Ehrhart Polynomials of 3-Dimensional Simple Integral Convex Polytopes*

Yusuke SUYAMA¹

Abstract The author gives an explicit formula on the Ehrhart polynomial of a 3-dimensional simple integral convex polytope by using toric geometry.

Keywords Integral convex polytopes, Ehrhart polynomials, Toric geometry 2010 MR Subject Classification 52B20, 52B10, 14M25

1 Introduction

Let $P \subset \mathbb{R}^d$ be an integral convex polytope of dimension d, that is, a convex polytope whose vertices have integer coordinates. For a non-negative integer l, we write $lP = \{lx \mid x \in P\}$. Ehrhart [2] proved that the number of lattice points in lP can be expressed by a polynomial in l of degree d: $|(lP) \cap \mathbb{Z}^d| = c_d l^d + c_{d-1} l^{d-1} + \cdots + c_0$. This polynomial is called the Ehrhart polynomial of P. It is known that:

(1) $c_0 = 1$.

- (2) c_{d-1} is half of the sum of relative volumes of facets of P (see [1, Theorem 5.6]).
- (3) c_d is the volume of P (see [1, Corollary 3.20]).

However, we have no formula on other coefficients of Ehrhart polynomials. In particular, we do not know a formula on c_1 for a general 3-dimensional integral convex polytope. In this paper, we find an explicit formula on c_1 of the Ehrhart polynomial of a 3-dimensional simple integral convex polytope (see Theorem 2.1).

Pommersheim [4] gave a method for computing the (d-2)-nd coefficient of the Ehrhart polynomial of a *d*-dimensional simple integral convex polytope *P* by using toric geometry. He obtained an explicit description of the Ehrhart polynomial of a tetrahedron by using this method. Our formula is obtained by using this method for a general 3-dimensional simple integral convex polytope.

The structure of the paper is as follows. In Section 2, we state the main theorem and give a few examples. In Section 3, we give a proof of the main theorem.

2 The Main Theorem

Let $P \subset \mathbb{R}^3$ be a 3-dimensional simple integral convex polytope, and let F_1, \dots, F_n be the facets of P. For $k = 1, \dots, n$, we denote by $v_k \in \mathbb{Z}^3$ the inward-pointing primitive normal

Manuscript received June 4, 2016.

¹Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto,

Sumiyoshi-ku, Osaka 558-8585, Japan. E-mail: d15san0w03@st.osaka-cu.ac.jp

^{*}This work was supported by the Grant-in-Aid for the Japan Society for the Promotion of Science Fellows (No. 15J01000).

vector of F_k . For an edge E of P, we denote by Vol(E) the relative volume of E, that is, the length of E measured with respect to the lattice of rank one in the line containing E.

Definition 2.1 For each edge $E = F_{k_1} \cap F_{k_2}$ of P, we define an integer m(E) and a rational number s(E) as follows:

(1) We define $m(E) = |((\mathbb{R}v_{k_1} + \mathbb{R}v_{k_2}) \cap \mathbb{Z}^3)/(\mathbb{Z}v_{k_1} + \mathbb{Z}v_{k_2})|.$

(2) There exists a basis e_1, e_2 for $(\mathbb{R}v_{k_1} + \mathbb{R}v_{k_2}) \cap \mathbb{Z}^3$ such that $v_{k_1} = e_1$ and $v_{k_2} = pe_1 + qe_2$ for some $q > p \ge 0$. Then we define s(E) = s(p,q), where s(p,q) is the Dedekind sum, which is defined by

$$s(p,q) = \sum_{i=1}^{q} \left(\left(\frac{i}{q}\right) \right) \left(\left(\frac{pi}{q}\right) \right), \quad ((x)) = \begin{cases} x - [x] - \frac{1}{2}, & x \notin \mathbb{Z}, \\ 0, & x \in \mathbb{Z}. \end{cases}$$

Remark 2.1 We have q = m(E). Although p is not uniquely determined, s(p,q) does not depend on the choice of e_1, e_2 . Thus s(E) is well-defined.

Definition 2.2 For each facet F of P, we define a rational number C(F) as follows. We name vertices and facets around F as in Figure 1. We denote by $v \in \mathbb{Z}^3$ the inward-pointing primitive normal vector of F.

Figure 1 Vertices and facets around F.

For $i = 1, \dots, r$, we define

$$\varepsilon_{i} = \det(v, v_{k_{i+1}}, v_{k_{i}}) > 0, \quad a_{i} = \frac{\langle \overrightarrow{P_{i-1}Q_{i-1}}, v_{k_{i+1}} \rangle}{\varepsilon_{i} \langle \overrightarrow{P_{i-1}Q_{i-1}}, v \rangle}, \quad b_{i} = \frac{\langle \overrightarrow{P_{i}P_{i+1}}, v_{k_{i-1}} \rangle}{\varepsilon_{i-1} \langle \overrightarrow{P_{i}P_{i+1}}, v_{k_{i}} \rangle}$$

where $v_{k_0} = v_{k_r}$, $v_{k_{r+1}} = v_{k_1}$, $\varepsilon_0 = \varepsilon_r$, $P_0 = P_r$, $P_{r+1} = P_1$, $Q_0 = Q_r$ and $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^3 . Then we define

$$C(F) = -\sum_{2 \le i < j \le r} a_i \begin{vmatrix} b_{i+1} & \varepsilon_{i+1}^{-1} & 0 & \cdots & 0\\ \varepsilon_{i+1}^{-1} & b_{i+2} & \varepsilon_{i+2}^{-1} & \ddots & \vdots\\ 0 & \varepsilon_{i+2}^{-1} & \ddots & \ddots & 0\\ \vdots & \ddots & \ddots & b_{j-2} & \varepsilon_{j-2}^{-1}\\ 0 & \cdots & 0 & \varepsilon_{j-2}^{-1} & b_{j-1} \end{vmatrix} \varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_{j-1} \frac{\operatorname{Vol}(P_{j-1}P_j)}{m(P_{j-1}P_j)},$$

where $P_{j-1}P_j$ is the edge whose endpoints are P_{j-1} and P_j , and the determinants above are understood to be one when j = i + 1.

Remark 2.2 The proof of Theorem 2.1 below shows that C(F) does not depend on the choice of F_{k_1} .

The following is our main theorem.

Theorem 2.1 Let $P \subset \mathbb{R}^3$ be a 3-dimensional simple integral convex polytope, and let E_1, \dots, E_m and F_1, \dots, F_n be the edges and the facets of P, respectively. Then the coefficient c_1 of the Ehrhart polynomial $|(lP) \cap \mathbb{Z}^3| = c_3l^3 + c_2l^2 + c_1l + c_0$ is given by

$$\sum_{j=1}^{m} \left(s(E_j) + \frac{1}{4} \right) \operatorname{Vol}(E_j) + \frac{1}{12} \sum_{k=1}^{n} C(F_k).$$

Example 2.1 Let a, b, c be positive integers with gcd(a, b, c) = 1 and let $P \subset \mathbb{R}^3$ be the tetrahedron with vertices

$$O = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \quad P_1 = \begin{pmatrix} a\\0\\0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0\\b\\0 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 0\\0\\c \end{pmatrix}.$$

We put A = gcd(b, c), B = gcd(a, c), C = gcd(a, b) and d = ABC. Then we have the following table:

· · · · · · · · · · · · · · · · · · ·										
edge ${\cal E}$	OP_1	OP_2	OP_3	P_1P_2		$P_{1}P_{3}$		P_2P_3		
$\operatorname{Vol}(E)$	a	b	с	С		В		A		
m(E)	1	1	1	$\frac{cC}{d}$		$\frac{bB}{d}$		$\frac{aA}{d}$		
s(E)	0	0	0	$-s\left(\frac{ab}{d}, \frac{cC}{d}\right)$		$-s\Big(\frac{ac}{d},\frac{bB}{d}\Big)$		-s	$-s\left(\frac{bc}{d},\frac{aA}{d}\right)$	
facet F				OP_1P_2	OP_1P_2 OP_1P_3		OP_2P_3		$P_1P_2P_3$	
inward-pointing primitive normal vector of F			$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$		$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$		$\left(\begin{array}{c} -\frac{bc}{d} \\ -\frac{ac}{d} \\ -\frac{ab}{d} \end{array}\right)$		
C(F)			$\frac{ab}{c}$		$\frac{ac}{b}$	$\frac{bc}{a}$		$\frac{d^2}{abc}$		

Table 1 The values of Vol(E), s(E) and C(F)

Thus we have

$$\sum_{E:\text{edge}} \left(s(E) + \frac{1}{4} \right) \text{Vol}(E) + \frac{1}{12} \sum_{F:\text{facet}} C(F)$$

$$= \frac{a}{4} + \frac{b}{4} + \frac{c}{4} + \left(-s\left(\frac{ab}{d}, \frac{cC}{d}\right) + \frac{1}{4} \right) C + \left(-s\left(\frac{ac}{d}, \frac{bB}{d}\right) + \frac{1}{4} \right) B$$

$$+ \left(-s\left(\frac{bc}{d}, \frac{aA}{d}\right) + \frac{1}{4} \right) A + \frac{1}{12} \left(\frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a} + \frac{d^2}{abc} \right),$$

which coincides with the formula in [4, Theorem 5].

Example 2.2 Let a and c be positive integers and b be a non-negative integer. Consider the convex hull $P \subset \mathbb{R}^3$ of the six points

$$O = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \quad A = \begin{pmatrix} a\\0\\0 \end{pmatrix}, \quad B = \begin{pmatrix} 0\\a\\0 \end{pmatrix},$$
$$O' = \begin{pmatrix} b\\0\\c \end{pmatrix}, \quad A' = \begin{pmatrix} a+b\\0\\c \end{pmatrix}, \quad B' = \begin{pmatrix} b\\a\\c \end{pmatrix}.$$

P is a 3-dimensional simple polytope. We put g = gcd(b, c). Then we have the following table:

edge ${\cal E}$	OA	OB	AB	OO'	AA'	BB'	O'A'	O'B'	A'B'
$\operatorname{Vol}(E)$	a	a	a	g	g	g	a	a	a
m(E)	1	$\frac{c}{g}$	$\frac{c}{g}$	1	1	$\frac{c}{g}$	1	$\frac{c}{g}$	$\frac{c}{g}$
s(E)	0	$-s\left(\frac{b}{g},\frac{c}{g}\right)$	$s\left(\frac{b}{g},\frac{c}{g}\right)$	0	0	$-s\left(1,\frac{c}{g}\right)$	0	$s\left(\frac{b}{g},\frac{c}{g}\right)$	$-s\left(\frac{b}{g},\frac{c}{g}\right)$

Table 2	The values	of $\operatorname{Vol}(E)$,	s(E)	and C	(F)
---------	------------	------------------------------	------	---------	-----

facet F	OAB	OAA'O'	OBB'O'	ABB'A'	O'A'B'
inward-pointing primitive normal vector of F	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} \frac{c}{g} \\ 0 \\ -\frac{b}{g} \end{pmatrix}$	$\begin{pmatrix} -\frac{c}{g} \\ -\frac{c}{g} \\ \frac{b}{g} \end{pmatrix}$	$\begin{pmatrix} 0\\ 0\\ -1 \end{pmatrix}$
C(F)	0	С	$\frac{g^2}{c}$	$\frac{g^2}{c}$	0

Figure 2 The simple polytope P.

Ehrhart Polynomials of 3-Dimensional Simple Polytopes

Thus we have

$$\begin{split} &\sum_{E:\text{edge}} \left(s(E) + \frac{1}{4} \right) \text{Vol}(E) + \frac{1}{12} \sum_{F:\text{facet}} C(F) \\ &= -s \left(1, \frac{c}{g} \right) g + \frac{3a}{2} + \frac{3g}{4} + \frac{1}{12} \left(c + \frac{2g^2}{c} \right) \\ &= -g \sum_{i=1}^{\frac{c}{g}-1} \left(\frac{i}{\frac{c}{g}} - \frac{1}{2} \right)^2 + \frac{3a}{2} + \frac{3g}{4} + \frac{c}{12} + \frac{g^2}{6c} \\ &= -g \sum_{i=1}^{\frac{c}{g}-1} \left(\frac{g^2}{c^2} i^2 - \frac{g}{c} i + \frac{1}{4} \right) + \frac{3a}{2} + \frac{3g}{4} + \frac{c}{12} + \frac{g^2}{6c} \\ &= -\frac{g^3}{c^2} \frac{(\frac{c}{g}-1)\frac{c}{g}(\frac{2c}{g}-1)}{6} + \frac{g^2}{c} \frac{(\frac{c}{g}-1)\frac{c}{g}}{2} - g \frac{\frac{c}{g}-1}{4} + \frac{3a}{2} + \frac{3g}{4} + \frac{c}{12} + \frac{g^2}{6c} \\ &= -\frac{3a}{2} + g. \end{split}$$

On the other hand, since

$$\#\{(x,y) \in \mathbb{Z}^2 \mid (x,y,z) \in lP\} = \begin{cases} \frac{(al+1)(al+2)}{2}, & \left(\left(\frac{c}{g}\right) \middle| z\right), \\ \frac{al(al+1)}{2}, & \left(\left(\frac{c}{g}\right) \middle| z\right) \end{cases}$$

for $z = 0, 1, \cdots, cl$, we have

$$|(lP) \cap \mathbb{Z}^3| = \frac{(al+1)(al+2)}{2}(gl+1) + \frac{al(al+1)}{2}((cl+1) - (gl+1))$$
$$= \frac{a^2c}{2}l^3 + \frac{1}{2}(a^2 + ac + 2ag)l^2 + \left(\frac{3a}{2} + g\right)l + 1.$$

The coefficient of *l* is also $\frac{3a}{2} + g$.

3 Proof of Theorem 2.1

First we recall some facts about toric geometry (see [3] for details). Let $P \subset \mathbb{R}^d$ be a d-dimensional integral convex polytope. We define a cone

$$\sigma_F = \{ v \in \mathbb{R}^d \mid \langle u' - u, v \rangle \ge 0, \ \forall u' \in P, \ \forall u \in F \}$$

for each face F of P. Then the set

$$\Delta_P = \{ \sigma_F \mid F \text{ is a face of } P \}$$

of such cones forms a fan in \mathbb{R}^d , which is called the normal fan of P. Let $X(\Delta_P)$ be the associated projective toric variety. We denote by $V(\sigma)$ the subvariety of $X(\Delta_P)$ corresponding to $\sigma \in \Delta_P$. Let $\mathrm{Td}_i(X(\Delta_P)) \in A_i(X(\Delta_P))_{\mathbb{Q}}$ be the *i*-th Todd class in the Chow group of *i*-cycles with rational coefficients.

Theorem 3.1 Let $P \subset \mathbb{R}^d$ be a d-dimensional integral convex polytope and $|(lP) \cap \mathbb{Z}^d| = c_d l^d + c_{d-1} l^{d-1} + \cdots + c_0$ be its Ehrhart polynomial. If $\operatorname{Td}_i(X(\Delta_P))$ has an expression of the form $\sum_F r_F[V(\sigma_F)]$ with $r_F \in \mathbb{Q}$, then we have $c_i = \sum_F r_F \operatorname{Vol}(F)$, where $[V(\sigma_F)]$ is the class of $V(\sigma_F)$ in the Chow group and $\operatorname{Vol}(F)$ is the relative volume of F.

Now we assume that d = 3 and P is simple. Then the associated toric variety $X(\Delta_P)$ is \mathbb{Q} -factorial and we know the ring structure of the Chow ring $A^*(X(\Delta_P))_{\mathbb{Q}}$ with rational coefficients. Let E_1, \dots, E_m and F_1, \dots, F_n be the edges and the facets of P, respectively. We have

$$\sum_{k=1}^{n} \langle u, v_k \rangle [V(\sigma_{F_k})] = 0, \quad \forall u \in (\mathbb{Q}^3)^*.$$
(3.1)

If F_{k_1} and F_{k_2} are distinct, then

$$[V(\sigma_{F_{k_1}})][V(\sigma_{F_{k_2}})] = \begin{cases} \frac{1}{m(E_j)} [V(\sigma_{E_j})], & 1 \le \exists j \le m : F_{k_1} \cap F_{k_2} = E_j, \\ 0, & F_{k_1} \cap F_{k_2} = \emptyset \end{cases}$$
(3.2)

in $A^*(X(\Delta_P))_{\mathbb{Q}}$.

Pommersheim gave an expression of $\operatorname{Td}_{d-2}(X(\Delta_P))$ for a *d*-dimensional simple integral convex polytope $P \subset \mathbb{R}^d$. In the case where d = 3, we have the following theorem.

Theorem 3.2 (see [4]) If $P \subset \mathbb{R}^3$ is a 3-dimensional simple integral convex polytope, then

$$\mathrm{Td}_1(X(\Delta_P)) = \sum_{j=1}^m \left(s(E_j) + \frac{1}{4} \right) [V(\sigma_{E_j})] + \frac{1}{12} \sum_{k=1}^n [V(\sigma_{F_k})]^2.$$

We use the notation in Definition 2.2. It suffices to show

$$[V(\sigma_F)]^2 = -\sum_{2 \le i < j \le r} a_i \begin{vmatrix} b_{i+1} & \varepsilon_{i+1}^{-1} & 0 & \cdots & 0 \\ \varepsilon_{i+1}^{-1} & b_{i+2} & \varepsilon_{i+2}^{-1} & \ddots & \vdots \\ 0 & \varepsilon_{i+2}^{-1} & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & b_{j-2} & \varepsilon_{j-2}^{-1} \\ 0 & \cdots & 0 & \varepsilon_{j-2}^{-1} & b_{j-1} \end{vmatrix} \frac{\varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_{j-1}}{m(P_{j-1}P_j)} [V(\sigma_{P_{j-1}P_j})]$$

for each facet F of P.

We put

$$D(s,t) = \begin{vmatrix} b_s & \varepsilon_s^{-1} & 0 & \cdots & 0\\ \varepsilon_s^{-1} & b_{s+1} & \varepsilon_{s+1}^{-1} & \ddots & \vdots\\ 0 & \varepsilon_{s+1}^{-1} & \ddots & \ddots & 0\\ \vdots & \ddots & \ddots & b_{t-1} & \varepsilon_{t-1}^{-1}\\ 0 & \cdots & 0 & \varepsilon_{t-1}^{-1} & b_t \end{vmatrix}$$

for $2 < s \leq t < r$ and D(s,t) = 1 for s > t. Define $u \in (\mathbb{Q}^3)^*$ by $\langle u, v \rangle = 1$, $\langle u, v_{k_1} \rangle = 0$, $\langle u, v_{k_2} \rangle = 0$. By (3.1) and (3.2), we have

$$[V(\sigma_F)]^2 = -[V(\sigma_F)] \sum_{j=1}^r \langle u, v_{k_j} \rangle [V(\sigma_{F_{k_j}})] = -\sum_{j=3}^r \frac{\langle u, v_{k_j} \rangle}{m(P_{j-1}P_j)} [V(\sigma_{P_{j-1}P_j})]$$

Hence it suffices to show

$$\langle u, v_{k_j} \rangle = \sum_{i=2}^{j-1} a_i D(i+1, j-1) \varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_{j-1}$$
(3.3)

Ehrhart Polynomials of 3-Dimensional Simple Polytopes

for any $j = 3, \cdots, r$.

First we claim that

$$\varepsilon_{j-1}^{-1} v_{k_{j-1}} + \varepsilon_j^{-1} v_{k_{j+1}} = a_j v + b_j v_{k_j}$$
(3.4)

for any $j = 2, \dots, r-1$. By Cramer's rule, we have

$$v_{k_{j+1}} = \frac{\det(v_{k_{j+1}}, v_{k_j}, v_{k_{j-1}})}{\det(v, v_{k_j}, v_{k_{j-1}})} v + \frac{\det(v, v_{k_{j+1}}, v_{k_{j-1}})}{\det(v, v_{k_j}, v_{k_{j-1}})} v_{k_j} + \frac{\det(v, v_{k_j}, v_{k_{j+1}})}{\det(v, v_{k_j}, v_{k_{j-1}})} v_{k_{j-1}}$$
$$= \frac{\det(v_{k_{j+1}}, v_{k_j}, v_{k_{j-1}})}{\varepsilon_{j-1}} v + \frac{\det(v, v_{k_{j+1}}, v_{k_{j-1}})}{\varepsilon_{j-1}} v_{k_j} - \frac{\varepsilon_j}{\varepsilon_{j-1}} v_{k_{j-1}}.$$

So we have

$$\varepsilon_{j-1}^{-1} v_{k_{j-1}} + \varepsilon_j^{-1} v_{k_{j+1}} \\= \varepsilon_{j-1}^{-1} \varepsilon_j^{-1} \det(v_{k_{j+1}}, v_{k_j}, v_{k_{j-1}}) v + \varepsilon_{j-1}^{-1} \varepsilon_j^{-1} \det(v, v_{k_{j+1}}, v_{k_{j-1}}) v_{k_j}.$$
(3.5)

Taking the inner product of both sides of (3.5) with $\overrightarrow{P_{j-1}Q_{j-1}}$ gives

$$\varepsilon_j^{-1} \langle \overrightarrow{P_{j-1}Q_{j-1}}, v_{k_{j+1}} \rangle = \varepsilon_{j-1}^{-1} \varepsilon_j^{-1} \det(v_{k_{j+1}}, v_{k_j}, v_{k_{j-1}}) \langle \overrightarrow{P_{j-1}Q_{j-1}}, v \rangle$$

which means $a_j = \varepsilon_{j-1}^{-1} \varepsilon_j^{-1} \det(v_{k_{j+1}}, v_{k_j}, v_{k_{j-1}})$. Taking the inner product of both sides of (3.5) with $\overrightarrow{P_j P_{j+1}}$ gives

$$\varepsilon_{j-1}^{-1} \langle \overrightarrow{P_j P_{j+1}}, v_{k_{j-1}} \rangle = \varepsilon_{j-1}^{-1} \varepsilon_j^{-1} \det(v, v_{k_{j+1}}, v_{k_{j-1}}) \langle \overrightarrow{P_j P_{j+1}}, v_{k_j} \rangle,$$

which means $b_j = \varepsilon_{j-1}^{-1} \varepsilon_j^{-1} \det(v, v_{k_{j+1}}, v_{k_{j-1}})$. Thus (3.4) follows. We show (3.3) by induction on j. If j = 3, then both sides are $a_2 \varepsilon_2$. If j = 4, then both sides are $a_2b_3\varepsilon_2\varepsilon_3 + a_3\varepsilon_3$. Suppose $4 \le j \le r-1$. By (3.4) and the hypothesis of induction, we have

$$\langle u, v_{k_{j+1}} \rangle = \langle u, a_j \varepsilon_j v + b_j \varepsilon_j v_{k_j} - \varepsilon_{j-1}^{-1} \varepsilon_j v_{k_{j-1}} \rangle$$

$$= a_j \varepsilon_j + b_j \varepsilon_j \langle u, v_{k_j} \rangle - \varepsilon_{j-1}^{-1} \varepsilon_j \langle u, v_{k_{j-1}} \rangle$$

$$= a_j \varepsilon_j + b_j \varepsilon_j \sum_{i=2}^{j-1} a_i D(i+1, j-1) \varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_{j-1}$$

$$- \varepsilon_{j-1}^{-1} \varepsilon_j \sum_{i=2}^{j-2} a_i D(i+1, j-2) \varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_{j-2}.$$

On the other hand,

$$\sum_{i=2}^{j} a_i D(i+1,j)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_j$$

= $a_j\varepsilon_j + a_{j-1}b_j\varepsilon_{j-1}\varepsilon_j + \sum_{i=2}^{j-2} a_i D(i+1,j)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_j.$

Since

$$\sum_{i=2}^{j-2} a_i D(i+1,j)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_j$$

Y. Suyama

$$=\sum_{i=2}^{j-2} a_i (b_j D(i+1,j-1) - \varepsilon_{j-1}^{-2} D(i+1,j-2)) \varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_j$$
$$= b_j \varepsilon_j \sum_{i=2}^{j-2} a_i D(i+1,j-1) \varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_{j-1}$$
$$- \varepsilon_{j-1}^{-1} \varepsilon_j \sum_{i=2}^{j-2} a_i D(i+1,j-2) \varepsilon_i \varepsilon_{i+1} \cdots \varepsilon_{j-2},$$

we have

$$\sum_{i=2}^{j} a_i D(i+1,j)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_j$$

= $a_j\varepsilon_j + a_{j-1}b_j\varepsilon_{j-1}\varepsilon_j + b_j\varepsilon_j\sum_{i=2}^{j-2} a_i D(i+1,j-1)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_{j-1}$
 $-\varepsilon_{j-1}^{-1}\varepsilon_j\sum_{i=2}^{j-2} a_i D(i+1,j-2)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_{j-2}$
= $a_j\varepsilon_j + b_j\varepsilon_j\sum_{i=2}^{j-1} a_i D(i+1,j-1)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_{j-1}$
 $-\varepsilon_{j-1}^{-1}\varepsilon_j\sum_{i=2}^{j-2} a_i D(i+1,j-2)\varepsilon_i\varepsilon_{i+1}\cdots\varepsilon_{j-2}$
= $\langle u, v_{k_{j+1}} \rangle$.

Thus (3.3) holds for j + 1. This completes the proof of Theorem 2.1.

Acknowledgements The author wishes to thank his supervisor, Prof. Mikiya Masuda, for his continuing support.

References

- Beck, M. and Robins, S., Computing the Continuous Discretely, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2007.
- [2] Ehrhart, E., Polynômes Arithmétiques et Méthode des Polyèdres en Combinatoire, Birkhäuser, Boston, Basel, Stuttgart, 1977.
- [3] Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton Univ. Press, Princeton, NJ, 1993.
- [4] Pommersheim, J. E., Toric varieties, lattice points and Dedekind sums, Math. Ann., 295, 1993, 1–24.