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Abstract This paper deals with two things. First, the cohomology of canonical extensions

of real topological toric manifolds is computed when coefficient ring G is a commutative

ring in which 2 is unit in G. Second, the author focuses on a specific canonical extensions

called doublings and presents their various properties. They include existence of infinitely

many real topological toric manifolds admitting complex structures, and a way to construct

infinitely many real toric manifolds which have an odd torsion in their cohomology groups.

Moreover, some questions about real topological toric manifolds related to Halperin’s toral

rank conjecture are presented.
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1 Introduction

The real topological toric manifold is a topological generalization of the real toric manifold.

Every n-dimensional real topological toric manifold M is characterized by a pure (n − 1)-

dimensional simplicial complex K, called the base complex of M , and a map λ : V (K) → Zn
2 ,

satisfying certain conditions, called a characteristic map when V (K) is the set of vertices of K.

The pair (K,λ) is called a characteristic pair and we write M = M(K,λ).

For a real topological toric manifold M , one can define new real topological toric mani-

folds called canonical extensions of M . This concept is originally due to Ewald (the namer of

“canonical extension”) [6] for toric manifolds and Bahri-Bendersky-Cohen-Gitler [1] for (real)

topological toric manifolds (their original work is for quasitoric manifolds and small covers, but

their method extends well without change for topological toric manifolds and real topological

toric manifolds). We remark that the canonical extension is deeply related with a classical

operation on simplicial complexes called the simplicial wedge operation, which is performed at

the base complex.

The integral cohomology ring of a real topological toric manifold M is difficult to compute in

general unlike that of a topological toric manifold. Recently Suciu-Trevisan [9–10] have found

a formula to compute the homology H∗(M ;Q), and Choi and the author [5] have strengthened

their result for the cohomology H∗(M ;G), where G is a commutative ring in which 2 is a unit.

Using their result, we provide a method to compute the cohomology of canonical extensions of

a real topological toric manifold (see Section 3).
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There is a special kind of canonical extension called doubling. Roughly speaking, the dou-

bling is the canonical extension performed at each vertex of the base complex. The doubling

operation is especially intriguing because it has numerous interesting topological and geometric

properties (see [1, 11]). Some of them, in the category of real topological toric manifolds, are

covered in this paper. The main result is as follows.

Theorem 1.1 For a real topological toric manifold M = M(K,λ), its double M ′ satisfies

the following properties:

(1) There is a graded ring isomorphism

H∗(M ′;G) ∼= H∗(ZK ;G),

where ZK is the moment-angle complex of K, and G is a commutative ring such that 2 is a

unit. In particular, M ′ is orientable.

(2) If M ′ has even dimension, then there is a complex structure on M ′.

(3) If there exists a characteristic map λ̃ : V (K) → Zn such that its mod 2 reduction is λ,

then M ′ admits a free Tm−n action whose orbit space is the topological toric manifold M(K, λ̃).

Recall that the manifold M(K, λ̃) is called a lifting of M . An immediate corollary is as

follows. This gives an easier way to construct infinitely many real topological toric manifolds

with arbitrary odd torsion, which was previously accomplished in [5].

Corollary 1.1 Let M = M(K,λ) be a real topological toric manifold such that H∗(ZK)

has a q-torsion element for some odd integer q. Then H∗(M ′) has a q-torsion element.

Moreover, we present questions about real topological toric manifolds related to Halperin’s

toral rank conjecture.

This paper is organized as follows. In Section 2, we review the definition of topological

toric manifolds and real topological toric manifolds, and characteristic pairs corresponding to

them, and simplicial wedge construction and canonical extensions. In Section 3, we compute

cohomology of canonical extensions of a real topological toric manifold. In Section 4, we present

various properties of doublings of real topological toric manifolds. Finally, in Section 5, we give

some questions and conjectures related to Halperin’s toral rank conjecture and the sum of Betti

numbers of real topological toric manifolds.

2 Topological Toric Manifolds and Characteristic Pairs

A topological toric manifold defined in [7] is a closed smooth 2n-manifold M with an ef-

fective smooth (C∗)n-action such that there is an open and dense orbit and M is covered by

finitely many invariant open subsets each of which is equivariantly diffeomorphic to a smooth

representation space of (C∗)n. Similarly, we say that a closed smooth manifold M of dimension

n with an effective smooth action of (R∗)n having an open dense orbit is a real topological toric

manifold if it is covered by finitely many invariant open subsets each of which is equivariantly

diffeomorphic to a direct sum of real one-dimensional smooth representation spaces of (R∗)n.

For a simplicial complex K, the vertex set is denoted by V (K). A pure simplicial complex

K of dimension n − 1 is called star-shaped if there is a geometric realization |K| ⊂ Rn such

that any ray in Rn from the origin intersects |K| once and only once. A star-shaped simplicial
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complex is automatically a triangulated sphere. The following is implied by [7, Theorem 7.2].

As a manifold with the restricted action of the compact torus T n = (S1)n ⊂ (C∗)n, a topological

toric manifold is characterized by the following information:

(1) a star-shaped simplicial complex K;

(2) a map λ : V (K) → Zn such that for any σ ∈ K, {λ(i) | i ∈ σ} is a subset of an integral

basis of Zn.

Similarly, as a Zn
2 -manifold, any real topological toric manifold is determined by the pair

(K,λ) such that

(1) a star-shaped simplicial complex K;

(2) a map λ : V (K) → Zn
2 such that for any σ ∈ K, {λ(i) | i ∈ σ} is a linearly independent

set in Zn
2 .

In either case, the condition (2) is called the non-singularity condition, K is the base complex

of M , and λ is called a characteristic map. The pair (K,λ) is called a characteristic pair. We

denote by M(K,λ) the (real) topological toric manifold determined by (K,λ). In this paper,

we regard topological toric manifolds as T n-manifolds and real topological toric manifolds as

Zn
2 -manifolds.

Now we define the notion of canonical extensions of M(K,λ). We briefly present the

construction of [1] here. Let K be a simplicial complex of dimension n − 1 on vertices

V (K) = [m] := {1, 2, · · · ,m}. A subset of V (K) is called a non-face of K if it is not a

face of K. A non-face is minimal if any proper subset is a face of K. Note that a simplicial

complex is determined by its minimal non-faces.

In the setting above, let J = (j1, · · · , jm) ∈ Nm be a vector of positive integers. For the

vertex set V (K) = {1, · · · ,m}, V (K(J)) is a set

V (K(J)) := {11, 12, · · · , 1j1︸ ︷︷ ︸, 21, 22, · · · , 2j2︸ ︷︷ ︸, · · · ,m1, · · · ,mjm︸ ︷︷ ︸}

of
m∑
i=1

ji elements. For a subset ω = {i1, · · · , ik} of [m], ω(J) is denoted as

ω(J) := {(i1)1, · · · , (i1)ji1︸ ︷︷ ︸
, (i2)1, · · · , (i2)ji2︸ ︷︷ ︸

, · · · , (ik)1, · · · , (ik)ji
k︸ ︷︷ ︸
} ⊂ V (K(J)). (2.1)

Denote by K(J) the simplicial complex with vertex set V (K(J)) with minimal non-faces

ω(J) for each minimal non-face ω of K. When J = (1, · · · , 1, 2, 1, · · · , 1) is the m-tuple with 2

as the i-th entry, it is evident that

K(J) = (I ⋆ LkK{i}) ∪ (∂I ⋆ (K \ {i})),

where K \ {i} is the full subcomplex with m − 1 vertices except i and LkK{i} is the link of

K at i. We sometimes use the notation K(J) = wedi(K) and call it the simplicial wedge of

K at i or simply the wedge. The operation itself is called the simplicial wedge construction or

wedging. By consecutive application of wedgings to K, one can construct K(J) for any J .

Any characteristic map λ : [m] → Zn
2 can be regarded as an (n × m)-matrix written as Λ

again,

Λ =


λ(1) · · · λ(m)




(n×m)

,
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which is called a characteristic matrix. For convenience of notation, we write

Ci :=
(
0 · · · 0 λ(i)

)
n×ji

for i = 1, · · · ,m and

Sk :=



1 · · · 0 1
...

...
...

0 · · · 1 1




(k−1)×k

for k ≥ 1. If k = 1 then Sk is an empty matrix. The following definition is the mod 2 version

of that introduced in [1].

Definition 2.1 Let K be an (n − 1)-dimensional star-shaped simplicial complex on [m].

For a given real topological toric manifold M = M(K,λ) and an m-tuple of positive integers

J = (j1, · · · , jm), the canonical extension M(J) is the real topological toric manifold determined

by the characteristic pair (K(J), λ(J)), where λ(J) is given by the block matrix

Λ(J) =




Sj1 O · · · O
O Sj2 · · · O
...

...
...

O O · · · Sjm

C1 C2 · · · Cm




,

whose columns are indexed by 11, 12, · · · , 1j1 , 21, 22, · · · , 2j2 , · · · ,m1, · · · ,mjm .

One can check the non-singularity condition for λ(J), For details see [1]. Refer to [3–4] for

general topological toric manifolds and real topological toric manifolds over K(J).

3 Cohomology of Real Topological Toric Manifolds and

Wedge Operations

First of all, we need some notations of [2, 5] which will be used throughout this paper. Let

K be a star-shaped simplicial complex of dimension n − 1 with vertex set [m] and M(K,λ) a

real topological toric manifold over K. For ω ⊆ [m], denote by Kω = {σ ∈ K | σ ⊆ ω} the full

subcomplex of K with respect to ω. Let Λ = (λ(1) · · · λ(m)) be the characteristic matrix of

λ. The (n×m)-matrix Λ can be regarded as the linear map

·Λ: Zn
2 → Zm

2 , s 7→ sΛ

by matrix multiplication when the vector spaces are understood as row vector spaces.

Let us use the notation 2X for the power set of X . For any integer k ≥ 0, there is a natural

identification φ : 2[k] → Zk
2 determined by the following:

(1) φ({i}) is the i-th coordinate vector of Zk
2 , 1 ≤ i ≤ k, and

(2) for A, B ⊆ [k], φ(A∆B) = φ(A)+φ(B), where A∆B = (A∪B)\(A∩B) is the symmetric

difference.

In this paper, we identify the power set 2V (K) and the vector space Z
|V (K)|
2 , so 2V (K) is

equipped with Z2-vector space structure. Note that, with this identification, one can define a

map φ−1 ◦ (·Λ) ◦ φ : 2[n] → 2[m], written again as ·Λ.

Throughout this paper, let us assume that G is a ring such that 2 is a unit.
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Theorem 3.1 (see [9] for G = Q and [5, Theorem 4.6]) There is a graded group isomor-

phism

Hp(M(K,λ);G) ∼=
⊕

s⊆[n]

H̃p−1(KsΛ;G).

Remark 3.1 Actually, the ring structure of H∗(M(K,λ);G) is described in [5]. Moreover,

as a graded ring, it is isomorphic to a graded subring of the graded ring H∗(RZK ;G), where

RZK is the real moment-angle complex of K. For simplicity, we are going to focus only on the

group structure of the cohomology in this paper. It is well-known that there is a graded group

isomorphism:

Hp(RZK) ∼=
⊕

ω⊆[m]

H̃p−1(Kω). (3.1)

See (2) of [2] for references. It is worthwhile to remark that, with coefficients in G, the coho-

mology of M(K,λ) is a subgroup of the cohomology of RZK .

Once we have a general formula for the rational cohomology of a real topological toric

manifold M(K,λ), it looks natural to apply the formula for its canonical extensions.

For s ⊆ [n], the set sΛ ⊆ [m] can be understood as the vector in Zm
2 which is the sum of

i-th row vectors of Λ whenever i ∈ s.

Let α ⊆ V (K(J)) be a set of vertices of K(J). The following is a simple lemma to help to

compute cohomology of real topological toric manifolds. Recall (2.1) for the notation ω(J).

Lemma 3.1 For a given subset α ⊆ V (K(J)), let K(J)α be the full subcomplex of K(J)

with respect to α. If K(J)α is not contractible, then α = ω(J) for some ω ⊆ [m].

Proof Suppose that α 6= ω(J) for any ω ⊆ [m]. Then after a suitable relabeling and

reindexing, 11 ∈ α but 12 /∈ α. Then, by the definition of K(J), for any face τ of K(J)α\{11},

τ∪{11} becomes a face ofK(J)α. So, K(J)α is a cone with apex {11}, which proves the lemma.

Theorem 3.1 and (3.1) tell us that within the vector space 2[m], only the subspace S(Λ) :=

{sΛ ∈ Zm
2 | s ∈ Zn

2 }, which is the image of ·Λ, contributes to the cohomology H∗(M(K,λ);G).

Although one could consider the set S(Λ(J)) for the cohomology of the canonical extension

M(J), we can use Lemma 3.1 to further reduce S(Λ(J)) to

S(Λ, J) := S(Λ(J)) ∩ {ω(J) | ω ⊆ V (K)},

which is a linear subspace in 2V (K(J)), since it is the intersection of two subspaces.

Proposition 3.1 Let J = (j1, j2, · · · , jm) be an m-tuple of positive integers. Then the

following vectors span S(Λ, J) :

(1) {i}(J), when 1 ≤ i ≤ m and ji is even;

(2) sΛ(J) for some s ⊆ [n], if ji is odd whenever the i-th component of sΛ is nonzero.

Example 3.1 Let

Λ =




1 0 0 1 0
0 1 0 0 1
0 0 1 1 1




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and J = (2, 1, 3, 2, 3). Then by Definition 2.1,

Λ(J) =




1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 1




.

To compute S(Λ, J), let us use the language of row vectors. Then by definition, S(Λ, J) is

precisely the set of row vectors r which satisfy the following two conditions:

(1) r is in the row space of Λ(J), and

(2) r is a linear combination of

{1}(J) =
(
1 1 0 0 0 0 0 0 0 0 0

)
,

{2}(J) =
(
0 0 1 0 0 0 0 0 0 0 0

)
,

{3}(J) =
(
0 0 0 1 1 1 0 0 0 0 0

)
,

{4}(J) =
(
0 0 0 0 0 0 1 1 0 0 0

)
,

{5}(J) =
(
0 0 0 0 0 0 0 0 1 1 1

)
.

First, observe that {1}(J) and {4}(J) are in the row space of Λ(J) since the first and fourth

entries of J are even. On the other hand, {i}(J) need not be in the row space of Λ(J) if the

i-th entry of J is odd. Instead, one checks that

r2 :=
(
0 0 0 0 0 0 0 0 0 0 0

)
,

r3 :=
(
0 0 0 1 1 0 0 0 0 0 0

)
,

and

r5 :=
(
0 0 0 0 0 0 0 0 1 1 0

)

are in the row space of Λ(J). Next, consider

(
0 1 0

)
Λ =

(
0 1 0 0 1

)
,

which is the second row of Λ and observe that non-zero entries of
(
0 1 0

)
Λ are second and

fifth ones, and the second and fifth entries of J are all odd. The second row of the block matrix

(
C1 C2 C3 C4 C5

)
=




0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 1




is

t :=
(
0 0 1 0 0 0 0 0 0 0 1

)

and finally check that t+ r2+ r5 = {2}(J)+{5}(J) = {2, 5}(J) ∈ S(Λ, J). This generally holds

for any sΛ(J) satisfying Proposition 3.1(2). In fact, one can check that these are all: that is,

S(Λ, J) = span{{1}(J), {4}(J), {2, 5}(J)}. See the proof below.
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Proof of Proposition 3.1 The proof is straightforward once one searches for sums of row

vectors of Λ(J) of the form ω(J) for ω ⊆ V (K). Note that the sum of rows of the block

Sk =



1 · · · 0 1
...

...
...

0 · · · 1 1




(k−1)×k

is
(
1 · · · 1 1

)
if k is even and

(
1 · · · 1 0

)
if k is odd. More precisely, S(Λ(J)) = S⊕C,

where

S = row




Sj1 O · · · O
O Sj2 · · · O
...

...
...

O O · · · Sjm




and

C = row
(
C1 C2 · · · Cm

)
.

Suppose that r ∈ S(Λ, J) is decomposed to r = rS + rC for rS ∈ S and rC ∈ C. If rC = 0, then

r = rS is certainly a linear combination of vectors satisfying (1). If rC 6= 0, then one easily

checks that rC contributes exactly to a vector satisfying (2).

Since the wedge operation is topologically iterated suspensions (see for example the proof of

Proposition 2.2 of [3]), H̃∗(K(J)ω(J)) is isomorphic to H̃∗(Kω) as graded groups, up to degree

shift, for any J . Combining this fact with Proposition 3.1 and Theorem 3.1, one concludes the

following corollary.

Corollary 3.1 Let us assume that G is a ring such that 2 is a unit. For a given real

topological toric manifold M , let J and J ′ be m-tuples of positive integers and M(J) and

M(J ′) corresponding real topological toric manifolds. If J ≡ J ′ mod 2, then H∗(M(J);G) and

H∗(M(J ′);G) are isomorphic as ungraded groups. As two special cases, we have

(1) if every entry of J is even, then H∗(M(J);G) ∼= H∗(RZK ;G) as ungraded groups, and

(2) if every entry of J is odd, then H∗(M(J);G) ∼= H∗(M ;G) as ungraded groups.

Proof Let us write M = M(K,λ) and assume that J ≡ J ′ mod 2. A direct application

of Theorem 3.1 and Lemma 3.1 leads to

Hp(M(J);G) ∼=
⊕

ω(J)∈S(Λ,J)

H̃p−1(K(J)ω(J);G). (3.2)

Proposition 3.1 guarantees that S(Λ, J) and S(Λ, J ′) are canonically isomorphic. Since the

wedge operation is topologically iterated suspensions (see for example the proof of Proposi-

tion 2.2 of [3]), H̃∗(K(J)ω(J)) is isomorphic to H̃∗(Kω) as graded groups, up to degree shift,

for any J . Hence the first assertion is proven. The two special cases can be shown again using

Proposition 3.1. If every entry of J is odd, then S(Λ, J) is isomorphic to the image of ·Λ. If

every entry of J is even, then {{i}(J) | 1 ≤ i ≤ m} spans S(Λ, J).

Even though our argument so far is for canonical extensions, in particular cases like the

following example there is a good chance of computing the ungraded cohomology groups of real

topological toric manifolds over K(J), not only canonical extensions.
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Example 3.2 Think of the pentagon K = ∂P5 whose vertices are labeled by 1, 2, 3, 4, 5

in counterclockwise direction and consider real topological toric manifolds over the K(J) =

K(a1, a2, · · · , a5). According to [3, Theorem 8.3], a real topological toric manifold M(Λ) over

K(J) is given by the characteristic matrix

Λ =




Sa1
0 0 0 N1

0 Sa2
0 0 0

0 0 Sa3
0 0

0 0 0 Sa4
N4

0 0 0 0 Sa5

C1 C2 C3 C4 C5




(
∑

i
ai−3)×

∑
i
ai

up to rotational symmetry of the pentagon. Here, the columns are labeled as 11, · · · , 1a1
, · · · ,

51, · · · , 5a5
and the block matrices are as follows:

Ci :=
(
0 · · · 0 vi

)
2×ai

,

where i = 1, · · · , 5 and vi is the i-th column of

A =

(
1 0 1 1 d
0 1 1 0 1

)

for d = 0 or 1. Moreover,

Sai
:=



1 · · · 0 1
...

...
...

0 · · · 1 1




(ai−1)×ai

and

Ni :=
(
0 · · · 0 ni

)
(ai−1)×a5

for arbitrary choice of vectors n1 and n4. Let us denote the number of nonzero entries of ni by

ki for i = 1 or 4.

By an easy application of Theorem 3.1 and Lemma 3.1, one can see that the sum of Q-

Betti numbers of M(Λ), written as trk(M(Λ)), is determined by a1, a2, · · · , a5, k1, k4, and d

mod 2. Assume that d = 0 (the case d = 1 goes similarly). If k1 and k4 are even, then we

can treat Λ like a canonical extension for computing trk(M(Λ)) and use Proposition 3.1 and

Corollary 3.1, because even number of ones are added to be zero. Note that K has the following

non-contractible full subcomplexes

K∅,K13,K14,K24,K25,K35,K124,K134,K135,K235,K245,K12345,

all of which contibute 1 to trk(RZK) (the empty set was added for convention). Therefore

trk(RZK(J)) = 12 for any J . In the following incomplete table, the first column is for some

selected parities of a1, a2, · · · , a5 and the second column indicates ω so that the corresponding
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K(J)ω(J) contributes to trk(M(Λ)) in Theorem 3.1.

parity of a1, a2, · · · , a5 ω trk(M(Λ))

00000
∅, 13, 14, 24, 25, 35, 124,

12
134, 135, 235, 245, 12345

00001 ∅, 13, 14, 24, 124, 134 6
00011 ∅, 13 2
01001 ∅, 13, 14, 134 4
10110 ∅, 25, 134, 12345 4
01101 ∅, 14, 235, 12345 4
10101 ∅, 24 2
11110 ∅, 134 2
11011 ∅, 12345 2
11111 ∅, 134, 235 3

If either k1 or k4 is odd, then we cannot directly apply Proposition 3.1, but similar work

can be done still and it is left to the reader. The point is even in these cases, only the parities

of a1, · · · , a5, k1, k4, and d matter. The complete calculation will be done in future work.

Remark 3.2 The cohomology of canonical extensions of topological toric manifolds are

well covered in [1]. Its analogue for Z2-cohomology of real topological toric manifolds holds

as well. Note that this paper deals with cohomology of real topological toric manifolds with

coefficient G such that 2 is a unit in G.

4 Doubling Operation of Real Topological Toric Manifolds

In previous section, we have seen that the cohomology H∗(M(J);G) is determined by J

mod 2. In this section, we are going to focus a specific kind of canonical extensions of real

topological toric manifolds called doubles and study their basic properties. The terms “double”

and “doubling” for the simplicial complex were originally used in the literature such as [11].

Definition 4.1 Let K be a simplicial complex on [m], not necessarily star-shaped. Let

J = (2, 2, · · · , 2) be the m-tuple every component of which is two. The simplicial complex K(J)

is called the double of K and is denoted by K ′. Assume that K is star-shaped with dimension

n − 1 and we are given a characteristic map λ : [m] → Zn
2 over K, defining a real topological

toric manifold M = M(K,λ). Then the canonical extension M(J) is called the double of M

and is denoted by M ′ = M(K ′, λ′). In either case, the operation itself is called the doubling.

Let us recall a definition of moment-angle complexes. Let (X,A) be a CW-pair of spaces

and K a given simplicial complex on [m]. For σ ∈ K, write

D(σ; (X,A)) :=

m∏

i=1

Yi, where Yi =

{
X, i ∈ σ,
A, i ∈ [m] \ σ,

(4.1)

and define a polyhedral product or a generalized moment-angle complex as

Z(K; (X,A)) :=
⋃

σ∈K

D(σ; (X,A)) ⊆ Xm.

Note that Z(K; (D2, S1)) = ZK and Z(K; (D1, S0)) = RZK . If (X,A) is equipped with a

Γ-action for a group Γ, then there is a canonical Γm-action on Z(K; (X,A)). For example,
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there is a canonical Tm-action on ZK and a canonical Zm
2 -action on RZK respectively. When

J = (2, 2, · · · , 2), for ω ⊆ [m], we use the notation ω′ := ω(J) = {i1, i2 | i ∈ ω} for simplicity.

For RZK′ , one has an additional natural action of Zm
2 as a subgroup of Z2m

2 , called the diagonal

action (written as ·d to avoid confusion), given by

ω ·d x = ω′ · x

for ω ∈ 2[m] = Zm
2 and ω′ ∈ 2{11,··· ,m1,12,··· ,m2} ∼= Z2m

2 .

We remark that RZK′ ⊂ (D1)2m is equipped with a Z2m
2 -action and there is an action of a

subgroup Zm
2 ⊂ Z2m

2 which is induced by the Zm
2 -action of RZK .

An important implication of [1, Section 7] is the following theorem.

Theorem 4.1 (see [1, Section 7]) There is a Tm-action on RZK′ extending the diagonal

action such that there is an equivariant homeomorphism between RZK′ and ZK for this action.

To roughly see how the theorem works, note that the 2-disc D2 ⊂ C has a natural S1-action

and D1 ×D1 ⊂ R × R has a natural Z2
2-action. Fix an identification D2 → D1 ×D1 so that

the Z2-action on D1 ×D1 given by

t · (x, y) = (t · x, t · y)

is compatible with the Z2-action on D2 as the subgroup Z2 ≤ S1. Hence we can equip D1×D1

with the induced S1-action. Recalling (4.1), let us write D(σ; (D2, S1)) = D(σ) for a cell of

ZK and D(σ; (D1, S0)) = RD(σ) for that of RZK′ . For every simplex σ ∈ K, one can easily

see that

D(σ) =
⋃

τ⊃σ′

τ∈K′

RD(τ)

under our identification.

Let K be a simplicial complex on [m]. We already know that Zm
2 acts on RZK . If M =

M(K,λ) is a real topological toric manifold with characteristic matrix Λ: Zm
2 → Zn

2 , then an

important fact in toric topology states that kerΛ ∼= Zm−n
2 freely acts on RZK and the quotient

RZK/ kerΛ with the quotient action of Zm
2 / kerΛ ∼= Zn

2 is equivariantly homeomorphic to M .

Assume that we are given M ′ = M(K ′, λ′), which is the double of a real topological toric

manifold M , and denote by Λ′ its characteristic matrix. The matrix Λ′ can be regarded as a

linear map Λ′ : Z2m
2 → Zn+m

2 and we have M ′ ∼= RZK′/ kerΛ′ ∼= ZK/ kerΛ′. The diagonal

action of Zm
2 ≤ Tm on ZK induces a quotient action of Zm

2 / kerΛ′ ∼= Zn
2 on M ′ ∼= ZK/ kerΛ′,

which is again called the diagonal action.

Proposition 4.1 Every vector of the subspace kerΛ′ has the form ω′ for ω ⊂ [m]. More

precisely,

kerΛ′ = {ω′ | ω ∈ kerΛ}.

Proof This is done by direct calculation. First of all, for a linear map defined by the

following matrix (In is the identity matrix of size n)

L =
(
In A

)
n×m

, (4.2)
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note that kerL is given by the column space

kerL = col

(
−A
Im−n

)

m×(m−n)

. (4.3)

By the non-singularity condition, we can assume that Λ has the form of (4.2) for a suitable

order of columns and up to row operations. In other words, Λ =
(
In A

)
n×m

. One observes

that the double Λ′ can be written as

Λ′ =

(
Im Im
0 Λ

)
=



 Im
In 0
0 Im−n

0 In A



 ,

when the columns are labeled as 11, · · · ,m1, 12, · · · ,m2. To have the form of (4.2), we perform

some row operations. Namely, one adds the (i+m)-th row to the i-th row for 1 ≤ i ≤ n. After

that, we obtain 
 Im

0 A
0 Im−n

0 In A




or 


A
Im+n Im−n

A


 .

Applying (4.3), we conclude

kerΛ′ = col




A
Im−n

A
Im−n


 ,

and so, recalling that

kerΛ = col

(
A

Im−n

)

completes the proof.

The following definition is due to Zhi Lü.

Definition 4.2 Let K be a star-shaped simplicial complex of dimension n− 1 with m ver-

tices. Let M be a real topological toric manifold over K. If there is a topological toric manifold

N such that M is the fixed point set of the conjugation on N , then N is called a lifting of M .

Equivalently, for a characteristic map λ : V (K) → Zn
2 over Z2, if there is a characteristic map

λ̃ over Z such that the following diagram

Zn

mod 2

��
V (K)

λ̃

<<
x
x
x
x
x
x
x
x

λ

// Zn
2

commutes, λ̃ is called a lifting of λ.
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Proof of Theorem 1.1 Observe that (1) is a stronger form of part (2) of Corollary 3.1

when M(J) = M ′. The equation (3.2) becomes

Hp(M ′;G) =
⊕

ω⊆[m]

H̃p−1(K ′
ω′ ;G)

when every entry of J is even. On the other hand, by (3.1) and Lemma 3.1,

Hp(RZK′) ∼=
⊕

ω⊆[m]

H̃p−1(K ′
ω′).

Therefore H∗(M ′;G) ∼= H∗(RZK′ ;G) as graded groups. For the cup product, an application

of [5, Remark 4.7] gives

H∗(M ′;G) ∼= H((R/I ⊗G)|Λ′ , d)

∼= H(R/I ⊗G, d)

∼= H∗(RZK′ ;G),

where the second identity is because of the fact all entries of J are even, and the third one is

due to [2, Theorem 5.1]. See [5, Theorem 3.1] for details of the formula. The last step to prove

(1) is to recall RZK′ is diffeomorphic to ZK .

By Theorem 4.1, ZK and RZK′ are Tm-equivariantly homeomorphic and the diagonal action

can be considered to be an action on ZK as a subgroup Zm
2 ⊂ Tm. Moreover, by Proposition 4.1,

kerΛ′ ∼= Zm−n
2 acts freely on ZK as a subgroup of Zm

2 . Since K is a star-shaped simplicial

complex, there is a Tm-invariant complex structure on ZK by [8, Theorem 3.3]. Since kerΛ′

is a discrete group and its free action on ZK preserves the complex structure, (2) is proved.

We remark that M ′ is invariant under the diagonal action. For (3), for the free Tm−n-action

such that ZK/Tm−n = M(K, λ̃), observe that its subgroup Zm−n
2 acts freely on ZK and it

coincides with kerΛ′. Therefore, the quotient space ZK/ kerΛ′ has the quotient group action

of Tm−n/Zm−n
2

∼= (RP 1)m−n ∼= Tm−n which is still free, proving (3).

One can apply (1) of Theorem 1.1 to construct real topological toric manifolds whose coho-

mology rings have odd torsion elements (see also [5]).

Proof of Corollary 1.1 Apply of Theorem 1.1(1) for G = Q and G = Zq and use the

universal coefficient formula. See the proof of Theorem 5.10 of [5] for details.

5 Further Questions and Open Problems

Motivated with (3) of Theorem 1.1, we present the following question. It is a version of the

famous Halperin’s toral rank conjecture, applied for real topological toric manifolds. Related

work for moment-angle complexes can be found in [12].

Question 5.1 Let us assume that K is a star-shaped simplicial complex of dimension n−1

with m vertices and M = M(K,λ) is a real topological toric manifold. Suppose that a compact

torus T k freely acts on M . Then the following is true: k ≤ m− n and the equality holds if and

only if M = N ′ × T ℓ, where N ′ is the double of a real topological toric manifold N which has

a lifting and T ℓ is the compact torus of rank ℓ.
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For a real topological toric manifold M(K,λ), observe that

trk(M(K,λ)) ≤ trk(RZK)

by Theorem 3.1 and (3.1). Moreover, it is easy to see that trkRZK(J) is independent of J . We

say that M(K,λ) is maximal if trk(M(K,λ)) = trkRZK . Note that Corollary 3.1(2) implies

that M ′ is maximal for any real topological toric manifold M . Also note that M(j1, · · · , jm) is

a double if ji is even for 1 ≤ i ≤ m.

Question 5.2 Does every maximal real topological toric manifold have the form N ′ × T ℓ

for another real topological toric manifold N and a torus T ℓ?

In a way similar to the case of maximal real topological toric manifolds, one can also consider

“minimal” real topological toric manifolds. By definition, trkM is minimal if and only if M is

(Q-)acyclic. Besides acyclic ones, we can also consider rational homology spheres. Note that

a real topological toric manifold can neither be Z-acyclic nor be an integral homology sphere

because of 2-torsions.

Question 5.3 Describe real topological toric manifolds which are Q-acyclic or rational

homology spheres.

Note that RPn is Q-acyclic if n is even and is a rational homology sphere if n is odd. So one

could ask about the existence of odd-dimensional Q-acyclic manifolds or even-dimensional ratio-

nal homology spheres in the realm of real topological toric manifolds. The following observation

is due to Suyoung Choi.

Proposition 5.1 There is no odd-dimensional real topological toric manifold which is Q-

acyclic.

Proof The alternating sum of Q-Betti numbers is one, and that of Z2-Betti numbers is

zero because of Poincaré duality with Z2 coefficients. They are the same invarient called the

Euler characteristic, so a contradiction.

On the other hand, there does exist an even dimensional rational homology sphere. Consider

the cyclic polytope C4(7). It admits a unique real topological toric manifold M of dimension

4 up to weakly equivariant diffeomorphism as can be seen in [3, Section 8]. Actually one can

check M is orientable and furthermore it is a rational homology sphere.

A simple argument based on Corollary 3.1 implies the following fact.

Lemma 5.1 Let M be a real topological toric manifold which is a rational homology sphere.

Then M(J) is also a rational homology sphere for any J = (j1, · · · , jm) such that every ji is

odd.

In summary, we have the following proposition.

Proposition 5.2 For every n ∈ Z+ other than 2, there exists an n-dimensional real topo-

logical toric manifold which is a rational homology sphere.
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