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1 Introduction

Let P C R? be an integral convex polytope of dimension d, that is, a convex polytope whose
vertices have integer coordinates. For a non-negative integer I, we write [P = {lz | z € P}.
Ehrhart [2] proved that the number of lattice points in I[P can be expressed by a polynomial
in [ of degree d: |(IP)NZ%| = cal® + c4—119"* + - - - + ¢o. This polynomial is called the Ehrhart
polynomial of P. It is known that:

(1) Cop = 1.

(2) ¢q—1 is half of the sum of relative volumes of facets of P (see [1, Theorem 5.6]).

(3) cq is the volume of P (see [1, Corollary 3.20]).

However, we have no formula on other coefficients of Ehrhart polynomials. In particular,
we do not know a formula on ¢; for a general 3-dimensional integral convex polytope. In this
paper, we find an explicit formula on ¢; of the Ehrhart polynomial of a 3-dimensional simple
integral convex polytope (see Theorem 2.1).

Pommersheim [4] gave a method for computing the (d — 2)-nd coefficient of the Ehrhart
polynomial of a d-dimensional simple integral convex polytope P by using toric geometry.
He obtained an explicit description of the Ehrhart polynomial of a tetrahedron by using this
method. Our formula is obtained by using this method for a general 3-dimensional simple
integral convex polytope.

The structure of the paper is as follows. In Section 2, we state the main theorem and give
a few examples. In Section 3, we give a proof of the main theorem.

2 The Main Theorem

Let P C R? be a 3-dimensional simple integral convex polytope, and let Fy,--- , F}, be the
facets of P. For k = 1,---,n, we denote by vy € Z3 the inward-pointing primitive normal
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vector of Fj. For an edge E of P, we denote by Vol(E) the relative volume of E, that is, the
length of F measured with respect to the lattice of rank one in the line containing E.

Definition 2.1 For each edge E = Fy, NFy, of P, we define an integer m(E) and a rational
number s(E) as follows:

(1) We define m(E) = |((Rug, + Rog,) N Z3) ) (Zvg, + Zog,)|.

(2) There exists a basis ey, ea for (Ruy, + Ruy,) NZ3 such that Vg, = €1 and v, = pej + qes
for some ¢ > p > 0. Then we define s(E) = s(p,q), where s(p,q) is the Dedekind sum, which
1s defined by

q . ; !
B i i _Je—ll -5, 2¢Z,
w0 =S ((E) @ =0z e

Remark 2.1 We have ¢ = m(F). Although p is not uniquely determined, s(p,q) does not
depend on the choice of e1, ea. Thus s(F) is well-defined.

Definition 2.2 For each facet F' of P, we define a rational number C(F') as follows. We
name vertices and facets around F as in Figure 1. We denote by v € Z> the inward-pointing
primitive normal vector of F.

Figure 1 Vertices and facets around F'.

Fori=1,--- r, we define

——y —
P 1Qi—1,vg, PPy, vk,
g = det('U7'Uki+1,Uki) >0, a; = < i le 1 k7,+1> b — < 141, Uk 1>

ci(Pi—1Qi—1,v) €i—1 (P Pit1,vg,)

i1 = Vkys €0 =&p, Po =P, Poy1 =P1, Qo= Q, and (-,-) is the standard
inner product on R®. Then we define

where v, = Vg,., Uk

bi+1 Ei_—kll 0 s 0
—1 -1
€iv1 btz €9
VOI(Pj_lpj)
= — . —1 T, c. Lo oo . R S
o) 2<;j<r R ' AU B A Y A
a B ' ' bj_g Ej__12
0 s 0 6;_12 bj_l

where P;_1P; is the edge whose endpoints are P;_i and Pj, and the determinants above are
understood to be one when j =1+ 1.
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Remark 2.2 The proof of Theorem 2.1 below shows that C(F') does not depend on the
choice of Fy,.

The following is our main theorem.

Theorem 2.1 Let P C R3 be a 3-dimensional simple integral convex polytope, and let
FEy,--- ,E, and Fy,--- | F, be the edges and the facets of P, respectively. Then the coefficient
c1 of the Ehrhart polynomial |(IP) N Z3| = 31 + 2l + 1l + co is given by

ﬁé(suz) 4)Vbl 55(7

k=1
Example 2.1 Let a,b, c be positive integers with ged(a,b,c) = 1 and let P C R3 be the
tetrahedron with vertices

1
12

0 a 0 0
o=ol|l, =0, Pp=[0b], =10
0 0 0 c

We put A = ged(b, ¢), B = ged(a,c), C = ged(a,b) and d = ABC'. Then we have the following
table:

Table 1 The values of Vol(E), s(E) and C(F)

edge E OPl OP2 OP3 P1P2 P1P3 P2P3
Vol(E)| a | b | ¢ C B A
mE)| 1] 1|1 «© bB ad
d d d
b cC ac bB bec aA
S(E) | 0] 0 0] o2 ) | _o(%22) | _ as
(&) S(d’d) S(d’d) (d’d)
facet F' OPl P2 OPl P3 OP2P3 P1P2P3
_be
. .. . 0 0 1 d
inward-pointing primitive ac
normal vector of F 0 1 0 —7
1 0 0 ab
S d
b ac be d?
C(F ab ac be as
(F) b a abe
Thus we have
> (sB)+ 4)xb1 4——— Y o
E:edge F facet
a b ¢ ab cC 1 ac bB 1
—itatat (G a)e (- (?7)*1)3
be aA 1 ab ac  be  d?
(T D) DA (T G e )
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which coincides with the formula in [4, Theorem 5].

Example 2.2 Let a and ¢ be positive integers and b be a non-negative integer. Consider
the convex hull P C R? of the six points

0 a 0
o=(0], A=[0], B=1|a],

0 0 0

b a+b b
o=10], A= 0 , B' =

c c c

P is a 3-dimensional simple polytope. We put g = ged(b, ¢). Then we have the following table:

Table 2 The values of Vol(E), s(E) and C(F)

edge F|OA OB AB OO |AA"| BB |0'A| OB A'B’
Vol(E)| a a a g g g a a a
¢ c ¢ c ¢
m(E) | 1 - = 1|1 = 1 - -
g g g g g
b ¢ b c c b ¢ b c
E) | o|=s(2¢ 21 0] o =s(1,9)| o 28y —s(2E
o(E) 8(9’9) 8(9’9) S( 9) S(g’g) S(g’g)
facet F' OAB |OAA'O'|OBB'O'" |ABB'A' | O'A'B’
c _¢
g g
inward-pointing primitive 0 0 g c 0
normal vector of F 0 1 0 —; 0
1 0 b b —1
g g
2 2
C(F) 0 c 9 9 0
c c

Figure 2 The simple polytope P.
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Thus we have

E:edge F:facet
c 3a 3¢ 1 292
(S B 2 b )
s( SJor g rlet
c_1
I i 1\2 3a 3¢ ¢ ¢?
- g;(g 2) Tt T TR TG
PP 2
_ 92 9 l) 3¢ /39, ¢ g°
- g;(a’ T T T T e
C c(2c c c c
I R N v R R R (O B
c? 6 c 2 4 2 4 12 6¢
_3a+
_2 g.

On the other hand, since

(al + 1)2(al—|—2)’ ((g)‘Z),

(o)

(gl +1)+ M((cl +1)— (g9l +1))

#{(:z:,y) €z’ | (:z:,y,z) € ZP} =

for z=0,1,--- ,cl, we have

(al +1)(al +2)

3 _
1P) N Z¥| = .

G2C

1 3
= 713 - §(a2 + ac + 2ag)l® + (7(1 —|—g)l—|— 1.

The coefficient of [ is also 37“ +g.

3 Proof of Theorem 2.1

First we recall some facts about toric geometry (see [3] for details). Let P C R? be a
d-dimensional integral convex polytope. We define a cone

op ={veR?| (W —u,v) >0, Vu' € P, Yu € F}
for each face F' of P. Then the set
Ap ={op | F is a face of P}

of such cones forms a fan in R, which is called the normal fan of P. Let X(Ap) be the
associated projective toric variety. We denote by V(o) the subvariety of X (Ap) corresponding
to o € Ap. Let Td;(X(Ap)) € A;(X(Ap))g be the i-th Todd class in the Chow group of
i-cycles with rational coefficients.

Theorem 3.1 Let P C RY be a d-dimensional integral convex polytope and |(IP) N Z%| =
cal® 4+ g1 + ... 4 ¢g be its Ehrhart polynomial. If Td;(X(Ap)) has an expression of the
form > rp[V(or)] with rp € Q, then we have ¢; =Y rpVol(F), where [V (oF)] is the class of

F F

V(or) in the Chow group and Vol(F)) is the relative volume of F.
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Now we assume that d = 3 and P is simple. Then the associated toric variety X (Ap)
is Q-factorial and we know the ring structure of the Chow ring A*(X(Ap))g with rational
coefficients. Let Fy,--- , E,, and Fy,--- , F}, be the edges and the facets of P, respectively. We
have

> () [V(er) =0, Vue (Q%)". (3.1)
k=1
If Fy, and F}, are distinct, then
1
———[V(og,)], 1<3j <m:F NF, =Ej,
V(or,)IV(or,)] = § m(E)) ’ oo (3.2)
0, Fkl n Fk2 =10

in A* (X(Ap))@
Pommersheim gave an expression of Tdg_o(X(Ap)) for a d-dimensional simple integral
convex polytope P C R?. In the case where d = 3, we have the following theorem.

Theorem 3.2 (see [4]) If P C R? is a 3-dimensional simple integral convex polytope, then

Ta (X (Ap) = 3 (5B + 7) V(om)] + 75 S [Vion,)

j=1 k=1
We use the notation in Definition 2.2. It suffices to show

bit1 z+11 0 0

g1 bive e :
. . Ei€i+1 " E€j—1

VOerP== 3 w0 gl 0 | SE i Vien s

2<i<j<r

for each facet F of P.
We put

bs &gt 0 0

—1
€s b5+1 €st1

D(s,t) = 0 Es_-i}l 0
. . bt—l o 11
0 - 0 &Y b

for 2 < s <t < rand D(s,t) = 1 for s > t. Define u € (Q*)* by (u,v) = 1, (u,vx,) =
0, (u,vk,) =0. By (3.1) and (3.2), we have

3

V(er) ==[V(er)] Y (uox)[Vier, )] == %[V(Upjlpj)].
Jj=1 j=3 J—147J

Hence it suffices to show

u Uk Zaz 1+1,5— 1)5i5i+1 crr €1 (33)
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forany j=3,---,r.
First we claim that

-1 -1 o ‘
Ei—1Vk;_y T €] Uy, = a0+ bjuy, (3.4)
for any j =2,--- ,7 — 1. By Cramer’s rule, we have
; det(vkﬁl,vkj,vkjfl)v det(v,vkﬂl,vkjfl)v det(v, vk, , vi;,,)
kjv1 — k. _—
5 det(v, vy, , v, ) det(v, v, o5, ) 0 det(v, vk, , vk, ,)
det (v, s Uk, Vk; ;) det(v, vr, 15 Vk;_, ) £;
= v+ Vk; — Vkj_y -
€j-1 Ej—-1 Ej—-1
So we have
-1 -1
€j—1Vk; 1 + €5 Ukjpa
-1 _—1 -1 _—1
=&, det(vi;y s iy, Uiy, )U + €585 det(v, vk Uk Uk, (3.5)

—
Taking the inner product of both sides of (3.5) with Pj_1Q;_1 gives
= o -
6]‘ 1<Pj—1Qj—1a Ukj+1> = Ej—llaj 1det(vkj+1 ) Ukj7vk5j—1)<Pj—1Qj—l7 U>,
which means a; = sj__llsj_ldet(vkj+1 , Uk;,Vk,_, ). Taking the inner product of both sides of (3.5)
with PjP;y1 gives

_ _— _ _ e
aj—ll <Pij+17 ’Ukj—1> = Ej—llaj 1det(v, Ukjy1s Ukj—1)<Pij+1? Ukj>7

which means b; = sj__llsj_ldet(v, Uk, 1+ Vk;_, ). Thus (3.4) follows.

We show (3.3) by induction on j. If j = 3, then both sides are agses. If j = 4, then both
sides are agbseacs + ages. Suppose 4 < j < r — 1. By (3.4) and the hypothesis of induction, we
have

<u7 Ukj+1> = <ua aje;u + bjajvkj - 8;—11€jvkj—1>
—1
= aje; +bjej(u, vi;) — ;- 185(u, vk, )
j—1
=ajc; + bjEj Z aiD(i + 1,5 — 1)51’51’4—1 Crr g1
1=2
j—2
— e Y aiD(i+1,j —2)eigit1 - -gja
1=2
On the other hand,
J
Z aiD(i + 1,j)€i8i+1 crr gy
1=2
Jj—2
= aje; + aj_lbjsj_lgj + ZaiD(i + 1,j)€i8i+1 S gy
=2
Since
j—2
ZaiD(i + 1,].)61'81'4_1 cE

=2
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j—2
= ai(b;D(i+1,j—1)— ;2 D(i+1,j — 2))eicisr -
1=2
j—2
= bj&:j ZCLZD(Z +1,5— 1)5i5i+1 crrE-1
1=2
j—2
— 6j__11<€j ZalD(Z + 1,j — 2)51'51'4—1 e 6j_2,
1=2
we have
J
> aiD(i+1,4)eigip1 €5
=2
j—2
=aje; + aj_lbjaj_laj + bjEj ZalD(z + 1,5 — 1)8i8i+1 ce
=2
j—2
— Ej__llé'j ZaiD(i + 1,5 — 2)6i6i+1 CEj2
=2
j—1
= a;&j + bjEj ZalD(z + 1,j — 1)Ei6i+1 €1
=2
j—2
— Ej__llé'j ZaiD(i + 1,5 — 2)6i6i+1 CEj2
=2
= (u, v, )-

Thus (3.3) holds for j + 1. This completes the proof of Theorem 2.1.

€j
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