+q−1
≤ C(r) | θ2 − θ1 |,

(3.5)

and that if l = 1,

Φ(r, θ)

rm+p−1
,
Ψ(r, θ)

rn+q−1
, C(r) → ◦(1), r → 0; (3.6)

if l > 1,

Φ(r, θ) = ◦(rm+p), Ψ(r, θ) = ◦(rn+q), r → 0, (3.7)

then (2.1) has a uniqueness orbit tending to the origin O(0, 0) in the direction θk.

Proposition 3.3 If l is even, then ∆ÔAkBk is a QNS of type III. Hence, there exists

either no orbit or infinitely number of orbits tending to the origin O(0, 0).

Moreover, let

η(r, θ) = prpCs θΨ(rpCs θ, rqSn θ)− qrqSn θΦ(rpCs θ, rqSn θ).

(i) If in some QNS there exists C1 such that

η(r, θ) ≤ C1A(r), 0 < C1 < D, (3.8)
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then there exist infinitely many orbits tending to the origin O(0, 0) in the direction θk.

(ii) If in a QNS there exists C2 such that

η(r, θ) ≥ C2A(r), C2 > D, (3.9)

then there is no orbit tending to the origin O(0, 0) in the direction θk, where

A(r) = rm+p+q−2
(
ln
(1
r

)) −l
l−1

,

D =
(H(θk)

l

) l
l−1

(G(l)(θk)(l − 1))
−1
l−1 .

Remark 3.1 If the differential system (2.1) is an analytic system near the origin, then the

condition of Proposition 3.2 and the condition (3.8) of Proposition 3.3 are naturally satisfied.

Furthermore, if l is odd, then the following statements hold.

Theorem 3.5 Consider the Ck differential system (2.1) with k sufficiently large, and as-

sume that p and q are odd.

(i) If G(l)(θk)H(θk) > 0, then there exist infinitely many orbits tending to the origin O(0, 0)

in the direction θk as well as T
2 + θk.

(ii) If G(l)(θk)H(θk) < 0 and the condition of Proposition 3.2 holds, then there exists a

unique orbit tending to the origin O(0, 0) in the direction θk as well as T
2 + θk.

Proof Assume that p and q are odd. From the proof of Proposition 2.1 we have G
(
T
2 +θ

)
=

(−1)m+1G(θ), H
(
T
2 + θ

)
= (−1)m+1H(θ), then

G(l)
(T
2
+ θk

)
H
(T
2
+ θk

)
= (−1)2m+2G(l)(θk)H(θk).

(i) If G(l)(θk)H(θk) > 0, then G(l)
(
T
2 + θk

)
H
(
T
2 + θk

)
> 0. By Proposition 3.1, there are

infinitely number of orbits tending to the origin O(0, 0) in the direction θk as well as T
2 + θk.

(ii) If G(l)(θk)H(θk) < 0, then G(l)
(
T
2 + θk

)
H
(
T
2 + θk

)
< 0. By Proposition 3.2, there exists

a unique orbit tending to the origin O(0, 0) in the direction θk as well as T
2 + θk.

The proofs of following two theorems are similar to Theorem 3.5.

Theorem 3.6 Consider the Ck differential system (2.1) with k sufficiently large, and as-

sume that p is odd and q is even.

(i) If G(l)(θk)H(θk) > 0, then there exist infinitely many orbits tending to the origin O(0, 0)

in the direction θk as well as T
2 − θk.

(ii) If G(l)(θk)H(θk) < 0 and the condition of Proposition 3.2 holds, then there exists a

unique orbit tending to the origin O(0, 0) in the direction θk as well as T
2 − θk.

Theorem 3.7 Consider the Ck differential system (2.1) with k sufficiently large, and as-

sume that p is even and q is odd.

(i) If G(l)(θk)H(θk) > 0, then there exist infinitely many orbits tending to the origin O(0, 0)

in the direction θk as well as −θk.

(ii) If G(l)(θk)H(θk) < 0 and the condition of Proposition 3.2 holds, then there exists a

unique orbit tending to the origin O(0, 0) in the direction θk as well as −θk.
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4 Applications

Example 4.1 Consider the differential system

{
ẋ = x4 + y3,

ẏ = x3y.
(4.1)

(4.1) is a (3,4) quasi-homogeneous system of weight degree 10. Apply the generalized polar

coordinate x = r3Cs θ, y = r4Sn θ, then we have

G(θ) = −Sn θ(Cs4θ + 4Sn3θ),

H(θ) = Cs3θ(Cs8θ +Cs4θSn3θ + Sn6θ),

G′(θ) = Cs3θ(4Sn6θ − 16Sn3θCs4θ − Cs8θ).

The regular critical direction is determined by Sn θ = 0 or Tn θ = − 1
4 .

By direct a calculation, we have G′(θ)H(θ)|Sn θ=0 < 0, H(θ)|Sn θ=0 = Cs11θ. If x = r3Cs θ >

0 (resp. x < 0), then dr
dt > 0 (resp. dr

dt < 0) and the orbit leaves (resp. enter into) the origin.

By the statement (ii) of Theorem 3.6, there is a unique orbit leaves the origin in the direction

θ = 0 as well as a unique orbit enters into the origin in the direction θ = T
2 .

Since G′(θ)H(θ)|Tn θ=− 1
4
> 0, H(θ)|Tn θ=− 1

4
= 13

16Cs
13θ, by the statement (i) of Theorem

3.6, there are infinitely many orbits leaving the origin in the direction y3 = − 1
4x

4, x > 0 as

well as infinitely many orbits entering into the origin in the direction y3 = − 1
4x

4, x < 0.

In conclusion, there are infinitely many orbits leaving the origin along the positive x-axis

and infinitely many orbits entering into the origin along the negative x-axis (see Figure 8.1).

Figure 8 In Figure 8.1 the dashed curve is y3 = −1
4
x4.

In Figure 8.2, the dashed curve is yp+q−1 = b(q−1)
a(p+q−1)

xq−1.

Note that if we use the normal sector method for the system (4.1), then G(θ) = − sin4(θ),

H(θ) = cos(θ) sin3(θ). We can not determine the number of orbits tending to the origin in the

direction θ = 0 and θ = π.

Example 4.2 Consider the differential system

{
ẋ = bxq + xq+1 + (a− b)xyp+q−1 − xyp+q,

ẏ = xqy + ayp+q − yp+q+1,
(4.2)
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where both p and q are positive integers and q ≥ 2, a > 0, b > 0. The above differential system

is considered in [13]. We show that our method of QNS is more effective than the method of

generalized normal sector in this case.

Since the system (4.2) has concrete background as stated in [13], we only consider the first

quadrant (x ≥ 0, y ≥ 0).

For the system (4.2), Xm(x, y) = bxq + (a − b)xyp+q−1, Yn(x, y) = ayp+q. Apply the

generalized polar coordinate x = rp+q−1Cs θ, y = rq−1Sn θ, we have

G(θ) = Cs θSn θ
(
a(p+ q − 1)Snp+q−1θ − b(q − 1)Csq−1θ

)
,

H(θ) = aSn3(p+q−1)θ + bCs3(q−1)θ,

G′(θ) = −a(p+ q − 1)Sn3(p+q−1)θ + bq(q − 1)Sn2(p+q−1)θCsq−1θ

+ a(p+ q)(p+ q − 1)Snp+q−1θCs2(q−1) − b(q − 1)Cs3(q−1)θ.

The regular critical direction is determined by Sn θ = 0, Cs θ = 0 or Tn θ = b(q−1)
a(p+q−1) .

Since G′(θ)H(θ)|Sn θ=0 < 0, H(θ)|Sn θ=0 = bCs3(q−1)θ > 0, there is a unique orbit, which

coincides with the positive x axis, and leaves the origin O(0, 0).

Since G′(θ)H(θ)|Cs θ=0 < 0, H(θ)|Cs θ=0 = aSn3(p+q−1)θ > 0, there is unique orbit, which

coincides with the positive y-axis, and leaves the origin O(0, 0).

Since G′(θ)H(θ)|
Tn θ= b(q−1)

a(p+q−1)

> 0, H(θ)|
Tn θ= b(q−1)

a(p+q−1)

= KCs3(q−1)θ > 0, where

K =
b3(q − 1)3 + a2b(p+ q − 1)3

a2(p+ q − 1)
.

There are infinitely many orbits leaving the origin in the direction yp+q−1 = b(q−1)
a(p+q−1)x

q−1.

If we use the classic polar coordinate, then the curve yp+q−1 = b(q−1)
a(p+q−1)x

q−1 goes into

the origin O(0, 0) in the direction π
2 . (4.2) has two critical directions in the first quadrant

(x ≥ 0, y ≥ 0), θ = 0 and θ = π
2 near O(0, 0). In θ = 0 there is a unique orbit which coincides

with the positive half x-axis and leaves O(0, 0). In θ = π
2 , infinitely many orbits leave O(0, 0)

(see Figure 8.2).

5 Appendix: Method of Newton Polyhedron

In this appendix we show how to obtain the parameters p, q and d by Newton polyhedron,

see for instance [1].

Consider the following system





ẋ = X(x, y) =
∑

i+j≥1

ai,jx
iyj,

ẏ = Y (x, y) =
∑

i+j≥1

bi,jx
iyj.

(5.1)

We denote (5.1) by χ = (X,Y ) conveniently.

We define the set

N = {(i− 1, j) : ai,j 6= 0} ∪ {(i, j − 1) : bi,j 6= 0}. (5.2)

The point (−1, j) is associated to the monomial a0,jy
j and the point (i,−1) is associated to

the monomials bi,0x
i. The point (0, 0) is associated to the monomials a1,0x and b0,1y. If the
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origin of system (5.1) is degenerate, then (0, 0) 6∈ N . We define the Newton polyhedron as the

convex hull of N + R2
+ in the (i, j)-plane. We call γk the segments of this polyhedron. If one

of these segments is completely in the half-plane i ≤ 0 (resp. j ≤ 0) we call it γ0 (resp. γn+1).

The rest of the segments are called γ1, γ2, · · · , γn from left to right, and they have at least one

endpoint in the first quadrant of the (i, j)-plane. For k = 1, · · · , n, the segment γk satisfies the

equation of the straight line pki + qkj = dk for some coprime αk, βk and δk. We choose the

suitable (p, q, d) from the set {(pk, qk, dk), k = 1, · · · , n} provided by γ1, · · · , γn.

If (i, j) ∈ N , then either ai+1,jx
i+1yj is a monomial of X(x, y), or bi,j+1x

iyj+1 is a monomial

of Y (x, y). We call dk = pi + qj the quasi-degree of type (p, q) of these monomials. The

monomials ai+1,jx
i+1yj (resp. bi,j+1x

iyj+1) of quasi-degree dk of type (p, q) are grouped in

a polynomial Xdk
(resp. Ydk

). Hence the vector field χ = (X,Y ) can be decomposed into

its quasi-homogeneous components of type (p, q) : χ =
∑

dk≥d

χdk
, where χdk

= (Xdk
, Ydk

) and

d = min{dk : ∃(i, j) ∈ N, pi+ qj = dk}. This is a different way of writing system (5.1).
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