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Buchstaber Invariants of Universal Complexes∗
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Abstract Davis and Januszkiewicz introduced (real and complex) universal complexes to
give an equivalent definition of characteristic maps of simple polytopes, which now can be
seen as “colorings”. The author derives an equivalent definition of Buchstaber invariants of
a simplicial complex K, then interprets the difference of the real and complex Buchstaber
invariants of K as the obstruction to liftings of nondegenerate simplicial maps from K to
the real universal complex or the complex universal complex. It was proved by Ayzenberg
that real universal complexes can not be nondegenerately mapped into complex universal
complexes when dimension is 3. This paper presents that there is a nondegenerate map
from 3-dimensional real universal complex to 4-dimensional complex universal complex.
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1 Introduction

The Buchstaber invariant is an important combinatorial invariant of simplicial complexes.

This number was first introduced by Buchstaber [3] to describe the maximal rank of a torus

subgroup which acts freely on the moment-angle complex over a simple convex polytope. Later,

Fukukawa and Masuda generalized this number to the case of finite simplicial complexes and

2-torus actions in [7]. Therefore there exist two types of Buchstaber invariants: The complex

(or ordinary) Buchstaber invariant s(K) and the real Buchstaber invariant sR(K). In a certain

sense they measure the degree of symmetry of moment-angle complexes and real moment-angle

complexes respectively.

These two kinds of numbers are closely related to the colorings or characteristic maps of

a simplicial complex. In fact, a subgroup which acts freely defines a monomorphism, which

corresponds to a coloring in such a way that they satisfy a short exact sequence (cf. Section 2).

So Buchstaber invariants can be considered as an invariant of simplicial complexes, not only

simple polytopes.

There is a general bound

1 ≤ s(K) ≤ sR(K) ≤ m− n,

where K is an (n− 1)-dimensional simplicial complex with m vertices.
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It is known from [1, Lemma 5] that s(K) = sR(K) for any simplicial complex K with

dimK ≤ 2. Moreover, if K is an (n − 1)-dimensional simplicial sphere with n = 2, 3, then

s(K) = sR(K) = m− n. For 2-dimensional spheres this follows from the four color theorem.

However, the calculation of Buchstaber invariants in general is quite difficult. Even for the

skeleta of a simplex Buchstaber invariants are not completely computed (cf. [7]). The readers

are referred to [3, 5] for some basic properties.

It is known that the complex conjugation both induces involutions on ZK and torus Tm with

RZK and 2-torus (Z2)
m as the fixed point sets respectively, for every Kn−1 with m vertices.

This means that a torus subgroup of maximal rank which acts freely on ZK actually determines

a 2-torus subgroup which also acts freely on RZK via the above involutions, although it may

not be of the maximal rank. This implies that s(K) ≤ sR(K). Then how about the converse?

The following is the lifting problem.

Lifting Problem Consider the above correspondence from torus subgroups of maximal

rank that act freely on ZK to 2-torus subgroups that act freely on RZK as a map Θ. Does its

image contain all the 2-torus subgroups of maximal rank?

For example, if there exist quasitoric manifolds over a simple convex polytope Pn, then

there exist small covers, too. Denote all of the small covers and quasitoric manifolds over P by

S(P ) and Q(P ) respectively. Passing to the real part, as described above, defines a map from

Q(P ) to S(P ), since the fixed point set of the complex conjugation on a quasitoric manifold

is a small cover. We may ask if this map is surjective (up to equivariant homeomorphism or

equivariant cobordism). This is still unknown.

Remark 1.1 A quasitoric manifold or a small cover over a simple convex polytope Pn with

m codimension-1 faces can be seen as the quotient space of ZK or RZK under free actions of

some torus subgroup or 2-torus subgroup of rank m− n respectively.

Obviously, ∆(K) = sR(K)− s(K) is an obstruction of the lifting problem: If ∆(K) 6= 0, the

image of Θ is not 2-torus subgroups of maximal rank. Davis and Januszkiewicz [4] introduced

two classes of simplicial complexes Kn
1 and Kn

2 which have universal properties for the category

of toric spaces which they studied in their paper. Moreover, they are also closely related to

the calculation of the colorings and Buchstaber invariants (cf. [9]). ∆(K) can be controlled by

∆(Kn
1 ) for some n. That is, if K has a (Z2)

n-coloring (cf. Section 2), then

∆(K) ≤ ∆(Kn
1 ).

Ayzenberg [2] showed that ∆(K4
1) ≥ 1. Next is the main theorem of this paper about such

universal complexes Kn
1 and Kn

2 .

Theorem 1.1 Let Kn
1 be a real universal complex.

(1) ∆(Kn
1 ) = 1, n = 4;

(2) ∆(Kn−1
1 ) ≤ ∆(Kn

1 ), n ≥ 5.

Using this fact, we can deduce the following corollary.

Corollary 1.1 ∆(Kn
1 ) ≥ 1, n ≥ 4.

The article is organized as follows. In Section 2, the definitions of Buchstaber invariants
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and universal complexes are introduced. We investigate their basic properties and relations,

which give another description of Buchstaber invariants. We calculate ∆(Kn
1 ) when n ≤ 4 and

prove that ∆(Kn
1 ) is non-decreasing for n in Section 3. In Section 4 we discuss several further

problems on Buchstaber invariants.

2 Buchstaber Invariants and Universal Complexes

In this section, we give the original definition of Buchstaber invariants and an equivalent

description, which is related to universal complexes.

Let K be an abstract simplicial complex on the vertex set [m] = {1, · · · ,m}. We can define

a (complex) moment-angle complex associated with K:

ZK =
⋃

σ∈K

(D2, S1)σ,

where (D2, S1)σ =
∏
i

Xi, Xi = D2 if i ∈ σ and Xi = S1 if not.

Since (D2, S1) is invariant under the action of S1 and Tm = (S1)m acts in coordinate-wise

manner on (D2)m, ZK admits a torus action Tm as the restriction to the subspace of (D2)m.

Definition 2.1 The (complex) Buchstaber invariant s(K) is the maximal dimension of a

subtorus of Tm which acts freely on ZK .

Similarly, we can define a (real) moment-angle complex:

RZK =
⋃

σ∈K

(D1, S0)σ,

which admits a (Z2)
m-action. And therefore we can get the following definition.

Definition 2.2 The (real ) Buchstaber invariant sR(K) is the maximal rank of a subgroup

of (Z2)
m which acts freely on RZK .

For any simple convex polytope Pn, there exist corresponding definitions of s(P ) and sR(P )

by s(P ) = s(∂(P ∗)) and sR(P ) = sR(∂(P
∗)). Here ∂(P ∗) is the boundary of the simplicial

polytope dual of P .

Example 2.1 For n-simplex ∆n (considered as a simplicial complex), there is no subgroup

of T n+1 or (Z2)
n+1 which acts freely on Z∆n = (D2)n+1 or RZ∆n = (D1)n+1. Therefore

s(∆n) = sR(∆
n) = 0.

Consider its boundary. By construction we have Z∂∆n = ∂(D2)n+1 = S2n+1 and the

diagonal subgroup of T n+1 acts freely on Z∂∆n . There are no larger subgroups of T n+1 acting

freely on Z∂∆n , thus s(∂∆n) = 1. Similarly, sR(∂∆
n) = 1.

Now let us give the definition of colorings. Let

Rd =

{
Z2, if d = 1,

Z, if d = 2.

Definition 2.3 Let K be an (n−1)-dimensional simplicial complex on the vertex set [m]. A

Rr
d-coloring of K is a map λ from the vertex set of K to Rr

d, such that for σ = [i1, · · · , ik] ∈ K,



1338 Y. Sun

the subspace spanned by λ(i1), · · · , λ(ik) is a direct summand in Rr
d. Λ = (λ(1), · · · , λ(m)) is

called the coloring matrix.

Remark 2.1 In the case that K is a simplicial sphere dual to a simple convex n-polytope

P , such an Rn
d -coloring is usually called a “characteristic map” of P .

The existence of a characteristic map of P is directly related to Buchstaber invariants.

Theorem 2.1 (cf. [3, Proposition 7.34]) Pn admits a characteristic map if and only if

s(P ) = m− n, where m is the number of the facets of P .

Actually, let H ⊂ Tm be a subtorus of dimension l. We can write it in the form

H = {(e2πi(s11t1+···+s1ltl), · · · , e2πi(sm1t1+···+smltl)) ∈ Tm}, (2.1)

where ti ∈ R, i = 1, · · · , l. The integer m × l-matrix S = (sij) defines a monomorphism

Z
l → Z

m, whose image is a direct summand in Z
m. H acts freely if and only if Sĩ1,··· ,ĩn

which

is obtained by deleting the rows i1, · · · , in of S defines a monomorphism to a direct summand

for every vertex v = Fi1 ∩ · · · ∩ Fin (cf. [3, Lemma 7.32]). And if l = s(P ) = m− n, there is a

short exact sequence

0 // Zm−n S // Zm Λ // Zn // 0,

where Λ = (λ1, · · · , λm), λi is the facet vector for each facet.

Then for the same reason there holds the following proposition.

Proposition 2.1 Let H ⊂ Tm be a subtorus of dimension m − r, written in the form of

(2.1). The corresponding matrix is denoted by S. If H acts freely on ZK , there is a Z
r-coloring

of K whose coloring matrix Λr×m fits in the short exact sequence

0 // Zm−r S // Zm Λ // Zr // 0.

Conversely, if K admits a Z
r-coloring (r ≤ m) and Λ is the coloring matrix, then there is a

subtorus H of dimension m− r which acts freely, such that the above exact sequence holds.

This result also holds for the real case. So we can get an equivalent statement of the

Buchstaber invariants.

Proposition 2.2 (cf. [9]) Denote the minimal integer for which there is an Rr
d-coloring by

rR(K) if d = 1 and r(K) if d = 2. Then

s(K) = m− r(K),

sR(K) = m− rR(K).

Let us give some examples.

Example 2.2 Suppose that P is a simple convex polytope. The subtorus

H = {(e2πit, · · · , e2πit)}

surely acts freely. So s(P ) ≥ 1.
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Example 2.3 For m > n, there is an n-dimensional simplicial convex polytope with m

vertices denoted by Cn(m) and called a cyclic polytope, defined as the convex hull of m points

on the curve v(t) = (t, t2, · · · , tn). Its boundary is a simplicial complex, still denoted by Cn(m).

Let v1, · · · , vm be its vertices, where vi = v(ti) for t1 < · · · < tm. Shephard [11] showed that

[vi1 , vi2 , vi3 , vi4 ] ∈ Cn(m), i1 < i2 < i3 < i4 if and only if i1 + 1 = i2, i3 + 1 = i4 or i1 = 1,

i4 = m, i2 + 1 = i3. We can give a Z
4-coloring matrix Λ(C4(m)) of C4(m) for m = 6, 7.

Λ(C4(6)) =




1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 1


 ,

Λ(C4(7)) =




1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1


 .

So s(C4(6)) = 2, s(C4(7)) = 3.

Moreover, by the works of Erokhovets [6], we have some more general results about cyclic

polytopes:

s(Cn(m)) = 2 if and only if 2 ≤ m− n ≤ 2 +
n− 13

48
.

Next is the main part of this paper. Associating to Rn
d , (n − 1)-dimensional simplicial

complex Kn
d is defined as follows:

(1) The vertex set of Kn
d is PRn

d , the set of lines in Rn
d .

(2) A k-simplex in Kn
d is a collection of k + 1 lines {l0, l1, · · · , lk}, li ∈ PRn

d , which span a

(k + 1)-dimensional unimodular subspace of Rn
d .

Remark 2.2 A subspace A of Rn
d is unimodular if there exists another subspace B such

that Rn
d = A⊕B.

As shown in [4, p. 429], Kn
d determines a universal Gn

d -space (Gd = Z2 if d = 1 and Gd = S1

if d = 2), so Kn
d is also called the real universal complex if d = 1, or the complex universal

complex if d = 2.

According to the definitions, an Rr
d-coloring of K is equivalent to a nondegenerate simplicial

map from K to Kr
d, so we have rR(K

n
1 ) = n and r(Kn

2 ) = n.

Remark 2.3 A nondegenerate simplicial map is a simplicial map which restricts to an

isomorphism on each simplex. There is a natural nondegenerate simplicial map from Kn
2 to

Kn
1 , denoted by Φ, which is induced by the mod 2 map from Z

n to (Z2)
n mapping each integer

vector (a1, · · · , an) to (a1, · · · , an) mod 2.

Now we can describe the lifting problem as the following statement (also cf. [10, Remark

6]).

Let K be a simplicial complex of dimension n − 1. Then there is a nongenerate simplicial

map f : K −→ K
rR(K)
1 . Does there exist a nongenerate simplicial map f̃ : K −→ K

rR(K)
2 such
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that the following diagram is commutative?

K
rR(K)
2

Φ
��

K

f̃

==
{
{
{
{
{
{
{
{
{

f
// K

rR(K)
1

So we can see that ∆(K) = sR(K)− s(K) = r(K) − rR(K) is an obstruction of the lifting

problem in the sense that ∆(K) 6= 0 implies that there is no lifting in the above diagram. On

the other hand, we may have ∆(K) = 0 but the lifting still does not exist for some particular

maps from K to K
rR(K)
1 .

3 Computations of ∆(Kn

1
)

We see that if there is a cross-section π : Kn
1 −→ Kn

2 of Φ for any n (i.e., π is a nondegenerate

simplicial map such that Φ ◦ π is an identity of Kn
1 ), then any nondegenerate simplicial map

f : K −→ K
rR(K)
1 always admits a lifting f̃ = π ◦ f .

This is true for n ≤ 3.

Theorem 3.1 ∆(Kn
1 ) = 0 for n = 1, 2, 3.

Proof Define the map π : Kn
1 −→ Kn

2 on the vertices by sending each binary vector

to the corresponding integral vector with 0/1-coefficients. It is well known that whenever

A ∈ GL(n,Z2) and n = 1, 2, 3, then the corresponding integral 0/1-matrix lies in GL(n,Z).

Thus π is a well-defined nondegenerate map of simplicial complexes. Obviously, it is a lift of Φ.

This statement was originally observed by Ayzenberg in [1, Lemma 5]. My result is a special

case.

For n = 4 there does not exist such a cross-section π : Kn
1 −→ Kn

2 by the following lemma.

Lemma 3.1 (cf. [2, Thereom 1]) There is no nondegenerate simplicial map from K4
1 to K4

2.

Now let us begin to compute ∆(K4
1).

We know that according to Hadamard’s maximum determinant problem (cf. [8]), for A ∈

GL(n,Z2), if we regard A as an integral matrix, its determinant does not exceed (n+1)
n+1
2

2n . For

the case of n = 4, detA = ±1 or± 3.

Let Vi ⊂ (Z2)
4 be the set of all vectors which have exactly i non-zero coordinates, i =

1, 2, 3, 4.

Lemma 3.2 For A ∈ GL(4,Z2), regard it as an integral matrix. If detA = ±3, then there

are only two possible cases:

(1) The row vectors of A are just the four vectors of V3;

(2) One row vector of A belongs to V3 and the others belong to V2.

Proof Firstly, A has no row vector in V1. Otherwise, detA is equal to the determinant

of some matrix in GL(3,Z2), which is certainly ±1 if regarded as an integral matrix. Next, A

has no row vector in V4. Otherwise, suppose that the 1st row vector of A is (1, 1, 1, 1). For the

same reason, other three row vectors do not belong to V3. If not so, the 1st row of A can be
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turned into a vector in V1 by a row transformation with the determinant unchanged. So the

three row vectors of A except (1, 1, 1, 1) must belong to V2. However, this is also impossible,

since detA will be even.

Therefore according to the above arguments, the row vectors of A can be only contained in

V2 and V3. We only need to eliminate the two cases:

(1) Two row vectors belong to V2 and other two belong to V3.

(2) Only one row vector belongs to V2 and other three belong to V3.

Consider the case (1). Without loss of generality, suppose that the 1st and 2nd rows of A

are (1, 1, 1, 0) and (1, 1, 0, 1) respectively. There is only one vector in V2 whose 3rd and 4th

coordinates are 1. So one of the remaining row vectors can necessarily remove two non-zero

coordinates of (1, 1, 1, 0) or (1, 1, 0, 1) by a row transformation, which is in contradiction with

the 1st statement. Similarly, the case (2) is also impossible.

Remark 3.1 Actually, we can obtain the specific matrix of the case: One row vector of A

belongs to V3 and the others belong to V2 as the following:

Without loss of generality, suppose that the 1st row of A is (1, 1, 1, 0). Furthermore, suppose

that three other row vectors’ 4th coordinates are 1, otherwise by subtracting the one whose 4th

coordinate is 0 from the 1st row, the resulting matrix does not change the determinant but its

1st row belongs to V1. This is in contradiction with Lemma 3.2. So

A =




1 1 1 0
1

B 1
1


 ,

B is a 0/1-matrix in GL(3,Z) whose rows are all vectors with only one nonzero coordinate.

Multiply the sum of the 2nd, 3rd and 4th row by −1 and add it to the 1st row, we get a matrix




0 0 0 −3
1

B 1
1


 .

Its determinant is 3 · detB = ±3.

Now we can calculate ∆(K4
1).

Theorem 3.2 ∆(K4
1) = 1.

Proof From Lemma 3.1, it is sufficient to find a nondegenerate simplicial map from K4
1 to

K5
2, which is equivalent to a map from (Z2)

4 to Z
5 such that every basis of (Z2)

4 is mapped to

a part of a basis of Z5. A natural idea is to add a 5th coordinate to vectors in (Z2)
4, and then

regard them as vectors in Z
5. We try to find a function f : (Z2)

4 −→ Z, such that for any basis

{α1, · · · , α4} of (Z2)
4,

{( cα1

f(α1)

)
, · · · ,

( cα4

f(α4)

)}
is a part of a basis of Z5, which means that there

exists β = (b1, · · · , b5)
T ∈ Z

5, such that

det

((
α1

f(α1)

)
, · · · ,

(
α4

f(α4)

)
, β

)
= 1.
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Expand this determinant along the 5th column, and let A denote the matrix (α1, · · · , α4).

Replace the i-th row of A by (f(α1), · · · , f(α4)), and denote the derived matrix by Ai. Then

det

((
α1

f(α1)

)
, · · · ,

(
α4

f(α4)

)
, β

)

= b5 detA− b1 detA1 − b2 detA2 − b3 detA3 − b4 detA4.

Denote it by Γ. It is easy to see that Γ = 1 if and only if detA, detA1, · · · , detA4 are

relatively prime, i.e.,

g.c.d(detA, detA1, · · · , detA4) = 1. (3.1)

Claim If we set f(α) = 1 for all α ∈ (Z2)
4, then (3.1) holds for any A ∈ GL(4,Z2).

We have mentioned that the determinants of matrices in GL(4,Z2), regarded as integral

matrices, must be ±1 or ± 3.

If detA = ±1, (3.1) naturally holds.

If detA = ±3, by Lemma 3.2 and Remark 3.1, there are exactly two possible cases and they

can be uniquely determined up to permutation of rows and columns. That is,



1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


 ,




1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1


 .

There must exist one of detA1, · · · , detA4 that is relatively prime to detA in the above two

cases, for 


1 1 1 1
1 1 0 1
1 0 1 1
0 1 1 1


 = −1,




1 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1


 = 2.

So (3.1) holds.

For n ≥ 5, we can not determine the exact value of ∆(Kn
1 ). But a non-decreasing relation

holds for general situations.

Theorem 3.3 ∆(Kn
1 ) ≤ ∆(Kn+1

1 ), n ≥ 1.

Proof It is sufficient to prove that r(Kn
1 ) ≤ r(Kn+1

1 ) − 1. Let r(Kn+1
1 ) be N . Then there

exists some nondegenerate simplicial map f from Kn+1
1 to KN

2 . Without loss of generality, we

can assume that f maps e1 = (1, 0, · · · , 0)T ∈ (Z2)
n+1 to (1, 0, · · · , 0)T ∈ Z

N . So f can be

written as the following form:

f(v) =

(
g(v)
h(v)

)
, g(v) ∈ Z, h(v) ∈ Z

N−1 for v ∈ (Z2)
n+1.

Similarly, vectors of ZN are supposed to be written as

u =

(
u1

u2

)
, u1 ∈ Z, u2 ∈ Z

N−1.

Let W denote the set of the vectors in (Z2)
n+1 whose 1st coordinates are zero. The full

subcomplex KW of Kn+1
1 spanned by the vertex set W is isomorphic to Kn

1 .
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For every (k−2)-simplex v2v3 · · · vk ∈ KW , e1v2v3 · · · vk is a (k−1)-simplex of Kn+1
1 . f(e1),

f(v2), f(v3), · · · , f(vk) form a (k − 1)-simplex of KN
2 , which implies that ∃uk+1, uk+2, · · · ,

uN ∈ Z
N , such that

det(f(e1), f(v2), · · · , f(vk), uk+1, · · · , uN)

= det

(
1 g(v2) · · · g(vk) u1

k+1 · · · u1
N

0 h(v2) · · · h(vk) u2
k+1 · · · u2

N

)

= 1.

Expanding the above determinant along the 1st column, we have

det
(
h(v2), · · · , h(vk), u

2
k+1, · · · , u

2
N

)
= 1.

Namely, h(v2), · · · , h(vk) must be a part of a basis of Z
N−1. Hence h is a nondegenerate

simplicial map from KW to KN−1
2 .

Remark 3.2 This theorem can also be deduced from [1, Proposition 8] from another point

of view.

Using Lemma 3.1, we can directly get the following corollary.

Corollary 3.1 There is no nondegenerate simplicial map from Kn
1 to Kn

2 for n ≥ 4, i.e.,

∆(Kn
1 ) ≥ 1, n ≥ 4.

4 Conclusion and Further Problems

For a given family F of simplicial complexes, we may ask whether ∆(K) = 0 for every

K ∈ F . The answer is negative for the family of all simplicial complexes since we have a

counterexample Kn
1 for n ≥ 4. As proved in [4], Kn

1 is Cohen-Macaulay, thus the answer for

the family of all Cohen-Macaulay complexes is negative as well. This question for the family of

simplicial spheres is open.

Problem 4.1 Whether ∆(K) = 0 or not for any simplicial spheres K?

We know that any simple convex polytope determines a dual simplicial sphere. If a simple

convex polytope Pn with m codimension-1 faces admits a small cover (equivalently, sR(P ) =

m− n), then the above problem is just equivalent to the existence of quasitoric manifolds over

it (equivalently, s(P ) = m−n). A further discussion is the lifting problem mentioned in Section

1. A special case follows.

Problem 4.2 Can we obtain a quasitoric manifold over a simple convex polytope with a

given small cover as a real part?

Another problem is the estimation of the upper bound of ∆(Kn
1 ) when n goes to +∞.

It follows easily from the definition.

Proposition 4.1 If a simplicial complex K admits a (Z2)
n-coloring for some n, then

∆(K) ≤ ∆(Kn
1 ).
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Proof r = rR(K) ≤ n. There exists a nondegenerate simplicial map from K to Kr
1 and a

nondegenerate simplicial map from Kr
1 to K

r+∆(Kr

1)
2 . Their composition is then a nondegenerate

simplicial map from K to K
r+∆(Kr

1)
2 . So

∆(K) ≤ ∆(Kr
1) ≤ ∆(Kn

1 ).

Hence, the estimation of ∆(Kn
1 ) helps to estimate the general cases. By Theorem 3.3, we

know that ∆(Kn
1 ) is a non-decreasing function of n. Thus, its upper bound is significant.

Finally we give a conjecture on this upper bound. For more discussion the reader is referred

to [2, 6–7].

Conjecture 4.1 ∆(Kn
1 ) is unbounded when n goes to +∞.
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[10] Lü, Z., Equivariant bordism of 2-torus manifolds and unitary toric manifolds—a survey, 2014, arXiv:
1401.3052.

[11] Shephard, G. C., A theorem on cyclic polytopes, Israel J. Math., 6(4), 1968, 368–372.


