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1 Introduction

A toric variety of complex dimension n is a normal algebraic variety over C with an effective

algebraic action of (C \ {O})n having an open dense orbit. A compact smooth toric variety is

called a toric manifold. One of the most important facts on toric geometry is that there is a

1-1 correspondence between the class of toric varieties of complex dimension n and the class

of fans in Rn. This fact is called the fundamental theorem of toric geometry. In particular, a

toric manifold X of complex dimension n corresponds to a complete regular fan ΣX in Rn.

Among toric manifolds, the class of toric manifolds associated to Weyl chambers has been

considered since it is introduced by Procesi [12]. A classical construction associates each root

system to a toric manifold whose fan corresponds to the reflecting hyperplanes of the root

system and its weight lattice. It is natural to ask about the topology of the corresponding toric

manifold. Note that the integral cohomology of a toric manifold is well-established by Jurkiwicz

[11] for the projective cases and by Danilov [7] for general cases. For a coefficient field k, the

ith k-Betti number of a topological space X is the rank of Hi(X ;k) over k, and it is denoted

by βi(X ;k). One remarkable fact is that the Betti numbers of a toric manifold X depend only

on the face numbers of its associated fan ΣX . Especially, the structures of the cohomology of

toric manifolds associated to Weyl chambers have been studied by [1, 9, 12, 15].

On the other hand, the subset consisting of points with real coordinates of a toric manifold

is called a real toric manifold. Unlike toric manifolds, little is known about the topology of

real toric manifolds. Let X be a toric manifold and XR its real toric manifold. By Davis and

Manuscript received February 20, 2016. Revised September 17, 2016.
1Department of Mathematics, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of
Korea. E-mail: schoi@ajou.ac.kr borampark@ajou.ac.kr

2School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455,
Republic of Korea. E-mail: hpark@kias.re.kr

∗This work was supported by the Basic Science Research Program through the National Research Foundation
of Korea (Nos. NRF-2016R1D1A1A09917654, NRF-2015R1C1A1A01053495).



1214 S. Choi, B. Park and H. Park

Januszkiewicz [8], the ith Z2-Betti number of XR is equal to the 2ith Z-Betti number of X ,

and, hence, it depends only on the face numbers. However, the Betti numbers with rational

coefficients are not only determined by the face numbers. For instance, both the torus and

the Klein bottle are real toric manifolds and their corresponding fans have the face structure

combinatorially equivalent to the 4-gon. Hence, their Z2-Betti numbers are the same while their

Q-Betti numbers are different. From this sense, the computation of the rational Betti numbers of

real toric manifolds is difficult, and only a few examples have been computed so far. One known

example is the real toric manifolds associated to Weyl chambers of type An due to Henderson

[10]. Interestingly, their rational Betti numbers are the Euler zigzag numbers. Arnol′d [2] has

defined the notion of snake numbers as a generalization of the Euler zigzag numbers as follows:

A snake of type An (respectively Bn), or an An-snake (respectively, Bn-snake), is a sequence

of integers xi satisfying the conditions:

(1) for An : x0 < x1 > x2 < · · ·xn, xi 6= xj for i 6= j;

(2) for Bn : 0 < x1 > x2 < · · ·xn, xi 6= ±xj for i 6= j,

where 0 ≤ xi ≤ n for all i for An, and 1 ≤ |xi| ≤ n for all i for Bn. Denote by an (respectively,

bn) the number of An-snakes (respectively, Bn-snakes). The number an is also known as the

Euler zigzag number (see [13, A000111]), and the number bn is also known as the generalized

Euler number or the Springer number (see [13, A001586]).

Table 1 The list of an and bn for small n

n 0 1 2 3 4 5 6 7 8 9 · · ·
an 1 1 1 2 5 16 61 272 1385 7936 · · ·
bn 1 1 3 11 57 361 2763 24611 250737 2873041 · · ·

The formula of the rational Betti numbers by Henderson was recovered by Suciu [16] later

using the general formula for rational Betti numbers of real toric manifolds established by Suciu

and Trevisan [17].

Theorem 1.1 (see [10, 16]) Denote by XR

An
the real toric manifold associated to the Weyl

chambers of type An. The kth Q-Betti number of XR

An
is

βk(XR

An
;Q) =

(
n+ 1

2k

)
a2k.

We note that Choi and Park [5] showed that the formula used in [17] works for not only Q

coefficient but also arbitrary field k coefficient whose characteristic is not equal to 2. Combining

it with [16], we obtain the following corollary.

Corollary 1.1 The integral cohomology of XR

An
is p-torsion free for all odd primes p.

In this paper, we compute the rational Betti numbers of real toric manifolds associated to

the Weyl chambers of type Bn, and show that their integral cohomologies are p-torsion free for

all odd primes p. We prove the following theorem.

Theorem 1.2 Denote by XR

Bn
the real toric manifold associated to the Weyl chambers of

type Bn. Then, we have

βk(XR

Bn
;Q) =

(
n

2k

)
b2k +

(
n

2k − 1

)
b2k−1.
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Furthermore, their integral cohomologies are p-torsion free for all odd primes p.

It is worthwhile to note that the same techniques to prove the above theorem do not directly

apply to the case of type C andD, the other regular types. This is because the analogues for the

shellability results like Lemma 3.3 fail for type C or D, making it hard to compute homology

of the corresponding posets.

This paper is organized as follows. In Section 2, we introduce preliminary facts including

the formula of Suciu-Trevisan to compute the Betti numbers of real toric manifolds and the

way to define projective toric manifolds associated to Weyl chambers. In Section 3, we prove

the main theorem, that is, we compute the Betti numbers of real toric manifolds of type Bn.

2 Preliminaries

2.1 The Betti numbers of real toric manifolds

In this subsection, we shall introduce a formula of the Betti numbers of real toric manifolds.

From now on, we restrict our interests in the projective toric manifolds and its real toric

manifolds. Let X be a projective toric manifold of complex dimension n and XR its real toric

manifold. We assume that the associated fan ΣX of X has m rays r1, · · · , rm. Then, ΣX can

be regarded as a pair of an (n− 1)-dimensional polytopal simplicial sphere K with the vertex

set [m] = {1, · · · ,m} and a map λ : [m] → Zn such that

(1) σ = {i1, · · · , iℓ} ∈ K if and only if {ri1 , · · · , riℓ} forms a cone in ΣX , and

(2) λ(i) is the primitive vector in the direction of ri.

We callK the underlying simplical complex ofX and λ the characteristic map ofX . Further-

more, sinceX is projective, there is a convex simple polytope P withm facets F1, · · · , Fm, whose

face structure is isomorphic to K and the outward normal vector of Fi is λ(i) for i = 1, · · · ,m.

Similarly to the fundamental theorem for toric geometry, it is known that as a Z2-space,

a real toric manifold XR is determined by the pair (K,λR), where λR the composition map

of λ and the canonical quotient map Z → Z/2Z, i.e., λR : [m]
λ
→ Z → Z/2Z. We call λR the

Z2-characteristic map, and we note that λR can be represented as a Z2-matrix of size n ×m,

called the Z2-characteristic matrix. For each subset S of {1, · · · , n}, write λS =
∑
i∈S

λi, where

λi is the ith row of λR. Let [m]S := {j ∈ [m] | the jth entry of λS is nonzero} ⊂ [m]. For

such S we define KS := {σ ∈ K | σ ⊂ [m]S}, and, as dual, PS :=
⋃

j∈[m]S

Fj . We note that the

topological realization of KS is homotopy equivalent to PS . Throughout this paper, we denote

by K the topological realization of a simplicial complex K if there is no danger of confusion.

Theorem 2.1 (see [5, 17]) Let X be a toric manifold and XR its real toric manifold. Let k

be a ring where 2 is invertible in k. Then the ith Betti number βi(XR;k) of XR with coefficient

k is given by

βi(XR;k) =
∑

S⊆[n]

rankk H̃
i−1(PS ;k) =

∑

S⊆[n]

rankk H̃
i−1(KS ;k).

Suciu and Trevisan in their unpublished paper [17] established the formula for the rational

Betti numbers of real toric manifolds. Later, Choi and Park [5] also derived a cohomology

formula of real toric manifolds with the coefficient ring G, where 2 is invertible in G. It should
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be noted that if the reduced cohomology of PS is p-torsion free for all S ⊆ [n] and all odd

primes p, then so is the cohomology of XR. This formula also determines a stable homotopy

decomposition of a wider class of spaces called real toric spaces (see [4]).

2.2 Projective toric manifold associated to Weyl chambers

As mentioned in Section 1, we mainly deal with the class of (real) toric manifolds associated

to the decomposition given by Weyl chambers. Let V be a finite dimensional real Euclidean

space, Φ ⊂ V a root system, and W its Weyl group. In V we have the lattice Λ = {v ∈ V |

(v, α) ∈ Z for any α ∈ Φ} which defines an integral structure, where (−,−) is the natural inner

product. For each set ∆ of simple roots in Φ we consider the cone C∆ = {v ∈ V | (v, α) >

0 for any α ∈ ∆}. These cones provide the rational polyhedral decomposition of V , i.e., the set

of cones is a fan in V . Hence, it defines a projective toric variety, which is in fact smooth.

From now on, let us consider the Weyl groups of regular types. Throughout this paper, for

the Weyl group of type An, the corresponding toric variety, its fan, the underlying simplicial

complex, the characteristic map, the corresponding real toric variety, and the Z2-characteristic

map are denoted by XAn
, ΣAn

, KAn
, λAn

, XR

An
and λR

An
, respectively. For the Weyl group of

type Bn, the corresponding notions are similarly denoted by XBn
, ΣBn

, KBn
, λBn

, XR

Bn
and

λR

Bn
, respectively.

2.3 Type An

In this subsection, we shall review a sketch of proof of Theorem 1.1 and Corollary 1.1. The

proof presented here is essentially the same with that by [16] or [6] for the special case when

the corresponding graph is a complete graph. However, we enclose this subsection for the sake

of self-contained readability.

It is well-known that the vertices of KAn
can be identified by the nonempty proper subsets

I of [n + 1] and each (ℓ − 1)-dimensional simplex of KAn
is related to a nested ℓ nonempty

proper subsets of [n + 1], that is, {Ii1 , · · · , Iiℓ} ∈ KAn
if and only if there is a permutation σ

on [ℓ] such that Iiσ(1)
⊂ · · · ⊂ Iiσ(ℓ)

. In addition, the characteristic map λAn
is

λAn
(I) =





∑

k∈I

εk, if {n+ 1} 6∈ I,

∑

k∈I\{n+1}

εk − ε1 − · · · − εn, if {n+ 1} ∈ I,

where εi is the ith standard vector of Zn. As a consequence,

λR

An
(I) =





∑

k∈I

ek, if {n+ 1} 6∈ I,

∑

k 6∈I

ek, if {n+ 1} ∈ I,

where ei is the ith standard vector of Zn
2 .

From now on, let us compute the Q-Betti number of XR

An
. By Theorem 2.1, we have to

consider (KAn
)S for all subsets S ⊂ [n]. Here are three important nontrivial steps.

For an odd number r, define Kodd
Ar

as

Kodd
Ar

:= (KAr
)[r].
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(1) Kodd
Ar

is homotopy equivalent to the wedge of spheres of dimension r−1
2 .

(2) The reduced Euler characteristic χ̃(Kodd
Ar

) is (−1)
r−1
2 ar+1.

(3) For S ⊂ [n] with |S| = r or |S| = r + 1 for some odd number r, (KAn
)S is homotopy

equivalent to Kodd
Ar

.

By (1)–(3) together with Theorem 2.1, both Theorem 1.1 and Corollary 1.1 are immediately

proved.

3 Type Bn

Let Φ be a root system of type Bn. It consists of 2n
2 roots

±εi (1 ≤ i ≤ n) and ± εi ± εj (1 ≤ i < j ≤ n),

where εi is the ith standard vector of Rn = V . One can see that the lattice Λ consists of all

integral vectors in Rn. We note that a line containing a ray of ΣBn
is the intersection of n− 1

hyperplanes normal to ∆ \ {α}, where ∆ is a set of simple roots of type Bn and α ∈ ∆, and

the direction of the ray is determined by α. A set of simple roots of type Bn forms

∆ = {µ1εσ(1) − µ2εσ(2), µ2εσ(2) − µ3εσ(3), · · · , µn−1εσ(n−1) − µnεσ(n), µnεσ(n)},

where µj = ±1 and σ : [n] → [n] is a permutation. For α ∈ ∆, there exists a unique primitive

integral vector β = (b1, · · · , bn) such that (β, α′) = 0 for all α′ ∈ ∆ \ {α} and (β, α) > 0. We

note that each component bj of β is either ±1 or 0. Then, we label the ray of ΣBn
corresponding

to α ∈ ∆ by the set I = {jbj | j = 1, · · · , n} ⊂ [±n] = {±1,±2, · · · ,±n}. More precisely,

by putting xi = µiεσ(i) − µi+1εσ(i+1) for i = 1, · · · , n − 1 and xn = µnεσ(n), if α = xi, then

β =
i∑

k=1

µkεσ(k), and, hence, the corresponding label is {µ1σ(1), · · · , µiσ(i)}. Therefore, the

vertices of KBn
can be labelled by the nonempty subsets I of [±n] satisfying

if i ∈ I, then −i 6∈ I, (∗)

and the characteristic map λBn
is

λBn
(I) =

∑

k∈I∩[n]

εk −
∑

k∈I\[n]

ε−k.

Consequently,

λR

Bn
(I) =

∑

k∈(I∪−I)∩[n]

ek,

where ei is the ith standard vector of Zn
2 .

Furthermore, one can see that each n-dimensional cone C∆ in ΣBn
corresponds to n subsets

I1, · · · , In satisfying (∗) such that I1 ( · · · ( In and vice versa. This implies that each (ℓ− 1)-

dimensional simplex of KBn
is labelled by a nested ℓ subsets of [±n] satisfying (∗), that is,

{Ii1 , · · · , Iiℓ} ∈ KBn
if and only if there is a permutation σ on [ℓ] such that Iiσ(1)

⊂ · · · ⊂ Iiσ(ℓ)
.

Example 3.1 Let us consider ΣB2 . The corresponding toric variety XB2 is CP2♯5CP
2
, and

the corresponding real toric variety XR

B2
is the connected sum of six RP2s. Let us compute the

Betti number of XR

B2
using Theorem 2.1. We express λR

B2
by a matrix and draw the geometric

realization of KB2 as below, respectively:
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where the numbers over the horizontal lines are indicators for vertices ofKB2 . Then, (KB2){1} ≃

S1 \ {{2}, {2}} is homotopy equivalent to S0, and similarly, we have (KB2){2} ≃ S0 and

(KB2){1,2} ≃
∨3

S0. Therefore, the ith Betti number of XR

B2
is

βi(XR

B2
;Q) =





1, i = 0,
5, i = 1,
0, otherwise.

From now on, let us compute the Q-Betti number of XR

Bn
. By Theorem 2.1, we have to

consider (KBn
)S for all subsets S ⊂ [n]. Given a subset S ⊂ [n], then (KBn

)S is the restriction

of KBn
by {I ∈ V (KBn

) | |S∩I±| is odd}, where V (K) is the vertex set of a simplicial complex

K.

Now let us consider the case where S = [n]. Define Kodd
Bn

as

Kodd
Bn

:= (KBn
)[n] = {σ ∈ KBn

| σ consists of I such that |I| is odd}.

We define the poset Sodd
Bn

whose vertices are the vertices of Kodd
Bn

and the partial order is

given by inclusion, and define another poset S̃odd
Bn

:= Sodd
Bn

∪{∅, [±n]} with inclusion. Note that

the order complex of Sodd
Bn

is Kodd
Bn

, and hence, χ̃(Kodd
Bn

) = µ(∅, [±n]) where µ is the Möbius

function of S̃odd
Bn

(see [14, Section 3] for details), that is,

µ(ρ, τ) =





1, if ρ = τ ,

−
∑

ρ≤σ<τ

µ(ρ, σ), if ρ ⊂ τ in S̃odd
Bn

.

When n = 0, we define by convention µ(∅, [±n]) = µ(∅, {0}) = −1.

Lemma 3.1 The absolute value of µ(∅, [±n]) is bn. More precisely,

µ(∅, [±n]) =

{
bn, if n ≡ 1, 2 (mod 4),
−bn, if n ≡ 0, 3 (mod 4).

Proof In this proof, we use i to denote the imaginary unit such that i2 = −1.

For a vertex I in S̃odd
Bn

such that I is neither ∅ nor [±n], put |I| = 2k + 1. Note that

the Möbius function µ(∅, I) depends only on |I| and µ(∅, I) = (−1)k+1a2k+1 (see the proof of

Theorem 2.9 of [6]). Hence, we have

−µ(∅, [±n]) = 1 +

⌊n−1
2 ⌋∑

k=0

(−1)k+1a2k+12
2k+1

(
n

2k + 1

)

= 1 + i

∞∑

k=0

a2k+1(2i)
2k+1

(
n

2k + 1

)
.
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Recall that the exponential generating functions of an and bn are

∞∑

n=0

an
xn

n!
= secx+ tanx

and

B(x) :=
∞∑

n=0

bn
xn

n!
=

1

cosx− sinx
= (cosx+ sinx) sec 2x,

respectively. Since ex = cos(−ix) + i sin(−ix), we have

M(x) := −
∞∑

n=0

µ(∅, [±n])
xn

n!
= ex(1 + i tan(2ix))

= ex
cos(2ix) + i sin(2ix)

cos(2ix)

= (cos(ix) + i sin(ix)) sec(2ix).

Therefore, M(ix) = (cos x−i sinx) sec 2x. Since the exponential generating function of secx has

only even degree terms, cosx sec 2x contributes the even degree terms of M(ix) and sinx sec 2x

contributes the odd degree terms of −iM(ix). Therefore, the lemma immediately follows by

comparing the coefficients of B(x) and M(x).

We shall use the following well-known lemma in [3]. This can be regarded as an alternative

definition of shellability. Recall that a simplicial complex is called shellable if it admits a

shelling.

Lemma 3.2 (see [3, Lemma 2.3]) An order F1, F2, · · · , Ft of the facets of a simplicial

complex is a shelling if and only if for every i and k with 1 ≤ i < k ≤ t, there is a j with

1 ≤ j < k such that Fi ∩ Fk ⊆ Fj ∩ Fk and |Fj ∩ Fk| = |Fk| − 1.

Lemma 3.3 For any integer n, Kodd
Bn

is shellable.

Proof Note that since KBn
bounds a convex polytope, it is shellable. Choose a shelling

σ : F1, · · · , Ft of KBn
. For each m ∈ [t], let F ′

m be the face obtained from Fm by deleting

all vertices of Fm corresponding to even subsets of [±n]. Note that for any m ∈ [t], F ′
m is a

facet of Kodd
Bn

. Then consider an ordering σ′ : F ′
1, · · · , F

′
t of the facets of Kodd

Bn
, and then we

delete F ′
m whenever F ′

m = F ′
ℓ for some ℓ such that ℓ < m. Let σ∗ : F ∗

1 , F
∗
2 , · · · , F

∗
s be the

resulting ordering, that is, the ordering obtained from σ′ by dropping all facets of Kodd
Bn

not

firstly appeared in σ′. Clearly, σ∗ is an ordering of the facets of Kodd
Bn

. We shall show that

σ∗ is a shelling of Kodd
Bn

. By Lemma 3.2, it is enough to show that, for every i and k with

1 ≤ i < k ≤ s, there is j with 1 ≤ j < k such that

(1) F ∗
i ∩ F ∗

k ⊆ F ∗
j ∩ F ∗

k , and

(2) |F ∗
j ∩ F ∗

k | = |F ∗
k | − 1.

For each m ∈ [s], let dm ∈ [t] be the smallest integer such that F ∗
m ⊂ Fdm

, i.e., Fdm
is the first

facet in σ containing F ∗
m. Note that for all ℓ,m ∈ [s],

dℓ < dm if and only if ℓ < m. (3.1)

Take i and k with 1 ≤ i < k ≤ s. Then F ∗
i ⊂ Fdi

and F ∗
k ⊂ Fdk

. Since di < dk by (3.1), by

considering two facets Fdi
and Fdk

of KBn
together with Lemma 3.2, there is J with 1 ≤ J < dk
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such that Fdi
∩ Fdk

⊆ FJ ∩ Fdk
and |FJ ∩ Fdk

| = |Fdk
| − 1. Then we consider a facet F ′

J of

Kodd
Bn

. Let j be the smallest integer such that F ∗
j = F ′

J . Then dj ≤ J by definition, and so we

have dj ≤ J < dk. Thus j < k by (3.1), and it indeed satisfies the conditions (1) and (2) as

follows.

Let V be the set of vertices of Kodd
Bn

. Note that F ∗
i ∩ F ∗

k = Fdi
∩ Fdk

∩ V and F ∗
j ∩ F ∗

k =

FJ ∩ Fdk
∩ V . Therefore (1) follows from the fact that Fdi

∩ Fdk
⊆ FJ ∩ Fdk

. Moreover, since

F ∗
j ∩ F ∗

k = FJ ∩ Fdk
∩ V and |FJ ∩ Fdk

| = |Fdk
| − 1, we have |F ∗

j ∩ F ∗
k | ≥ |F ∗

k | − 1. Since j 6= k

implies that F ∗
j 6= F ∗

k , (2) is proved.

Note that Kodd
Bn

is homotopy equivalent to a wedge of uniform spheres Sd as it is shellable.

One can easily see that the dimension of the sphere is d = ⌊n−1
2 ⌋ by observing the dimension

of the facets. Since the absolute value of the reduced Euler characteristic of Kodd
Bn

is bn by

Lemma 3.1, we conclude that Kodd
Bn

≃
∨bn S⌊n−1

2 ⌋.

Remark 3.1 Here we give an explicit shelling of Kodd
Bn

. We define an ordering ≺ on [±n],

1 ≺ 2 ≺ · · · ≺ n ≺ −1 ≺ · · · ≺ −n

(just fix an ordering so that the positive integers proceed to the negative integers) and we define

an order lexicographically induced by ≺ on the set of all maximal chains of S̃odd
Bn

(comparing

the smaller element). We also denote by the same symbol ≺ the order on the set of all maximal

chains. More precisely, for two maximal chains σ and σ′ such that

σ : ∅ = I0 ( I1 ( I2 ( · · · ( Ir ( Ir+1 = [±n],

σ′ : ∅ = I ′0 ( I ′1 ( I ′2 ( · · · ( I ′r ( I ′r+1 = [±n],

we say σ′ ≺ σ if there exists 1 ≤ i ≤ r such that I ′i <lexi Ii (comparing lexicographically under

the ordering ≺ on [±n]) and I ′j = Ij for any j < i. Then it can be shown that this ordering

on maximal chains gives a shelling of S̃odd
Bn

.

Now, let us return to the case where S 6= [n]. If S is an empty set, so is (KBn
)S .

Lemma 3.4 (see [6, Lemma 5.2]) Let I be a vertex of a simplicial complex K and suppose

that the link of I, LkI, is contractible. Then K is homotopy equivalent to the complex K \ StI,

where StI is the star of I.

Lemma 3.5 For a positive integer n ≥ 3, for S ⊂ [n], (KBn
)S is homotopy equivalent to

(KBn
)′S , where (KBn

)′S is obtained from (KBn
)S by deleting vertices I in (KBn

)S such that

I± 6⊂ S.

Proof For simplicity, we let K = (KBn
)S and K ′ = (KBn

)′S . We shall show that we can

eliminate stars of vertices in K \K ′, one by one, from K to K ′, without changing the homotopy

type. First, for any vertex I of K, I ∩ S 6= ∅. In addition, two vertices I and J meet in K if

and only if I ⊂ J or J ⊂ I.

Let I be a vertex of K \K ′ such that |I± ∩ S| = 1, say I± ∩ S = {x}. Let J be a vertex in

K such that J± = {x} and J ( I. Take any L ∈ LkI. If I ⊂ L, then J ⊂ L, and so L meets J .

Suppose that L ⊂ I. Then L± ∩ S is a subset of I± ∩ S. Since L is a vertex of K, L± ∩ S 6= ∅.

Therefore L± ∩ S = I± ∩ S = {x} = J± and so J± ⊂ L±. Since J± ⊂ L± ⊂ I±, J ⊂ I and

L ⊂ I, it follows that J ⊂ L, and so L meets J .
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Hence, LkI is contractible, and so K is homotopy equivalent to K \ StI by Lemma 3.4. By

redefining K := K \ StI and repeating the argument, we can conclude that the star of any

vertex I with |I± ∩ S| = 1 can be eliminated.

Inductively, assume that we could eliminate all vertices I ∈ K \K ′ such that |I± ∩ S| < j,

and let K∗ be the simplicial complex obtained by deleting stars of all those vertices, where

j ≥ 2. Take a smallest vertex I ∈ K∗ \K ′ such that |I± ∩ S| = j. Let J be a vertex in K∗

such that I± ∩ S = J± and J ⊂ I. (Note that J ∈ K ′ and so J is in K∗ and I 6= J .) Take any

L ∈ LkI in K∗. If I ⊂ L, then J ⊂ L, and so L meets J . Suppose that L ⊂ I. Then L± ∩ S

is a subset of I± ∩ S = J±. If |L± ∩ S| < j, then such L should have already been deleted by

our induction hypothesis. Thus |L± ∩ S| = j and so L± ∩ S = J±. Therefore J± ⊂ L±. Since

J ⊂ I and L ⊂ I, we have J ⊂ L, and so L meets J .

Hence, LkI is contractible, and so K∗ is homotopy equivalent to K∗ \ StI by Lemma 3.4.

By redefining K∗ := K∗ \ StI and repeating the argument, we can conclude that the star of

any vertex I with |I± ∩ S| = j can be eliminated in an increasing order of the size |I± ∩ S|.

Lemma 3.6 Let r = |S|. Then (KBn
)S is homotopy equivalent to Kodd

Br
.

Proof By Lemma 3.5, it clearly follows.

Theorem 3.1 The ith Q-Betti number βi(XR

Bn
;Q) of XR

Bn
is

βi(XR

Bn
;Q) =

(
n

2i

)
b2i +

(
n

2i− 1

)
b2i−1.

Furthermore, their integral cohomologies of XR

Bn
are p-torsion free for all odd primes p.

Proof Let S ⊂ [n] and assume that |S| = r. By Lemma 3.6, (KBn
)S ∼= Kodd

Br
. We recall that

(KBr
)S ∼=

∨br S⌊ r−1
2 ⌋. Hence, the homotopy type of (KBn

)S only depends on the cardinality

of S. For a fixed i and a field k whose characteristic is not equal to 2, by Theorem 2.1,

βi(XR

Bn
;k) =

∑

S

β̃i−1((KBn
)S ;k) =

n∑

r=0

δi−1,⌊ r−1
2 ⌋

(
n

r

)
br,

where δi,j = 1 if i = j and 0 otherwise. It proves the theorem.
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