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Abstract This paper mainly deals with the question of equivalence between equivariant

cohomology Chern numbers and equivariant K-theoretic Chern numbers when the trans-

formation group is a torus. By using the equivariant Riemann-Roch relation of Atiyah-

Hirzebruch type, it is proved that the vanishing of equivariant cohomology Chern numbers

is equivalent to the vanishing of equivariant K-theoretic Chern numbers.
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1 Introduction

Let W be a compact smooth manifold. One knows that the boundary of W is a closed

smooth manifold. Conversely, given a closed smooth manifold M , how to know M is the

boundary of some compact smooth manifold?

Thom [1] solved this question completely in 1950’s. In fact, he proved the following theorem.

Theorem 1.1 Let M be a closed smooth manifold. M is the boundary of a compact smooth

manifold if and only if all Stiefel-Whitney characteristic numbers of M are zero.

This theorem leads to the connection between characteristic numbers and the question

whether a manifold is the boundary of some compact smooth manifold with boundary.

It is known that there are various kinds of characteristic classes and characteristic numbers

defined in ordinary cohomology ring, for example, Chern classes and Chern numbers. It is

natural to consider the relation between vanishing of Chern numbers and being the boundary

of some manifold with some stably complex structure.

Recall that a unitary manifold (or a stably complex manifold) is a smooth manifold whose

stable tangent bundle admits a complex structure. Let M be a unitary manifold with stable

tangent bundle TM . The corresponding Chern classes (resp. Chern numbers) of TM can be

defined in integral cohomology ring H∗(M ;Z) (resp. H∗(pt;Z)). In his paper [10], Milnor

proved the following theorem.

Theorem 1.2 Let M be a unitary manifold. M is the boundary of a compact unitary

manifold W with the induced unitary structure of W if and only if all Chern numbers of M are

zero.
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We can further consider this question in other generalized cohomology. In complexK-theory,

if M is a unitary manifold, then one can define K-theoretic Chern classes (resp. K-theoretic

Chern numbers) in K∗(M) (resp. K∗(pt)). In Section 2, we will use the Riemann-Roch relation

of Atiyah-Hirzebruch type to show the following proposition.

Proposition 1.1 Let M be a closed unitary manifold. All integral cohomology Chern num-

bers of M vanish if and only if all K-theoretic Chern numbers of M vanish.

Therefore, it follows that a unitary closed M is the boundary of some compact unitary

manifold if and only if all K-theoretic Chern numbers of M vanish.

In equivariant case, suppose that the transformation group is G. We can still ask this

question: Is it true that the vanishing of some equivariant characteristic numbers implies being

the boundary of some G-manifold?

When the transformation group G = T k is a torus, recall that M is a unitary T k-manifold

provided thatM is a T k-manifold whose stable tangent bundle TM admits a complex structure

comparable with the T k-action. In his paper [12], tom Dieck proved the following theorem.

Theorem 1.3 (see [12]) Let M be a unitary T k-manifold. M is the boundary of a compact

unitary T k-manifold with the induced unitary T k-structure if and only if all the equivariant

K-theoretic characteristic numbers vanish.

In tom Dieck’s theorem, equivariant K-theoretic characteristic numbers play an important

role. We want to know the question whether it is possible the vanishing of equivariant cohomol-

ogy characteristic numbers can still determine that M is the boundary of a compact unitary

T k-manifold with the induced unitary T k-structure.

Inspired by Proposition 1.1, if we could prove the equivalence of the vanishing of these two

kinds of equivariant characteristic numbers, then the answer of the question above would be

yes. Hence, our main theorem in this paper is the following result.

Theorem 1.4 Let M be a unitary T k-manifold with stable complex tangent bundle TM ∈

KTk(M). Then all integral equivariant cohomology Chern numbers of M vanish if and only if

all equivariant K-theoretic Chern numbers of M vanish.

Therefore, one obtains the answer of the question above.

Theorem 1.5 Let M be a unitary T k-manifold. M is the boundary of a compact unitary

T k-manifold with the induced unitary T k-structure if and only if all the equivariant cohomology

characteristic numbers vanish.

Remark 1.1 In [9], Zhi Lü and the author gave the first proof of Theorem 1.5 directly and

also consider more cases. The proof in this paper is another aspect of the understanding of the

relation between various kinds of equivariant Chern numbers.

This paper is organized as follows. In Section 2, we will recall ordinary Chern numbers and

K-theoretic Chern numbers in nonequivariant case and will prove Proposition 1.1. In Section

3, we turn to equivariant ordinary Chern numbers and K-theoretic Chern numbers and prove

the T k-version Riemann-Roch relation of Atiyah-Hirzebruch type in Section 3.3. Combining

the results in Section 4, we will finish the proof of our main theorem in Section 4.
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2 K-Theoretic Chern Classes and Integral Cohomology Chern

Numbers: Nonequivariant Case

2.1 K-theoretic Chern classes and Chern numbers

First let us recall the definitions of K-theoretic Chern classes and Chern numbers and some

standard facts (see [2]). Let ξ be a complex vector bundle over a spaceX and λt(ξ) ∈ K
∗(X)[[t]]

be the power series
∞
∑

i=0

λi(ξ)ti,

where λi(ξ) denotes the i-th exterior power of the vector bundle ξ. Then λt can be extended

to a homomorphism

λt : K
∗(X) −→ K∗(X)[[t]],

x 7→

∞
∑

i=0

λi(x)ti.

Furthermore, one can define the operations γi(x) by putting

γt(x) := λ t
1−t

(x) =
∞
∑

i

γi(x)ti ∈ K(X)[[t]], x ∈ K(X).

Proposition 2.1 (see [2]) Let ξ and η be two complex bundles over a finite CW complex

X. One has

(a) If ξ is a line bundle, then γ1(ξ) = ξ − 1 and γk(ξ) = 0 for k > 1.

(b) γk(ξ ⊕ η) =
∑

p+q=k

γp(ξ) · γq(η).

(c) Let f : Y → X be a continuous map. Then f !γk(ξ) = γk(f !(ξ)).

Now we can use these operations γi to define K-theoretic Chern classes. Let M be a closed

unitary manifold with stable complex tangent bundle TM ∈ K(M). Then the totalK-theoretic

Chern class of M is defined to be

cK(M) :=
∑

i=0

γi(TM),

with the i-th K-theoretic Chern class cKi (M) = γi(TM).

Remark 2.1 In [5], the i-th K-theoretic Chern class ofM is also defined by (−1)iγi(TM).

In this paper, it is more convenient to use the definition of γi(TM) as above.

Using the Gysin map, we can define the K-theoretic Chern numbers of M . Namely, let

p : M −→ pt be the constant map and pK! : K∗(M) −→ K∗(pt) be the Gysin map induced by

p in complex K-theory. Then the K-theoretic Chern numbers of M are defined to be

cKω [M ] := pK! (cKω (M)),

where each ω = (i1, i2, · · ·, is) is a partition of |ω| = i1 + i2 + · · · + is, and cKω (M) means

cKi1 (M)cKi2 (M) · · · cKis (M).
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2.2 Riemann-Roch relation of Atiyah-Hirzebruch type

In this part, we will review the Riemann-Roch relation of Atiyah-Hirzebruch type (see [3, 8]).

Definition 2.1 For any topological space X, we denote by H∗∗(X ;R) the direct product of

Hi(X ;R) with coefficient ring R. More precisely,

H∗∗(X ;R) := {(x0, x1, · · ·, xn, · · ·) | xi ∈ H
i(X ;R)}.

For any two elements a = {xi}, b = {yi} in H
∗∗(X ;R), the product a · b = {zi} is defined to be

zn =

n
∑

i=0

xiyn−i.

Remark 2.2 When we discuss the Borel construction EG×GX (which is not compact) of

X , it is better to use the direct product H∗∗

G (X ;Q) instead of the cohomology ring H∗

G(X ;Q) =

⊕Hi
G(X ;Q).

We know that the Chern character ch is a natural transformation from complex K-theory

to ordinary cohomology theory with rational coefficients

ch : K∗(X) −→ H∗∗(X ;Q).

Let X be a compact space and ξ be a complex vector bundle over X . Then one has Thom

isomorphisms in complex K-theory and ordinary cohomology theory:

ψ! : K
∗(X) −→ K∗(D(ξ), S(ξ)),

ψ∗ : H∗(X) −→ H∗(D(ξ), S(ξ)).

With respect to these Thom isomorphisms ψ! and ψ∗, one has the following diagram:

K∗(X)
ch

−−−−→ H∗∗(X ;Q)

ψ!





y

ψ∗





y

K∗(D(ξ), S(ξ))
ch

−−−−→ H∗∗(D(ξ), S(ξ);Q)

This diagram is not commutative. However, we have the following nonequivariant Riemann-

Roch relation.

Proposition 2.2 Let X be a compact space and ξ be a complex vector bundle over X. Then

for each α ∈ K∗(X),

ch(ψ!(α)) = ψ∗(ch(α) · Td
−1(ξ)),

where Td(ξ) ∈ H∗∗(X ;Q) is the total Todd class of ξ.

Proof We refer to [8, p. 182] or [4, Proposition 3.5].

With respect to the Gysin maps, Proposition 2.2 leads to the Riemann-Roch relation of

Atiyah-Hirzebruch type (see [3] or [8, Theorem 26.5.2]). Indeed, this kind of Riemann-Roch

relation can be stated as follows.
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Proposition 2.3 Let M and N be two closed unitary manifolds and f : M −→ N be a

smooth map. Then for each α ∈ K∗(M),

ch(fK! (α) · Td(TN)) = f!(ch(α) · Td(TM)),

where fK! : K∗(M) −→ K∗−(m−n)(N) and f! : H
∗(M ;Q) −→ H∗−(m−n)(N ;Q) are the Gysin

maps induced by f in complex K-theory and ordinary cohomology theory respectively with m =

dimM and n = dimN .

Remark 2.3 As a special case of Proposition 2.3, let p : M −→ pt be the constant map.

Then for each α ∈ K∗(M),

ch(pK! (α)) = p!(ch(α) · Td(TM)).

2.3 K-theoretic Chern numbers and ordinary cohomology Chern numbers

In this part, we will use the Riemann-Roch relation of Atiyah-Hirzebruch type to prove the

following proposition.

Proposition 2.4 Let M be a closed unitary manifold with stable complex tangent bundle

TM . All integral cohomology Chern numbers of M vanish if and only if all K-theoretic Chern

numbers of M vanish.

Proof First, assume that all integral cohomology Chern numbers of M vanish. Then for

any K-theoretic Chern number pK! (cKω (M)) with partition ω = (i1, i2, · · ·, is), one has

ch(pK! (cKω (M))) = p!(ch(c
K
ω (M)) · Td(TM)),

where p! : H
∗∗(M ;Q) −→ H∗∗(pt;Q) is the Gysin map induced by p in ordinary cohomology.

Since p!(ch(c
K
ω (M)) ·Td(TM)) is represented by a combinations of ordinary cohomology Chern

numbers, it follows that

p!(ch(c
K
ω (M)) · Td(TM)) = 0 = ch(pK! (cKω (M))).

Moreover, since the Chern character ch : K∗(pt)→ H∗∗(pt;Q) is injective, one has

pK! (cKω (M)) = 0.

Conversely, assume that all K-theoretic Chern numbers of M vanish. Then for any coho-

mology Chern number p!(cω(M)), consider the corresponding K-theoretic Chern class cKω (M).

One has

ch(cKω (M)) = cω(M) + terms of higher degree ∈ H∗∗(M ;Q).

By the Riemann-Roch relation, one has

0 = ch(pK! (cKω (M)))

= p!(ch(c
K
ω (M)) · Td(TM))

= p!(cω(M) + terms of higher degree)

= p!(cω(M)) + terms of higher degree,

which implies that p!(cω(M)) = 0 in H∗∗(pt;Q). This means that p!(cω(M)) = 0 in H∗∗(pt) ∼=

Z. The proof is completed.
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3 K-Theoretic Chern Classes and Integral Cohomology Chern

Numbers: Equivariant Case

3.1 Equivariant Chern classes and Chern numbers

In this subsection, we recall the definitions of three kinds of equivariant Chern classes. Let

M be a unitary G-manifold and E be a unitary G-vector bundle over M . Then applying the

Borel construction to E −→ M gives a unitary G-vector bundle EG ×G E over EG ×G M .

First, recall that the total equivariant cohomology Chern class of E is defined to be the total

Chern class of EG×G E over EG×GM :

cG(E) := c(EG×G E) ∈ H∗∗(EG×GM).

Similarly, in equivariant K-theory K(EG×G−), the total equivariant Chern class of E over

M is defined to be

cG,K(E) := cK(EG×G E) ∈ K∗(EG×GM).

In equivariant K-theory KG(−) (see [11]), the total equivariant Chern class of E is defined

to be

cG,KG(E) :=
∑

i=0

γi(E) ∈ K∗

G(M),

where the operations γi(E) are defined in the same way as was done in the nonequivariant case

(see [7, 12]).

In particular, let M be a unitary G-manifold with stable complex G-vector bundle TM .

The corresponding total equivariant Chern class of M is defined by the corresponding total

equivariant Chern class of TM as follows:

cG(M) := c(EG×G TM) ∈ H∗∗(EG×GM),

cG,K(M) := cK(EG×G TM) ∈ K∗(EG×GM),

cG,KG(M) :=
∑

i=0

γi(TM) ∈ K∗

G(M).

We know that the equivariant Gysin maps are well-defined in these equivariant cohomology

theories. Let p :M −→ pt be the constant map. Then we have three corresponding equivariant

Gysin maps

pG! : H∗(EG ×GM) −→ H∗(BG),

pG,K! : K∗(EG×GM) −→ K∗(BG),

pG,KG

! : K∗

G(M) −→ K∗

G(pt).

Hence, the corresponding equivariant Chern numbers of M are defined to be

cGω [M ]G := pG! (c
G
ω (M)),

cG,Kω [M ]G := pG,K! (cG,Kω (M)),

cG,KG
ω [M ]G := pG,KG

! (cG,KG
ω (M)),

respectively, where ω = (i1, i2, · · · , is) is a partition of |ω| = i1+ i2+ · · ·+ is, and c
G
ω (M) (resp.

cG,Kω (M), cG,KG
ω (M)) means the product cGi1(M)cGi2(M) · · · cGis(M) (resp. cG,Ki1

(M)cG,Ki2
(M)

· · · cG,Kis
(M), cG,KG

i1
(M)cG,KG

i2
(M) · · · cG,KG

is
(M)).
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3.2 Inverse limits in equivariant cohomology theory of Borel type

Assume that G is a compact Lie group. Let M be a compact unitary G-manifold and

EG×GM be the Borel construction of M . EG×GM admits a filtration:

· · · ⊂ EG(n) ×GM ⊂ EG(n+ 1)×GM ⊂ · · · ⊂ EG×GM,

where EG(n) can be some compact smooth manifold. The following proposition is well-known.

Proposition 3.1 In ordinary cohomology theory, one has

lim
←−

Hi(EG(n)×GM) = Hi(EG×GM).

In complex K-theory, one also has

lim
←−

Ki(EG(n)×GM) = Ki(EG×GM).

For a unitary G-vector bundle EG×GE over EG×GM , let EG×GD(E) be the disk bundle

of EG×G E and EG×G S(E) be the sphere bundle of EG×G E. There is a diagram

K∗(EG×GM)
ch

−−−−→ H∗∗(EG×GM ;Q)

ψ!





y

∼= ψ∗





y

∼=

K∗(EG×G D(E), EG×G S(E))
ch

−−−−→ H∗∗(EG×G D(E), EG×G S(E);Q)

where ψ! and ψ∗ are Thom isomorphisms in K-theory and cohomology theory, respectively.

Proposition 3.2 For any x ∈ K(EG×GM), one has

ch(ψ!(x)) = ψ∗(ch(x) · TdG
−1(E)),

where TdG(E) := Td(EG ×G E) ∈ H∗∗(EG ×G M ;Q) is the total Todd class of the unitary

vector bundle EG×G E.

Proof By Proposition 3.1, we will use the finite approximation method to finish the proof.

Let in : EG(n)×GM →֒ EG×GM be the inclusion induced by EG(n) −→ EG. For the Todd

genus TdG(E), since i∗n(TdG(E)) = i∗n(Td(EG×G E)) = Td(EG(n)×G E), one has

lim
←−

Td(EG(n)×G E) = TdG(E).

Taking the inverse, one has lim
←−

Td−1(EG(n) ×G E) = TdG
−1(E).

Let x ∈ K∗(EG ×G M) and xn = i!n(x) ∈ K∗(EG(n) ×G M). One has the following

commutative diagram:

K∗(EG×GM)
i!n−−−−→ K∗(EG(n)×GM)

ψ!





y

∼= ψn!





y

∼=

K∗(EG×G D(E), EG×G S(E))
j!n−−−−→ K∗(EG(n) ×G D(E), EG(n) ×G S(E))

where jn is the bundle map induced by in. The vector bundle EG(n) ×G E is the pull-back

of EG ×G E, so the Thom class t(EG(n) ×G E) of EG(n) ×G E satisfies j!n(t(EG ×G E)) =

t(EG(n)×G E). It follows that lim
←−

t(EG(n)×G E) = t(EG×G E).
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By the definition of Thom isomorphism, we have that ψn!(xn) = π!
n(xn) · t(EG(n) ×G E)

and ψ!(x) = π!(x) · t(EG ×G E), where πn (resp. π) denotes the projective map EG(n) ×G
(D(E)/S(E)) −→ EG(n)×GM (resp. EG×G(D(E)/S(E)) −→ EG×GM). Since lim

←−
π!
n(xn) =

π!(x) and lim
←−

t(EG(n) ×G E) = t(EG×G E), it follows that

ψ!(x) = π!(x) · t(EG ×G E)

= lim
←−

π!
n(xn) · lim←−

t(EG(n) ×G E)

= lim
←−

(π!
n(xn) · t(EG(n)×G E))

= lim
←−

ψn!(xn).

Similarly, one can show that

ψ∗(ch(x)TdG
−1(E)) = lim

←−
ψn∗(ch(xn) · Td

−1(EG(n)×G E)).

On the other hand, since EG(n) ×G M is compact, by the nonequivariant Riemann-Roch

relation (see Proposition 2.2), we have

ch(ψn!(xn)) = ψn∗(ch(xn) · Td
−1(EG(n) ×G E)).

Taking the inverse limit, one has

ch(ψ!(x)) = ch(lim
←−

ψn!(xn))

= lim
←−

ch(ψn!(xn))

= lim
←−

ψn∗(ch(xn) · Td
−1(EG(n) ×G E))

= ψ∗(lim←−
ch(xn) · lim←−

Td−1(EG(n) ×G E))

= ψ∗(ch(x) · TdG
−1(E)),

as desired.

3.3 An equivariant version of Riemann-Roch relation of Atiyah-Hirzebruch type

LetM and N be closed unitary G-manifolds and f :M −→ N be a G-map. Then f induces

equivariant Gysin maps

fG! : H∗∗(EG×GM) −→ H∗∗(EG×G N),

fG,K! : K∗(EG×GM) −→ K∗(EG×G N),

fG,KG

! : K∗

G(M) −→ K∗

G(N)

in three equivariant cohomology theoriesH∗(EG×G−), K
∗(EG×G−) andK

∗

G(−), respectively.

Since the Chern character is a natural transformation from K-theory to ordinary cohomol-

ogy, one has the following diagram:

K∗(EG×GM)
ch

−−−−→ H∗∗(EG×GM ;Q)

f
G,K

!





y

fG
!





y

K∗(EG×G N)
ch

−−−−→ H∗∗(EG×G N ;Q)

Still, this diagram is not commutative. In a way similar to the nonequivariant case, we have

the following equivariant Riemann-Roch relation.
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Theorem 3.1 Let M and N be closed unitary G-manifolds with unitary stable tangent

bundles, still denoted by TM and TN , respectively. Let f : M −→ N be a G-map. Then for

any x ∈ K∗(EG×GM),

ch(fG,K! (x)) · TdG(TN) = fG! (ch(x) · TdG(TM)).

Proof By the definition of equivariant Gysin map, choose an G-embedding f × e : M →֒
N×V with normal bundle η, where V is a G-representation. Then one can obtain the following
diagram:

K∗(EG×G M)
ch

−−−−−→ H∗∗(EG×G M ;Q)

φK
1





y

∼= φH
1





y

∼=

K∗(EG×G D(η), EG×G S(η))
ch

−−−−−→ H∗∗(EG×G D(η), EG×G S(η);Q)

φK
2





y

φH
2





y

K∗(EG×G (N ×D(V )), EG×G (N × S(V )))
ch

−−−−−→ H∗∗(EG×G (N ×D(V )), EG×G (N × S(V ));Q)

φK
3

x





∼= Φ
H
3

x





∼=

K∗(EG×G N)
ch

−−−−−→ H∗∗(EG×G N ;Q)

Note that the middle square in the above diagram is commutative. For any x ∈ K∗(EG×GM),

by Proposition 3.2, we have the following relation:

ch(φK1 (x)) = φH1 (ch(x) · TdG
−1(η)).

Since chφK2 = φH2 ch, we have

ch(φK2 φ
K
1 (x)) = φH2 ch(φ

K
1 (x)) = φH2 φ

H
1 (ch(x) · TdG

−1(η)).

Let y = fG,K! (x) = (φK3 )−1φK2 φ
K
1 (x). We see that φK3 (y) = φK2 φ

K
1 (x) and

ch(φK3 (y)) = φH3 (ch(y) · TdG
−1(V )),

where TdG(V ) = Td(EG×GV ) is the equivariant total Todd class of theG-bundle V ×N −→ N .

Put these equalities together,

ch(fG,K! (x)) · Td−1
G (V ) = ch(y) · Td−1

G (V )

= (φH3 )−1ch(φK3 (y))

= (φH3 )−1ch(φK2 φ
K
1 (x))

= (φH3 )−1φH2 φ
H
1 (ch(x) · TdG

−1(η))

= fG! (ch(x) · TdG
−1(η)),

and one has

ch(fG,K! (x)) = fG! (ch(x) · TdG
−1(η)) · TdG(V ).

On the other hand, we see that TM ⊕ η = (f × e)∗T (N × V ) ∼= f∗(TN ⊕ V ), where

f∗(TN ⊕ V ) is the pull-back of the bundle TN ⊕ V −→ N via f :M −→ N . It follows that

TdG(η) · TdG(TM) = f∗(TdG(TN) · TdG(V )).
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Hence,

fG! (ch(x) · TdG(TM)) = fG! (ch(x) · TdG
−1(η) · f∗(TdG(TN) · TdG(V )))

= fG! (ch(x) · TdG
−1(η)) · TdG(V ) · TdG(TN)

= ch(fG,K! (x)) · TdG(TN),

as desired.

There is a natural transformation from KG(−) to K(EG×G −)

α : KG(X) −→ K(EG×G X),

E 7→ EG×G E

for any G-space X and unitary G-vector bundle E over X . Then we define the equivariant

Chern character as follows.

Definition 3.1 For any G-space X, the equivariant Chern character chG is defined by the

composition of α and ch:

chG := ch ◦ α : KG(X) −→ K(EG×G X) −→ H∗∗(EG×G X ;Q).

By choosing the Thom classes, for any G-map f : M → N between two closed unitary

G-manifolds, one has the following commutative diagram:

KG(M)
α

−−−−→ K(EG×GM)

f
G,KG
!





y

f
G,K

!





y

KG(N)
α

−−−−→ K(EG×G N)

Proposition 3.3 Let M and N be closed unitary G-manifolds with unitary stable tangent

bundles which are still denoted by TM and TN . Let f : M −→ N be a G-map. Then for any

x ∈ K∗

G(M),

chG(f
G,KG

! (x)) · TdG(TN) = fG! (chG(x) · TdG(TM)).

Proof By Theorem 3.1, for α(x) ∈ K∗(EG×GM), one has

ch(fG,K! (α(x))) · TdG(TN) = fG! (ch(α(x)) · TdG(TM)).

Since αfG,KG

! = fG,K! α, it follows that

chG(f
G,KG

! (x)) · TdG(TN) = ch(αfG,KG

! (x)) · TdG(TN)

= ch(fG,K! α(x)) · TdG(TN)

= fG! (ch(α(x)) · TdG(TM))

= fG! (chG(x) · TdG(TM)),

as desired.
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4 T
k-K-Theoretic Chern Numbers and T

k-integral Cohomology

Chern Numbers

Now we are going to prove our main theorem.

Theorem 4.1 Let M be a unitary T k-manifold with stable complex tangent bundle TM ∈

KTk(M). Then all integral equivariant cohomology Chern numbers of M vanish if and only if

all equivariant K-theoretic Chern numbers of M vanish.

Proof First, assume that all integral equivariant cohomology Chern numbers of M vanish.

Then for any equivariant K-theoretic Chern number

c
Tk,K

Tk

ω [M ]Tk = p
Tk,K

Tk

! (c
Tk,K

Tk

ω (M)),

where ω is a partition. By Proposition 3.3, one has

chTk(c
Tk,K

Tk

ω [M ]Tk) = chTk(p
Tk,K

Tk

! (c
Tk,K

Tk

ω (M)))

= pT
k

! (chTk(c
Tk,K

Tk

ω (M)) · TdTk(TM)).

Since chTk(c
Tk,K

Tk

ω (M)) · TdTk(TM) is a combination of equivariant cohomology Chern class-

es, it follows that chTk(c
Tk,K

Tk

ω [M ]Tk) can be represented by a combination of equivariant

cohomology Chern numbers. By assumption, one has

chTk(c
Tk,K

Tk

ω [M ]Tk) = 0.

On the other hand, chTk : KTk(pt) −→ H∗∗

Tk(pt;Q) is injective and the equivariant K-theoretic

Chern number c
Tk,K

Tk

ω [M ]Tk = 0.

Second, assume that all the equivariantK-theoretic Chern numbers vanish. For any integral

equivariant cohomology Chern number cT
k

ω [M ]Tk , consider the equivariant K-theoretic Chern

class c
Tk,K

Tk

ω (M). One has

chTk(c
Tk,K

Tk

ω (M)) = cT
k

ω (M) + terms of higher degree in H∗∗

Tk(M ;Q)

and

0 = chTk(c
Tk,K

Tk

ω [M ]Tk)

= chTk(p
Tk,K

Tk

! (c
Tk,K

Tk

ω (M)))

= pT
k

! (chTk(c
Tk,K

Tk

ω (M)) · TdTk(TM))

= pT
k

! (cT
k

ω (M) + terms of higher degree)

= cT
k

ω [M ]Tk + terms of higher degree in H∗∗

Tk(pt;Q).

It follows that cT
k

ω [M ]Tk = 0 in H∗∗

Tk(pt;Q) = H∗∗(BT k;Q), which implies that cT
k

ω [M ]Tk = 0

in H∗(BT k,Z) since H∗(BT k) is torsion-free (see [6]). Thus we have proved that all integral

equivariant cohomology Chern numbers of M vanish.
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[9] Lü, Z. and Wang, W., Equivariant cohomology Chern numbers determine equivariant unitary bordism,
submitted.

[10] Milnor, J., On the cobordism ring Ω∗ and a complex analogue, I. Amer. J. Math., 82, 1960, 505–521.

[11] Segal, G. B., Equivariant K-theory, Publ. Math. IHES, 34, 1968, 129–151.

[12] tom Dieck, T., Characteristic numbers of G-manifold, II, J. Pure Appl. Algebra, 4, 1974, 31–39.


