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Abstract The author constructs a family of manifolds, one for each n ≥ 2, having a
nontrivial Massey n-product in their cohomology for any given n. These manifolds turn out
to be smooth closed 2-connected manifolds with a compact torus Tm-action called moment-
angle manifolds ZP , whose orbit spaces are simple n-dimensional polytopes P obtained
from an n-cube by a sequence of truncations of faces of codimension 2 only (2-truncated
cubes). Moreover, the polytopes P are flag nestohedra but not graph-associahedra. The
author also describes the numbers β−i,2(i+1)(Q) for an associahedron Q in terms of its
graph structure and relates it to the structure of the loop homology (Pontryagin algebra)
H∗(ΩZQ), and then studies higher Massey products in H∗(ZQ) for a graph-associahedron
Q.
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1 Introduction

The main aim of this work is to show that one of the key objects of study in toric topology—

the moment-angle manifold ZP of a simple convex n-dimensional polytope P—gives us an

example of a smooth closed 2-connected manifold with a compact torus action such that its

rational cohomology ring may contain a nontrivial higher Massey product of order n. These

polytopes P are 2-truncated cubes and, moreover, flag nestohedra (see [22–23]). The class of

2-truncated polytopes was studied in toric topology by Buchstaber and Volodin, who proved

that flag nestohedra can be realized as 2-truncated cubes and that Gal conjecture on γ-vectors

of simple polytopes holds for 2-truncated cubes and, therefore, for all flag nestohedra (see [7]).

We generalize in the polytopal sphere case the result of Baskakov [2] who constructed a family

of triangulated spheres K whose moment-angle complexes ZK have nontrivial triple Massey

products of 3-dimensional classes in H∗(ZK). In the lowest dimension Baskakov’s construction

gives a 2-sphere with 8 vertices K—the only K with a nontrivial triple Massey product in

H∗(ZK) among all the fourteen 2-spheres on 8 vertices. Denham and Suciu [9] generalized the

result of Baskakov by proving a combinatorial criterion for K to give a ZK with a nontrivial

triple Massey product of 3-dimensional classes in H∗(ZK).
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Denote by K a simplicial complex of dimension n − 1 on the vertex set [m] = {1, · · · ,m}

and by k the base field or the ring of integers. Let k[v1, · · · , vm] be a graded polynomial algebra

on m variables, deg(vi) = 2. The Stanley-Reisner ring (or the face ring) of K over k is the

quotient ring

k[K] = k[v1, · · · , vm]/IK ,

where IK is the ideal generated by square free monomials vi1 · · · vik such that {i1, · · · , ik} is not

a simplex in K. The monomial ideal IK is called the Stanley-Reisner ideal of K. Then k[K]

has a structure of a k-algebra and a module over k[v1, · · · , vm] via the quotient projection.

In what follows we denote by P a simple n-dimensional convex polytope with m facets (i.e.,

faces of codimension 1) F1, · · · , Fm. Such a polytope P can be defined as a bounded intersection

of m halfspaces:

P =
{
x ∈ R

n : 〈a i, x 〉+ bi > 0 for i = 1, · · · ,m
}
, (1.1)

where a i ∈ Rn, bi ∈ R. We assume that the hyperplanes defined by the equations 〈a i, x 〉+bi = 0

are in general position, that is, at most n of them meet at a single point. We also assume that

there are no redundant inequalities in (1.1), that is, no inequality can be removed from (1.1)

without changing P . Then the facets of P are given by

Fi =
{
x ∈ P : 〈a i, x 〉+ bi = 0

}
for i = 1, · · · ,m.

Let AP be the m × n matrix of row vectors a i, and denote by bP the column vector of

scalars bi ∈ R. Then we can rewrite (1.1) as

P = {x ∈ R
n : APx + bP > 0}.

Consider the affine map

iP : Rn → R
m, iP (x ) = APx + bP

which embeds P into

R
m
> = {y ∈ R

m : yi > 0 for i = 1, · · · ,m}.

Definition 1.1 We define the space ZP as a pullback in the following commutative diagram

(see [5, Lemma 3.1.6, Construction 3.1.8]):

ZP
iZ−−−−→ Cm

y
yµ

P
iP−−−−→ Rm

>

where µ(z1, · · · , zm) = (|z1|2, · · · , |zm|2). The latter map may be thought of as the quotient map

for the coordinatewise action of the standard torus

T
m = {z ∈ C

m : |zi| = 1 for i = 1, · · · ,m}

on Cm. Therefore, Tm acts on ZP with a quotient space P , iZ is a Tm-equivariant embedding

with a trivial normal bundle, and ZP is embedded into Cm as a nondegenerate intersection of

Hermitian quadrics. One can easily see that ZP has a structure of a smooth closed manifold of

dimension m+ n, called the moment-angle manifold of P .
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Suppose (X,A) = {(Xi, Ai)}
m
i=1 is a set of topological pairs. The following construction

appeared firstly in the work of Buchstaber and Panov [5] and then was studied intensively and

generalized in the works of Bahri, Bendersky, Cohen, Gitler [1], Grbić and Theriault [13], Iriye

and Kishimoto [16], and others.

Definition 1.2 A polyhedral product is a topological space:

(X,A)K =
⋃

I∈K

(X,A)I ,

where (X,A)I =
m∏
i=1

Yi for Yi = Xi, if i ∈ I, and Yi = Ai, if i /∈ I. Particular cases

of a polyhedral product (X,A)K include moment-angle-complexes ZK = (D2, S1)K and real

moment-angle complexes RK = (D1, S0)K .

Denote byKP the nerve complex of P , i.e., the boundary ∂P ∗ of the dual simplicial polytope.

It can be viewed as an (n− 1)-dimensional simplicial complex on the set [m], whose simplices

are subsets {i1, · · · , ik} such that Fi1 ∩ · · · ∩ Fik 6= ∅ in P . By [6, Theorem 6.2.4], ZP is

T
m-equivariantly homeomorphic to the moment-angle-complex ZKP

.

The Tor-groups of K acquire a topological interpretation by means of the following result

due to Buchstaber and Panov.

Theorem 1.1 (see [6, Theorem 4.5.4] or [21, Theorem 4.7]) The cohomology algebra of the

moment-angle-complex ZK is given by the isomorphisms

H∗,∗(ZK ; k) ∼= Tor∗,∗
k[v1,··· ,vm](k[K], k)

∼= H [Λ[u1, · · · , um]⊗ k[K], d]

∼=
⊕

I⊂[m]

H̃∗(KI ; k),

where bigrading and differential in the cohomology of the differential bigraded algebra are defined

by

bideg ui = (−1, 2), bideg vi = (0, 2), dui = vi, dvi = 0.

In the third row, H̃∗(KI) denotes the reduced simplicial cohomology of the induced subcomplex

KI of K (the restriction of K to I ⊂ [m]). The last isomorphism is the sum of isomorphisms

Hp(ZK) ∼=
∑

I⊂[m]

H̃p−|I|−1(KI),

and the ring structure is given by the maps

H̃p−|I|−1(KI)⊗ H̃q−|J|−1(KJ) → H̃p+q−|I|−|J|−1(KI∪J), (1.2)

which are induced by the canonical simplicial maps KI∪J →֒ KI ∗KJ (join of simplicial com-

plexes) for I ∩ J = ∅ and zero otherwise.

Additively the following theorem of Hochster holds.

Theorem 1.2 (see [15]) For any simplicial complex K on m vertices, we have

Tor−i,2j
k[v1,··· ,vm](k[K], k) ∼=

⊕

J⊂[m]
|J|=j

H̃j−i−1(KJ ; k).
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The ranks of the bigraded components of the Tor-algebra

β−i,2j(k[K]) = rkk Tor
−i,2j
k[v1,··· ,vm](k[K], k)

are called the bigraded Betti numbers of k[K] or K, when k is fixed. In what follows we need

a particular case of the Hochster result for j = i+ 1. One has

β−i,2(i+1)(P ) =
∑

J⊂[m]
|J|=i+1

(cc(PJ )− 1),

where PJ =
⋃
j∈J

Fj and cc(PJ ) equals the number of connected components of PJ .

Due to [6, Construction 3.2.8, Theorem 3.2.9], the Tor-algebra of K acqures a multigrading

and the multigraded components can be calculated in terms of induced subcomplexes.

Theorem 1.3 For any simplicial complex K on m vertices, we have

Tor−i,2J
k[v1,··· ,vm](k[K], k) ∼= H̃ |J|−i−1(KJ ; k),

where J ⊂ [m] and Tor−i,2a
k[v1,··· ,vm](k[K], k) = 0, if a is not a (0, 1)-vector.

Moreover, if we denote by R(K) = Λ[u1, · · · , um] ⊗ k[K]/(v2i = uivi = 0, 1 ≤ i ≤ m) a

graded algebra with the differential d as in Theorem 1.1, then R(K) also acquires multigrading

and the following isomorphism holds:

Tor−i,2a
k[v1,··· ,vm](k[K], k) ∼= H−i,2a[R(K), d]

for any simplicial complex K.

2 Nestohedra and Graph-Associahedra

We begin with a definition of a family of simple polytopes called nestohedra and state the

result of Buchstaber and Volodin on geometric realization of flag nestohedra.

Definition 2.1 Let [n+ 1] = {1, 2, · · · , n+ 1}, n ≥ 2. A building set on [n+ 1] is a family

of nonempty subsets B = {S ⊆ [n+ 1]}, such that

(1) {i} ∈ B for all 1 ≤ i ≤ n+ 1,

(2) if S1 ∩ S2 6= ∅, then S1 ∪ S2 ∈ B.

A building set is called connected if [n+ 1] ∈ B.

Then a nestohedron is a simple convex n-dimensional polytope PB =
∑
S∈B

∆S, where in the

Minkowski sum, one has

∆S = conv{ej | j ∈ S} ⊂ R
n+1.

Note that facets of PB are in 1 − 1 correspondence with proper elements S in B (see [10] and

[6, Proposition 1.5.11]).

Example 2.1 If P is a combinatorial n-simplex, then the subset of 2[n+1] consisting of all

the singletons {i}, 1 ≤ i ≤ n + 1 and the whole set [n + 1] gives a connected building set B,

such that P = PB for any n ≥ 2.
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If P is a combinatorial n-cube, then the following set B consisting of

{1}, · · · , {n+ 1}, {1, 2}, {1, 2, 3}, · · · , [n+ 1]

will be a connected building set for P for any n ≥ 2.

Any n-dimensional nestohedron PB on a connected building set B can be obtained from an

n-simplex by a sequence of its face truncations. In order to give the precise statement, suppose

B0 ⊂ B1 being building sets on [n + 1], and S ∈ B1. Then define a decomposition of S into

elements of B0 as S = S1⊔· · ·⊔Sk, where Sj are pairwise nonintersecting elements of B0 and k

is minimal among such disjoint representations of S. One can see easily that this decomposition

exists and is unique.

Theorem 2.1 (see [6, Lemma 1.5.17, Theorem 1.5.18]) Every nestohedron PB correspond-

ing to a connected building set B can be obtained from a simplex by a sequence of face trunca-

tions.

More precisely, let B0 ⊂ B1 be connected building sets on [n+1]. Then PB1
is combinatorially

equivalent to the polytope obtained from PB0
by a sequence of truncations at the faces Gi =

ki⋂
j=1

FSi
j
corresponding to the decompositions Si = Si

1 ⊔ · · · ⊔ Si
ki

of elements Si ∈ B1 \ B0,

numbered in any order that is inverse to inclusion (i.e., Si ⊃ Si′ ⇒ i 6 i′).

Buchstaber suggested to call a simple convex n-dimensional polytope P a 2-truncated cube

if it can be obtained from an n-cube by a sequence of cut off some faces of codimension 2 only.

It is allowed to cut off any codimension 2 face that we have on a previous step of the sequence

of face truncations.

Example 2.2 Here is an example of a 3-dimensional 2-truncated cube P which we shall

use later.

Figure 1 A 2-truncated cube P .

Then any flag nestohedron can be realized as a 2-truncated cube. The following statement

holds.

Theorem 2.2 (see [7, Proposition 6.1, Theorem 6.5]) A nestohedron PB is a flag polytope

if and only if it is a 2-truncated cube.
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More precisely, if PB is a flag polytope, then there exists a sequence of building sets B0 ⊂

B1 ⊂ · · · ⊂ BN = B, where PB0
is a combinatorial cube, Bi = Bi−1 ∪ {Si}, and PBi

is

obtained from PBi−1
by a 2-truncation at the face FSj1

∩FSj2
⊂ PBi−1

of codimension 2, where

Si = Sj1 ⊔ Sj2 , and Sj1 , Sj2 ∈ Bi−1.

The next family of polytopes introduced by Carr and Devadoss [8] are flag nestohedra and,

therefore, by Theorem 2.2 can be realized as 2-truncated cubes.

Definition 2.2 A graphical building set B(Γ) for a (simple) graph Γ on the vertex set [n+1]

consists of such S that the induced subgraph ΓS on the vertex set S ⊂ [n + 1] is a connected

graph.

Then PΓ = PB(Γ) is called a graph-associahedron.

Example 2.3 The following families of graph-associahedra are of particular interest in

convex geometry, combinatorics and representation theory.

(1) Γ is a complete graph on [n+ 1].

Then PΓ = P en is a permutohedron, see Figure 2.

Figure 2 3-dimensional permutohedron and the corresponding graph.

(2) Γ is a stellar graph on [n+ 1].

Then PΓ = Stn is a stellahedron, see Figure 3.

Figure 3 3-dimensional stellahedron and the corresponding graph.
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(3) Γ is a cycle graph on [n+ 1].

Then PΓ = Cyn is a cyclohedron (or Bott-Taubes polytope, see [4]), see Figure 4.

Figure 4 3-dimensional cyclohedron and the corresponding graph.

(4) Γ is a chain graph on [n+ 1].

Then PΓ = Asn is an associahedron (or Stasheff polytope, see [24]), see Figure 5.

Figure 5 3-dimensional associahedron and the corresponding graph.

In order to determine the nerve complex KP of a graph-associahedron P = PΓ, we should

describe the combinatorial structure of its face poset. The following is a reformulation of the

general property stated in [6, Theorem 1.5.13].

Proposition 2.1 Facets of PΓ are in 1-1 correspondence with non-maximal connected sub-

graphs of Γ.

Moreover, a set of facets corresponding to such subgraphs Γi1 , · · · ,Γis has a nonempty in-

tersection if and only if

(1) For any two subgraphs Γik ,Γil , either they do not have a common vertex or one is a

subgraph of another;

(2) If any two of the subgraphs Γik1
, · · · ,Γikl

, l > 2 do not have common vertices, then their

union graph is disconnected.
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Note that if P is a permutohedron, then its facets F1 and F2 have a nonempty intersection

if and only if the corresponding subgraphs Γ1 and Γ2 are subgraphs of one another.

3 Bigraded Betti Numbers of Graph-Associahedra

In this section we describe certain bigraded Betti numbers of associahedra P in terms of

combinatorics of their graphs Γ. This approach can be viewed as another argument to prove

our previous result (see [18, Theorem 2.9]) and can be used to compute bigraded Betti numbers

β−i,2(i+1)(P ) of all graph-associahedra P = PΓ. We begin with a following generalization of a

result of Fenn (see [11, Theorem 4.6.4]).

Proposition 3.1 Suppose P = PB1
and Q = PB2

are n-dimensional nestohedra on con-

nected building sets Bi, i = 1, 2 and J ⊂ B1 ⊂ B2. Consider the following set

J = J ⊔ {S ∈ B2 \B1 | ∃S1 ∈ J, S1 ⊂ S}.

Then Pn
J is homeomorphic to Qn

J
.

Proof By Theorem 2.1, any nestohedron PB on a connected building set B ⊂ 2[n+1] can

be obtained as a result of a sequence of face truncations starting with a simplex ∆n. Thus the

nerve complex of our nestohedron KP = ∂P ∗ can be obtained from a boundary of a simplex as

a result of a number of barycentric subdivisions in some of its simplices. Moreover, Theorem 2.1

states that the new vertices (barycenters of those simplices) correspond to the decompositions

of the elements in B2 \ B1 in a disjoint unions of elements of B1. Applying the descriprion of

the face poset of Q in [6, Theorem 1.5.13] finishes the proof as any triangulation of a topological

space is homeomorphic to the space itself.

Another way to prove this statement is similar to that of the proof in [11, Theorem 4.6.4].

Indeed, the centers of the geometric realizations of P and Q in Rn+1 are Minkowski sums of

the centers of their simplices from the definition of a nestohedron. Then we can translate P

and Q so that their centers coincide and project the boundary of P onto the boundary of Q

outwards from their common center. Obviously, the image of PJ is in Qn

J
and every facet in Qn

J

contains a point in the image of PJ . Finally, we make a continuous bijective transformation of

the image (on each of the facet in Qn

J
) onto the whole Qn

J
.

In particular, when B2 = 2[n+1] and Q is a permutohedron, we get the result of Fenn [11,

Theorem 4.6.4]. In order to describe the bigraded Betti numbers of associahedra combinatori-

ally, we introduce the following notion of a special subgraph γ in Γ.

Definition 3.1 Suppose Γ is a graph. For any of its connected subgraphs γ, one can compute

the number i(γ) of such connected subraphs γ̃ in Γ that either γ∩ γ̃ 6= ∅, γ, γ̃ (in this case we say

they have a nontrivial intersection) or γ ∩ γ̃ = ∅, γ ⊔ γ̃ is a connected subgraph in Γ. From now

on we describe a subgraph in Γ as a vertex set meaning that the subgraph consists of its vertices

and all edges in Γ connecting these vertices (induced subgraph). We denote by imax = imax(Γ)

the maximal value of i(γ) over all connected subgraphs γ in Γ. A connected subgraph γ, on

which imax is achieved, will be called a special subgraph.

Example 3.1 On Figure 5, we have 3 special subgraphs: {1, 2}, {1, 4} and {2, 3}. The

number imax is equal to 4 and is achieved, for example, on γ = {1, 2} with the graphs γ̃ being
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{3}, {4}, {1, 4}, {2, 3} (the latter two intersect γ nontrivially).

The following statement for the bigraded Betti numbers of the type β−i,2(i+1)(P ) for asso-

ciahedra P holds.

Theorem 3.1 Let P = PΓ be an associahedron of dimension n ≥ 3. Then for i > imax(Γ),

one has

β−i,2(i+1)(P ) = 0.

Denote the number of special subgraphs in Γ by s. Let ω = −imax, 2(imax + 1). Then

βω(P ) = s.

Proof By Theorem 1.2 and Proposition 2.1 it is sufficient to prove the following three cases.

(a) We have cc(PJ) ≤ 2 if |J | > imax. In the latter case, if PJ = PJ1
⊔ PJ2

with |J1,2| ≥ 2,

then there exists another J ′ ⊂ B(Γ) such that PJ′ = PJ′

1
⊔ PJ′

2
with |J ′

1| = 1 and |J ′| > |J |.

(b) Suppose cc(PJ ) = 2, PJ = PJ1
⊔ PJ2

, |J | > imax. Then either |J1| = 1 or |J2| = 1.

Moreover, if |J | = imax+1, |J1| = 1 then J1 consists of a special subgraph of Γ and J2 consists

of all the imax connected subgraphs in Γ determined in the definition of a special graph above.

(c) Suppose |J | > imax + 1. Then cc(PJ) = 1.

For an associahedron Asn the statement (a) follows from [18, Lemmas 2.13–2.14], the state-

ment (b) follows from [18, Lemmas 2.15–2.16] and the statement (c) follows from [18, Lemma

2.17].

Remark 3.1 Using Propostion 2.1 one can see easily that Theorem 3.1 states that the

last nonzero bigraded Betti number βω(P ) in the sequence of β−i,2(i+1)(P ), 1 ≤ i ≤ m − n is

achieved precisely on PJ which is a union of a facet of P corresponding to a special subgraph in

Γ and all the facets of P that do not intersect this facet. All the PJ with a greater cardinality

|J | of J are connected spaces in R
n. An argument similar to that in the proof of Theorem 3.1

shows the same holds for a permutohedron P en, n ≥ 3 and applying Proposition 3.1 one can

get the same result for any graph-associahedron on a connected graph Γ.

As an application of Theorem 3.1, the values of imax(Γ) and s can be computed explicitly

in terms of the combinatorics of the graph Γ. Using induction on the polytope dimension n

for combinatorial enumerations in Γ it can be seen that a special graph γ is a path graph in

Γ on either
[
n+1
2

]
or

[
n
2

]
+ 1 vertices. This follows also from the proof of [18, Theorem 2.9],

where the special graphs correspond to the longest diagonals in a regular (n + 3)-gon G and

the numbers of the vertices in such a graph are the numbers of vertices of G lying in one of the

open halves of G divided by the diagonal. Thus, we get the following result (see [18, Theorem

2.9]).

Corollary 3.1 For an associahedron PΓ of dimension n ≥ 3, one has the following values

of imax = q(n) and s:

β−q,2(q+1)(Asn) =






n+ 3, if n is even,

n+ 3

2
, if n is odd,

β−i,2(i+1)(Asn) = 0 for i > q + 1,



1296 I. Limonchenko

where q = q(n) is

q = q(n) =





n(n+ 2)

4
, if n is even,

(n+ 1)2

4
, if n is odd.

As graph-associahedra are flag polytopes, we can apply the previous result to studying the

loop homology algebra H∗(ΩZP ) for associahedra P . Namely, due to [12, Theorem 4.3] the

minimal number of multiplicative generators of H∗(ΩZP ) is equal to
m−n∑
i=1

β−i,2(i+1)(P ). Then

Theorem 3.1 gives us lower bounds for the number of multiplicative generators in the Pontryagin

algebra of ZP .

4 Massey Products

In this section we prove the main result of this article concerning Massey higher products

in H∗(ZP ) (see Theorem 4.2) and a criterion when a nontrivial triple Massey product of 3-

dimensional classes exists in H∗(ZPΓ
) (see Proposition 4.1). We first prove the statement on

triple Massey products in the graph-associahedron PΓ case, where Γ is an arbitrary (possibly

disconnected) graph.

Let us state the following theorem due to Denham and Suciu which gives a combinatorial cri-

terion for a simplicial complexK to produce a nontrivial triple Massey product of 3-dimensional

classes in H∗(ZK).

Theorem 4.1 (see [9, Theorem 6.1.1]) The following are equivalent:

(1) There exist cohomology classes αi ∈ H3(ZK), i = 1, 2, 3 for which 〈α1, α2, α3〉 is defined

and nontrivial.

(2) The underlying graph (1-skeleton) of K contains an induced subgraph isomorphic to one

of the five graphs in Figure 6.

Moreover, all Massey products arising in this fashion are decomposable.

Figure 6 The five obstruction graphs.

Applying Theorem 4.1 to the graph-associahedra case gives us the following result.

Proposition 4.1 There is a nontrivial triple Massey product 〈α1, α2, α3〉 of 3-dimensional

cohomology classes αi ∈ H3(ZPΓ
) for i = 1, 2, 3 if and only if there is a connected component

of Γ on m ≥ 4 vertices which is different from a complete graph K4.

Proof We start with a connected graph Γ case. Suppose that the number of vertices in Γ is

less than 4. Then PΓ is either a point, a segment, a pentagon or a hexagon. The corresponding



Topology of Moment-Angle Manifolds Arising from Flag Nestohedra 1297

moment-angle manifold ZP is either a disk D2, a sphere S3, or a connected sum of products

of spheres respectively (see [3, 20]). These manifolds are formal spaces, therefore, there are no

nontrivial higher Massey products in H∗(ZP ).

Suppose that there are 4 vertices in Γ. There are 6 combinatorially different connected

graphs Γ on 4 vertices, thus, giving 6 combinatorially different 3-dimensional graph-associahedra

PΓ. If Γ is a complete graph K4, then P = PΓ is a permutohedron and the boundary of its

dual simplicial polytope K = KP is combinatorially equivalent to a barycentric subdivision of

a boundary of a 3-simplex. As there are no induced 5-cycles in K and the first two graphs in

Figure 6 can not also be induced graphs in K, by Theorem 4.1 there are no nontrivial triple

Massey products in H∗(ZP ). On the other hand, using Figures 2–5 and Theorem 2.1 one can

check easily that the third (middle) of the five graphs in the Figure 6 is an induced subgraph

in the underlying graph (1-skeleton) of KP for P being any of the other five 3-dimensional

graph-associahedra on a connected graph with 4 vertices. The case of a connected graph on 4

vertices now holds from Theorem 4.1.

Suppose now, that Γ is a connected graph on more than 4 vertices. Using induction on the

number of edges in Γ, we get an induced subgraph γ in Γ on 4 vertices. Using Proposition 2.1 the

induced subcomplex in KP , P = PΓ on the vertex set corresponding to all connected subgraphs

in γ 6= K4 will give us a nontrivial triple Massey product in H∗(ZP ) by the argument above.

On the other hand, if any connected subgraph on 4 vertices in Γ is a complete graph K4, then

Γ is a complete graph Kn+1. Indeed, consider two different vertices α and β in Γ. Then there

is a connected subgraph containing them in Γ. Such a graph γ with a minimal number of edges

will obviously be a path between α and β. If it has more than 2 edges then it has more than 3

vertices and thus contains K4 as an induced graph on some 4 of its vertices, thus γ being not

minimal (any pair of vertices in K4 is connected by one edge). Similarly, if γ has 2 edges then

one of its 3 vertices is conected to another vertex of Γ (as Γ has more than 4 vertices and is

connected) and we get K4 as an induced subgraph. So, γ is not minimal again. Thus, γ has

one edge, i.e., α and β are connected by an edge in Γ and Γ is a complete graph.

It remains to consider the case when Γ is a complete graph Kn+1, n ≥ 4 and P = PΓ is a

permutohedron. Note that KQ is an induced subcomplex in KP for any such P when Q is a

4-dimensional permutohedron. Consider the graph Γ = K5 for Q and an induced subgraph in

KQ on the following vertices:

{1}, {2}, {1, 3}, {1, 2, 4}, {1, 2, 3, 4}, {1, 2, 3, 5}.

One can see easily that this induced subgraph is the first (left) graph in Figure 6. By Theo-

rem 4.1 and Theorem 1.1 (see (1.2)), any permutohedron P of dimension 4 and greater gives

us a nontrivial triple Massey product in H∗(ZP ).

Finally, the case of a disconnected graph Γ follows from Proposition 2.1 and Theorem 1.1

and the connected graph case as if two graphs Γ1 and Γ2 are disjoint, then for their union graph

Γ, one gets PΓ = PΓ1
× PΓ2

and the moment-angle functor Z preserves products of polytopes

(see [6, Chapter 4]). This finishes the proof.

Remark 4.1 Note that each of the six 3-dimensional graph-associahedra P = PΓ mentioned

above is a 2-truncated cube and, moreover, P e3 can be obtained from Cy3 by cut off its 2 non-

adjacent edges, if realized as a simplex truncation (see Theorem 2.1 and Figures 2 and 4). As
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ZP for P = In is a product of spheres and, therefore, is a formal manifold, it follows that a

nontrivial higher Massey product in H∗(ZP ) can either appear or vanish after a (codimension

2) face truncation (or after a stellar subdivision in the dual simplicial sphere KP ).

Example 4.1 Consider P = P e3 (see Figure 2). It has n = 3 and m = 14. Letting us

label its facets by the numbers 1, · · · , 14 such that the bottom and upper 6-gon facets are 1

and 14 respectively, the bottom facets are labeled by 2, · · · , 7 and the upper facets are labeled

by 8, · · · , 13, both clockwisely.

Consider the following 3-dimensional cocycles:

a1 = v1u14, a2 = v6u10, a3 = v8u4, a4 = v2u12.

They correspond to 4 pairs of parallel facets of P if realized as a result of face truncations from

∆3. Suppose that they are representatives of the cohomology classes αi ∈ H3(ZP ), that is,

αi = [ai] for i = 1, · · · , 4.

Then we get the following defining systemA (see [17]) for the Massey 4-product 〈α1, α2, α3, α4〉

(up to signs):

a13 = v6u1u14u10, a24 = v6u10u8u4, a35 = v2u8u4u12,

a14 = v6u1u8u4u10u14, a25 = 0,

so 0 ∈ 〈α1, α2, α3, α4〉. Thus the two 3-products 〈α1, α2, α3〉 and 〈α2, α3, α4〉 are defined and

vanish simultaneously and the 4-product 〈α1, α2, α3, α4〉 is defined and trivial.

Remark 4.2 Note that the same calculation works in full generality, namely, if P =

P en, n ≥ 2 and the classes αi ∈ H3(ZP ), 1 ≤ i ≤ n + 1 are represented by (n + 1) pairs

of the parallel permutohedra facets (see Figure 2), then 〈α1, · · · , αn+1〉 is defined and trivial.

Similarly, if P = Stn, n ≥ 2 and the classes αi ∈ H3(ZP ), 1 ≤ i ≤ n are represented by n pairs

of the parallel stellahedra facets (see Figure 3), then 〈α1, · · · , αn〉 is defined and trivial.

We next consider a particular family of 2-truncated n-cubes P , one for each dimension n,

for which ZP has a nontrivial Massey product of order n.

Definition 4.1 Suppose that In = [0, 1]n, n ≥ 2 is an n-dimensional cube with facets

F1, · · · , F2n, such that Fi, 1 ≤ i ≤ n contain the origin 0, a unit inner normal vector to

Fi, 1 ≤ i ≤ n is (0, · · · , 1, · · · , 0) with 1 in the ith position, Fi and Fn+i, 1 ≤ i ≤ n being

parallel. Then we define P as a result of a consecutive cut of faces of codimension 2 from In,

having the following Stanley-Reisner ideal:

I = (vkvn+k+i, 0 ≤ i ≤ n− 2, 1 ≤ k ≤ n− i, · · · ),

where vi correspond to Fi, 1 ≤ i ≤ 2n and in the dots are the monomials corresponding to the

new facets (i.e., facets obtained after performing truncations). This determines uniquely the

combinatorial type of P.

Example 4.2 For n = 2 we get a 2-dimensional cube (the square) P and its Stanley-Reisner

ideal is the following one:

I = (v1v3, v2v4).
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For n = 3 we get a simple polytope P from Figure 1, for which K = KP is a simplicial complex

with a nontrivial triple Massey product in H∗(ZK) due to the result of Baskakov (see [2]).

Moreover, using the computer software Plantri it can be seen that K is the only one of the 14

combinatorially different 2-spheres with 8 vertices giving nontrivial higher Massey products in

H∗(ZK) (see [9]).

The Stanley-Reisner ideal of P can be written as follows (see Figure 1):

I = (v1v4, v2v5, v3v6, v1v5, v2v6, w1v3, w1v5, w2v2, w2v4, w1w2).

Remark 4.3 The 2-truncated cube P is not a graph-associahedron as its number of facets

f0(P) = n(n+3)
2 − 1 < f0(As

n) = n(n+3)
2 (see [7, Theorem 9.2]). However, we can easily

construct the building set B for P on the vertex set [n + 1] by identifying Fi with {1, · · · , i}

for 1 ≤ i ≤ n and identifying Fi with {i − n + 1} for n + 1 ≤ i ≤ 2n. Then, by Theorem 2.2,

we consecutively cut the following faces:

{1} ⊔ {3}, {1, 2} ⊔ {4}, · · · , {1, · · · , n− 1} ⊔ {n+ 1},

· · · ,

{1} ⊔ {n}, {1, 2} ⊔ {n+ 1}.

Thus, P = PB for the building set B consisting of the building set B0 of an n-cube from

Example 2.1, the above subsets of [n+ 1] and all the subsets of [n+ 1] which are the unions of

nontrivially intersecting elements in B.

Theorem 4.2 Let αi ∈ H3(ZP) be represented by a 3-cocycle viun+i for 1 ≤ i ≤ n and

n ≥ 2. Then all Massey products of consecutive elements from α1, · · · , αn are defined and the

whole n-product 〈α1, · · · , αn〉 is nontrivial.

Proof Let us prove the theorem by induction on n. The base case n = 2 is trivial: α1

and α2 are the classes of 3-dimensional spheres in ZP
∼= S3 × S3 and their cup-product (i.e.,

Massey 2-product) is the dual to the fundamental class of ZP .

We first note that all Massey products of orders less than n vanish simultaneously in

H∗,∗(ZP ) ∼= H
[
Λ[u1, · · · , um] ⊗ k[P ], d

]
, i.e., contain coboundaries. Starting with the rep-

resenting cocycles viui+n of αi, it can be seen by induction on the dimension n of P that if

a defining system C for the n-product 〈α1, · · · , αn〉 can be extended from ith diagonal of the

matrix C to its (i+ 1)th diagonal for all 2 ≤ i ≤ n, then clm,m− l = i ≥ 2 have either a form

vkuj1 · · ·uj2i−1
or a form vkuj1 · · ·uj2i−1

+ d(ukuj1 · · ·uj2i−1
) (up to the signs). The latter can

be checked as the differential in the cohomology algebra preserves multigrading and by using

the codimension 2 face cuts from the definition of P (see also the example below).

Then the Massey n-product 〈α1, · · · , αn〉 is defined and any cohomology class belonging to

it lies in the multigraded component H−(2n−2),(2,··· ,2,0,··· ,0)(ZP ) of the moment-angle manifold

ZP with one of its representatives being the class of the cocycle v1v2nu2 · · ·u2n−1. Up to sign

we have the following equality for any representative c of an element in 〈α1, · · · , αn〉 for any

defining system C (see [17]):

c = d(c1,n+1)− (−1)3v1un+1c2,n+1 − c1,3c3,n+1 − · · · − c1,nvnu2n,
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where (n + 1) × (n + 1)-matrix C is upper triangular with zeros on the diagonal and ci,i+1 =

−viun+i for 1 ≤ i ≤ n, such that the following condition holds:

cE1,n+1 = d(C)− C · C

and cij = (−1)|cij|cij depends on the degree |cij | of a matrix element cij .

By definition of higher Massey operations (see [17]), one has: d(c2,n+1) is a representative in

〈α2, · · · , αn〉 and d(c1,n) is a representative in 〈α1, · · · , αn−1〉. To prove that v1v2nu2 · · ·u2n−1

is the only representing cocycle for the n-product, we use induction on n, the represnting

monomials for the indeterminacies and the multigrading in H∗(ZP ), see Theorem 1.3. For

instance, the indeterminacy for the first of the (n−1)-products above is lying in the multigraded

component of v2u3 · · ·unun+2 · · ·u2n and the only cocycle in that component is the coboundary

d(u2 · · ·unun+2 · · ·u2n). The indeterminacy for the second of the (n − 1)-products above is

lying in the multigraded component of v1u2 · · ·un−1un+1 · · ·u2n−1 and the only cocycle in that

component is the coboundary d(u1 · · ·un−1un+1 · · ·u2n−1).

Thus, the Massey n-product 〈α1, · · · , αn〉 is defined and nontrivial, consisting only of the

cohomology class of v1v2nu2 · · ·u2n−1.

Remark 4.4 Note that the nontrivial n-product constructed above is decomposable. Name-

ly, one has [v1v2nu2 · · ·u2n−1] = ±[v1un+1 · · ·u2n−1] · [v2nu2 · · ·un].

Example 4.3 Consider the case n = 4. Then the Stanley-Reisner ideal of P is

I = (v1v5, v2v6, v3v7, v4v8, v1v6, v2v7, v3v8, v1v7, v2v8, · · · )

and the cohomology classes αi, 1 ≤ i ≤ 4 are represented by the cocycles ai = viu4+i, 1 ≤ i ≤ 4.

One has (up to sign)

a1a2 = d(v1u2u5u6) = d(c1,3),

a2a3 = d(v2u3u6u7) = d(c2,4),

a3a4 = d(v2u4u7u8) = d(c3,5).

Then one has the following cocycle representing a class in 〈α1, α2, α3〉 (here the Massey 2-

product of a and b is equal to a · b, a = (−1)|a|a):

v1u5 · (−v2u3u6u7)− v1u2u5u6 · v3u7 = d(v1u2u3u5u6u7) = d(c1,4)

and the following cocycle representing a class in 〈α2, α3, α4〉:

v2u6 · (−v3u4u7u8)− v2u3u6u7 · v4u8 = d(v2u3u4u6u7u8) = d(c2,5).

Alternatively, one has (up to sign)

a1a2 = d(v2u1u5u6 − v5u2u1u6 + v6u2u1u5) = d(c1,3),

a2a3 = d(v3u2u6u7 − v6u3u2u7 + v7u3u2u6) = d(c2,4),

a3a4 = d(v4u2u7u8 − v7u4u2u8 + v8u4u2u7) = d(c3,5).

The representing cocycle for 〈α1, α2, α3〉 will be d(v3u1u2u5u6u7) = d(c1,4) and for 〈α2, α3, α4〉,

one gets d(v4u2u3u6u7u8) = d(c2,5).
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Thus, the Massey products 〈α1, α2, α3〉 and 〈α2, α3, α4〉 vanish simultaneously and the 4-

product 〈α1, α2, α3, α4〉 is defined. More precisely, the representing cocycle c for 〈α1, α2, α3, α4〉

is equal to

d(c1,5)− a1c2,5 − c1,3c3,5 − c1,4a4.

Considering the multigrading in H∗(ZP ) it is easy to see that the latter 4-fold product consists

of the only class with a representative (up to sign) v1v8u2 · · ·u7 in H−6,(2,··· ,2,0,··· ,0)(ZP ) ⊂

H−6,16(ZP ) ⊂ H10(ZP ), where ZP is a closed smooth 17-dimensional manifold.

Finally, one has [v1v8u2 · · ·u7] = −[v1u5u6u7] · [v8u2u3u4].

Using Theorem 4.2 we can construct a smooth closed 2-connected manifold M with a com-

pact torus action, such that there are nontrivial higher Massey products of any prescribed

orders n1, · · · , nr, r ≥ 2 in H∗(M). Namely, consider the building sets Bi, 1 ≤ i ≤ r for

Pni , 1 ≤ i ≤ r. Let M = ZP , where P = PB′ , B′ = B(B1, · · · , Br) (see [6, Construction

1.5.19]) and B be a connected building set of a (r − 1)-dimensional cube. Then P is a flag

polytope combinatorially equivalent to Ir−1 × Pn1 × · · · × Pnr (see [6, Lemma 1.5.20]) and

H∗(ZP ) contains nontrivial Massey products of orders ni, 1 ≤ i ≤ r as the functor Z preserves

products for simple polytopes. Note that P = PB′ is still a flag nestohedron and, therefore,

can be realized as a 2-truncated cube.
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