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1 Introduction

Let P ⊂ Rd be an integral convex polytope of dimension d, that is, a convex polytope whose

vertices have integer coordinates. For a non-negative integer l, we write lP = {lx | x ∈ P}.

Ehrhart [2] proved that the number of lattice points in lP can be expressed by a polynomial

in l of degree d: |(lP )∩ Zd| = cdl
d + cd−1l

d−1 + · · ·+ c0. This polynomial is called the Ehrhart

polynomial of P . It is known that:

(1) c0 = 1.

(2) cd−1 is half of the sum of relative volumes of facets of P (see [1, Theorem 5.6]).

(3) cd is the volume of P (see [1, Corollary 3.20]).

However, we have no formula on other coefficients of Ehrhart polynomials. In particular,

we do not know a formula on c1 for a general 3-dimensional integral convex polytope. In this

paper, we find an explicit formula on c1 of the Ehrhart polynomial of a 3-dimensional simple

integral convex polytope (see Theorem 2.1).

Pommersheim [4] gave a method for computing the (d − 2)-nd coefficient of the Ehrhart

polynomial of a d-dimensional simple integral convex polytope P by using toric geometry.

He obtained an explicit description of the Ehrhart polynomial of a tetrahedron by using this

method. Our formula is obtained by using this method for a general 3-dimensional simple

integral convex polytope.

The structure of the paper is as follows. In Section 2, we state the main theorem and give

a few examples. In Section 3, we give a proof of the main theorem.

2 The Main Theorem

Let P ⊂ R3 be a 3-dimensional simple integral convex polytope, and let F1, · · · , Fn be the

facets of P . For k = 1, · · · , n, we denote by vk ∈ Z3 the inward-pointing primitive normal
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vector of Fk. For an edge E of P , we denote by Vol(E) the relative volume of E, that is, the

length of E measured with respect to the lattice of rank one in the line containing E.

Definition 2.1 For each edge E = Fk1
∩Fk2

of P , we define an integer m(E) and a rational

number s(E) as follows:

(1) We define m(E) = |((Rvk1
+ Rvk2

) ∩ Z3)/(Zvk1
+ Zvk2

)|.

(2) There exists a basis e1, e2 for (Rvk1
+Rvk2

)∩Z3 such that vk1
= e1 and vk2

= pe1 + qe2
for some q > p ≥ 0. Then we define s(E) = s(p, q), where s(p, q) is the Dedekind sum, which

is defined by

s(p, q) =

q
∑

i=1

(( i

q

))((pi

q

))

, ((x)) =

{

x− [x]−
1

2
, x /∈ Z,

0, x ∈ Z.

Remark 2.1 We have q = m(E). Although p is not uniquely determined, s(p, q) does not

depend on the choice of e1, e2. Thus s(E) is well-defined.

Definition 2.2 For each facet F of P , we define a rational number C(F ) as follows. We

name vertices and facets around F as in Figure 1. We denote by v ∈ Z3 the inward-pointing

primitive normal vector of F .

Figure 1 Vertices and facets around F .

For i = 1, · · · , r, we define

εi = det(v, vki+1
, vki

) > 0, ai =
〈
−−−−−−→
Pi−1Qi−1, vki+1

〉

εi〈
−−−−−−→
Pi−1Qi−1, v〉

, bi =
〈
−−−−→
PiPi+1, vki−1

〉

εi−1〈
−−−−→
PiPi+1, vki

〉
,

where vk0
= vkr

, vkr+1
= vk1

, ε0 = εr, P0 = Pr, Pr+1 = P1, Q0 = Qr and 〈·, ·〉 is the standard

inner product on R3. Then we define

C(F ) = −
∑

2≤i<j≤r

ai

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bi+1 ε−1
i+1 0 · · · 0

ε−1
i+1 bi+2 ε−1

i+2

. . .
...

0 ε−1
i+2

. . .
. . . 0

...
. . .

. . . bj−2 ε−1
j−2

0 · · · 0 ε−1
j−2 bj−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

εiεi+1 · · · εj−1

Vol(Pj−1Pj)

m(Pj−1Pj)
,

where Pj−1Pj is the edge whose endpoints are Pj−1 and Pj, and the determinants above are

understood to be one when j = i+ 1.
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Remark 2.2 The proof of Theorem 2.1 below shows that C(F ) does not depend on the

choice of Fk1
.

The following is our main theorem.

Theorem 2.1 Let P ⊂ R3 be a 3-dimensional simple integral convex polytope, and let

E1, · · · , Em and F1, · · · , Fn be the edges and the facets of P , respectively. Then the coefficient

c1 of the Ehrhart polynomial |(lP ) ∩ Z3| = c3l
3 + c2l

2 + c1l + c0 is given by

m
∑

j=1

(

s(Ej) +
1

4

)

Vol(Ej) +
1

12

n
∑

k=1

C(Fk).

Example 2.1 Let a, b, c be positive integers with gcd(a, b, c) = 1 and let P ⊂ R3 be the

tetrahedron with vertices

O =





0
0
0



 , P1 =





a
0
0



 , P2 =





0
b
0



 , P3 =





0
0
c



 .

We put A = gcd(b, c), B = gcd(a, c), C = gcd(a, b) and d = ABC. Then we have the following

table:

Table 1 The values of Vol(E), s(E) and C(F )

edge E OP1 OP2 OP3 P1P2 P1P3 P2P3

Vol(E) a b c C B A

m(E) 1 1 1
cC

d

bB

d

aA

d

s(E) 0 0 0 −s
(ab

d
,
cC

d

)

−s
(ac

d
,
bB

d

)

−s
(bc

d
,
aA

d

)

facet F OP1P2 OP1P3 OP2P3 P1P2P3

inward-pointing primitive
normal vector of F









0

0

1

















0

1

0

















1

0

0

























−
bc

d

−
ac

d

−
ab

d

















C(F )
ab

c

ac

b

bc

a

d2

abc

Thus we have
∑

E:edge

(

s(E) +
1

4

)

Vol(E) +
1

12

∑

F :facet

C(F )

=
a

4
+

b

4
+

c

4
+
(

− s
(ab

d
,
cC

d

)

+
1

4

)

C +
(

− s
(ac

d
,
bB

d

)

+
1

4

)

B

+
(

− s
(bc

d
,
aA

d

)

+
1

4

)

A+
1

12

(ab

c
+

ac

b
+

bc

a
+

d2

abc

)

,
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which coincides with the formula in [4, Theorem 5].

Example 2.2 Let a and c be positive integers and b be a non-negative integer. Consider

the convex hull P ⊂ R3 of the six points

O =





0
0
0



 , A =





a
0
0



 , B =





0
a
0



 ,

O′ =





b
0
c



 , A′ =





a+ b
0
c



 , B′ =





b
a
c



 .

P is a 3-dimensional simple polytope. We put g = gcd(b, c). Then we have the following table:

Table 2 The values of Vol(E), s(E) and C(F )

edge E OA OB AB OO′ AA′ BB′ O′A′ O′B′ A′B′

Vol(E) a a a g g g a a a

m(E) 1
c

g

c

g
1 1

c

g
1

c

g

c

g

s(E) 0 −s
( b

g
,
c

g

)

s
( b

g
,
c

g

)

0 0 −s
(

1,
c

g

)

0 s
( b

g
,
c

g

)

−s
( b

g
,
c

g

)

facet F OAB OAA′O′ OBB′O′ ABB′A′ O′A′B′

inward-pointing primitive
normal vector of F











0

0

1





















0

1

0

























c

g

0

−
b

g































−
c

g

−
c

g

b

g



























0

0

−1











C(F ) 0 c g2

c

g2

c
0

Figure 2 The simple polytope P .
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Thus we have
∑

E:edge

(

s(E) +
1

4

)

Vol(E) +
1

12

∑

F :facet

C(F )

= −s
(

1,
c

g

)

g +
3a

2
+

3g

4
+

1

12

(

c+
2g2

c

)

= −g

c
g
−1

∑

i=1

( i
c
g

−
1

2

)2

+
3a

2
+

3g

4
+

c

12
+

g2

6c

= −g

c
g
−1

∑

i=1

(g2

c2
i2 −

g

c
i+

1

4

)

+
3a

2
+

3g

4
+

c

12
+

g2

6c

= −
g3

c2

( c
g
− 1) c

g
(2c
g
− 1)

6
+

g2

c

( c
g
− 1) c

g

2
− g

c
g
− 1

4
+

3a

2
+

3g

4
+

c

12
+

g2

6c

=
3a

2
+ g.

On the other hand, since

#{(x, y) ∈ Z2 | (x, y, z) ∈ lP} =















(al + 1)(al + 2)

2
,

(( c

g

)∣

∣

∣z
)

,

al(al+ 1)

2
,

(( c

g

) ∣

∣

∣

/

z
)

for z = 0, 1, · · · , cl, we have

|(lP ) ∩ Z3| =
(al + 1)(al + 2)

2
(gl + 1) +

al(al + 1)

2
((cl + 1)− (gl + 1))

=
a2c

2
l3 +

1

2
(a2 + ac+ 2ag)l2 +

(3a

2
+ g

)

l + 1.

The coefficient of l is also 3a
2
+ g.

3 Proof of Theorem 2.1

First we recall some facts about toric geometry (see [3] for details). Let P ⊂ Rd be a

d-dimensional integral convex polytope. We define a cone

σF = {v ∈ Rd | 〈u′ − u, v〉 ≥ 0, ∀u′ ∈ P, ∀u ∈ F}

for each face F of P . Then the set

∆P = {σF | F is a face of P}

of such cones forms a fan in Rd, which is called the normal fan of P . Let X(∆P ) be the

associated projective toric variety. We denote by V (σ) the subvariety of X(∆P ) corresponding

to σ ∈ ∆P . Let Tdi(X(∆P )) ∈ Ai(X(∆P ))Q be the i-th Todd class in the Chow group of

i-cycles with rational coefficients.

Theorem 3.1 Let P ⊂ Rd be a d-dimensional integral convex polytope and |(lP ) ∩ Zd| =

cdl
d + cd−1l

d−1 + · · · + c0 be its Ehrhart polynomial. If Tdi(X(∆P )) has an expression of the

form
∑

F

rF [V (σF )] with rF ∈ Q, then we have ci =
∑

F

rFVol(F ), where [V (σF )] is the class of

V (σF ) in the Chow group and Vol(F ) is the relative volume of F .
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Now we assume that d = 3 and P is simple. Then the associated toric variety X(∆P )

is Q-factorial and we know the ring structure of the Chow ring A∗(X(∆P ))Q with rational

coefficients. Let E1, · · · , Em and F1, · · · , Fn be the edges and the facets of P , respectively. We

have

n
∑

k=1

〈u, vk〉[V (σFk
)] = 0, ∀u ∈ (Q3)∗. (3.1)

If Fk1
and Fk2

are distinct, then

[V (σFk1
)][V (σFk2

)] =







1

m(Ej)
[V (σEj

)], 1 ≤ ∃j ≤ m : Fk1
∩ Fk2

= Ej ,

0, Fk1
∩ Fk2

= ∅
(3.2)

in A∗(X(∆P ))Q.

Pommersheim gave an expression of Tdd−2(X(∆P )) for a d-dimensional simple integral

convex polytope P ⊂ Rd. In the case where d = 3, we have the following theorem.

Theorem 3.2 (see [4]) If P ⊂ R3 is a 3-dimensional simple integral convex polytope, then

Td1(X(∆P )) =
m
∑

j=1

(

s(Ej) +
1

4

)

[V (σEj
)] +

1

12

n
∑

k=1

[V (σFk
)]2.

We use the notation in Definition 2.2. It suffices to show

[V (σF )]
2 = −

∑

2≤i<j≤r

ai

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bi+1 ε−1
i+1 0 · · · 0

ε−1
i+1 bi+2 ε−1

i+2

. . .
...

0 ε−1
i+2

. . .
. . . 0

...
. . .

. . . bj−2 ε−1
j−2

0 · · · 0 ε−1
j−2 bj−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

εiεi+1 · · · εj−1

m(Pj−1Pj)
[V (σPj−1Pj

)]

for each facet F of P .

We put

D(s, t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bs ε−1
s 0 · · · 0

ε−1
s bs+1 ε−1

s+1

. . .
...

0 ε−1
s+1

. . .
. . . 0

...
. . .

. . . bt−1 ε−1
t−1

0 · · · 0 ε−1
t−1 bt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

for 2 < s ≤ t < r and D(s, t) = 1 for s > t. Define u ∈ (Q3)∗ by 〈u, v〉 = 1, 〈u, vk1
〉 =

0, 〈u, vk2
〉 = 0. By (3.1) and (3.2), we have

[V (σF )]
2 = −[V (σF )]

r
∑

j=1

〈u, vkj
〉[V (σFkj

)] = −
r

∑

j=3

〈u, vkj
〉

m(Pj−1Pj)
[V (σPj−1Pj

)].

Hence it suffices to show

〈u, vkj
〉 =

j−1
∑

i=2

aiD(i+ 1, j − 1)εiεi+1 · · · εj−1 (3.3)
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for any j = 3, · · · , r.

First we claim that

ε−1
j−1vkj−1

+ ε−1
j vkj+1

= ajv + bjvkj
(3.4)

for any j = 2, · · · , r − 1. By Cramer’s rule, we have

vkj+1
=

det(vkj+1
, vkj

, vkj−1
)

det(v, vkj
, vkj−1

)
v +

det(v, vkj+1
, vkj−1

)

det(v, vkj
, vkj−1

)
vkj

+
det(v, vkj

, vkj+1
)

det(v, vkj
, vkj−1

)
vkj−1

=
det(vkj+1

, vkj
, vkj−1

)

εj−1

v +
det(v, vkj+1

, vkj−1
)

εj−1

vkj
−

εj
εj−1

vkj−1
.

So we have

ε−1
j−1vkj−1

+ ε−1
j vkj+1

= ε−1
j−1ε

−1
j det(vkj+1

, vkj
, vkj−1

)v + ε−1
j−1ε

−1
j det(v, vkj+1

, vkj−1
)vkj

. (3.5)

Taking the inner product of both sides of (3.5) with
−−−−−−→
Pj−1Qj−1 gives

ε−1
j 〈

−−−−−−→
Pj−1Qj−1, vkj+1

〉 = ε−1
j−1ε

−1
j det(vkj+1

, vkj
, vkj−1

)〈
−−−−−−→
Pj−1Qj−1, v〉,

which means aj = ε−1
j−1ε

−1
j det(vkj+1

, vkj
, vkj−1

). Taking the inner product of both sides of (3.5)

with
−−−−→
PjPj+1 gives

ε−1
j−1〈

−−−−→
PjPj+1, vkj−1

〉 = ε−1
j−1ε

−1
j det(v, vkj+1

, vkj−1
)〈
−−−−→
PjPj+1, vkj

〉,

which means bj = ε−1
j−1ε

−1
j det(v, vkj+1

, vkj−1
). Thus (3.4) follows.

We show (3.3) by induction on j. If j = 3, then both sides are a2ε2. If j = 4, then both

sides are a2b3ε2ε3 + a3ε3. Suppose 4 ≤ j ≤ r− 1. By (3.4) and the hypothesis of induction, we

have

〈u, vkj+1
〉 = 〈u, ajεjv + bjεjvkj

− ε−1
j−1εjvkj−1

〉

= ajεj + bjεj〈u, vkj
〉 − ε−1

j−1εj〈u, vkj−1
〉

= ajεj + bjεj

j−1
∑

i=2

aiD(i+ 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2
∑

i=2

aiD(i + 1, j − 2)εiεi+1 · · · εj−2.

On the other hand,

j
∑

i=2

aiD(i + 1, j)εiεi+1 · · · εj

= ajεj + aj−1bjεj−1εj +

j−2
∑

i=2

aiD(i+ 1, j)εiεi+1 · · · εj .

Since

j−2
∑

i=2

aiD(i+ 1, j)εiεi+1 · · · εj
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=

j−2
∑

i=2

ai(bjD(i+ 1, j − 1)− ε−2
j−1D(i+ 1, j − 2))εiεi+1 · · · εj

= bjεj

j−2
∑

i=2

aiD(i + 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2
∑

i=2

aiD(i+ 1, j − 2)εiεi+1 · · · εj−2,

we have

j
∑

i=2

aiD(i+ 1, j)εiεi+1 · · · εj

= ajεj + aj−1bjεj−1εj + bjεj

j−2
∑

i=2

aiD(i + 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2
∑

i=2

aiD(i+ 1, j − 2)εiεi+1 · · · εj−2

= ajεj + bjεj

j−1
∑

i=2

aiD(i + 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2
∑

i=2

aiD(i+ 1, j − 2)εiεi+1 · · · εj−2

= 〈u, vkj+1
〉.

Thus (3.3) holds for j + 1. This completes the proof of Theorem 2.1.
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