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Abstract The authors consider the difference of Reidemeister traces and difference

cochain of given two self-maps, and find out a relation involving these two invariants.

As an application, an inductive formula of the Reidemeister traces for self-maps on a kind

of CW-complex, including spherical manifolds is obtained.
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1 Introduction

The Reidemeister trace was introduced by Reidemeister [18] for the study of fixed points

of a self-map f : X → X . The Reidemeister trace is a crucial invariant in Nielsen fixed

point theory, whose vanishing is a sufficient and necessary condition of deforming f to be fixed

point free whenever X is a compact smooth manifold of dimension greater than two. But the

computation of Reidemeister traces turns out to be a very hard job in general. The precise

formulae of Reidemeister traces are known only on some special spaces, such as Jiang spaces (see

[14]), Nil-manifolds, solvmanifolds, and infra-nilmanifolds (see [15]). In this note, we restrict

ourselves to a special kind of CW-complexes, including the orbit space S
n/G of sphere under

a free action by a finite group G, over which the computations can be carried out inductively

through a relation between the difference of Reidemeister traces and the difference cochain.

In geometry, the spaces Sn/G are characterized by complete Riemannian manifolds of positive

constant sectional curvatures, which are kinds of space forms.

The machinery of obstruction theory was introduced for the first time into the context of

Nielsen fixed point theory by Fuller [5], where he considered the coincidence problem of two

maps from a complex into a manifold by using tools of obstruction theory. In early 1980,

Fadell and Husseini re-interpreted the problem of removing the fixed points of a map through

homotopy in the language of obstruction theory in [4], where they gave an obstruction theory

proof of the theorem that, in the language of the Reidemeister trace, a self-map f : X → X on

a finite complex X can be deformed to be fixed-point-free if and only if its Reidemeister trace

RT(f) vanishes, under the assumption that dim(X) is greater than two. Varieties of obstruction

for fixed points were taken up again by Goncalves and his collaborators (see [2, 7–9]). About

the recent development of this topic, the readers can consult [10] and the references therein.
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The viewpoint we take towards the machinery of obstruction theory in current note is dis-

tinct from existed ones. The difference cochains are in consideration, which are cohomological

invariants lying in a cochain group with local coefficients, while the Reidemeister trace is a K-

theoretical invariant which lies in a free Abelian group generated by twisted conjugate classes

of an integral group ring of the fundamental group. A fascinating idea is to ask for a straight-

forward connection between these two invariants. In our settings, we indeed find out such a

connection and use it to compute Reidemeister traces and Nielsen numbers. This is the key

point of our current work.

Here is an outline of this note. In Sections 2 and 3, we shall recall respectively some notions

of Reidemeister trace and difference cochain. In Section 4, we shall formulate our main result

Theorem 4.1. In Section 5, we shall confine ourselves to spherical 3-manifolds, and make the

computations of the Reidemeister trace RT(f) and the Nielsen number N(f) for every self-map

f on S
3/T ⋆24.

2 Reidemeister Traces

In this section, we recall from [12–13] some definitions related to the Reidemeister trace.

The readers can refer to [6, 14] for an introduction to Nielsen fixed point theory.

Definition 2.1 (see [12–13]) Let ψ : G → G be an endomorphism of a group G. Two

elements α and β in G are said to be ψ-conjugate if there is an element γ ∈ G such that

α = γβψ(γ−1). We denote by [α]ψ the ψ-conjugate class of α and by Gψ the set of ψ-conjugate

classes.

Let (X, ⋆) be a connected, finite CW-complex with base point ⋆, and π : (X̃, ⋆̃) → (X, ⋆) be

the universal covering with base point ⋆̃. Then the deck transformation group of π : X̃ → X

can be identified with the fundamental group π1(X, ⋆) which is assumed to act on X̃ from the

right. By choosing a lifting for each cell in X , the cellular chain complex C∗(X̃) turns out to

be a free right Z[π1(X, ⋆)]-module.

Let f : (X, ⋆) → (X, ⋆) be a cellular map on X . There is a unique lifting f̃ of f such that

f̃(⋆̃) = ⋆̃. As a self-map on X̃, f̃ induces a (Z[π1(X, ⋆)], fπ)-chain map f̃♯ on C∗(X̃), satisfying

f̃♯(σ̃α) = f̃♯(σ̃)fπ(α) for each α ∈ π1(X, ⋆) and each cell σ̃ ∈ C∗(X̃), where fπ : π1(X, ⋆) →

π1(X, ⋆) is the endomomorphism induced by f .

Definition 2.2 (see [12]) The Reidemeister trace RT(f) is defined to be the alternating

sum
+∞∑

j=0

(−1)j [tr(f̃♯|Cj(X̃
))]fπ ,

where f̃♯|Cj(X̃) stands for the module endomorphism induced by f̃ on the jth-chain group Cj(X̃),

and can be represented by a square matrix with entries in Z[π1(X, ⋆)] if we fix a lifting for each

cells in X.

The Reidemeister trace RT(f) takes its value in the free Abelian group generated by fπ-

conjugacy classes. The sum of all coefficients is the Lefschetz number L(f) of f . The number

of distinct items of RT(f) is the Nielsen number N(f) of f , which is a crucial invariant in fixed

point theory. This number is always finite, since X has finitely many cells.
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Actually, RT(f) is independent of the choice of liftings of cells of X , which constitute a basis

of C∗(X̃) as a free Z[π1(X, ⋆)]-module. Moreover, one can define the Reidemeister trace for

arbitrary self-map by using approximate cellular self-maps, furthermore homotopic self-maps

have the same Reidemeister traces.

3 Difference Cochains

In this section, we recall from [1] the notion of difference cochain associated to a pair of

maps. For our purpose we focus on pairs of self-maps.

Definition 3.1 Let f, f ′ : (X, ⋆) → (X, ⋆) be two cellular self-maps on a connected

n-dimensional finite CW-complex such that they are the same on the (n − 1)-skeleton of X,

i.e., f ′|X(n−1) = f |X(n−1) . The difference cochain ∆(f, f ′) associated to the pair (f, f ′) is de-

fined to be an element of Cn(X, πn(X)), satisfying that ∆(f, f ′)(τ) = [d(f, f ′, τ)] for each n-cell

τ of X, where πn(X) is the local system on X and d(f, f ′, τ) : Sn → X is given by

d(f, f ′, τ)(x) =

{
f(τ(x)), x ∈ S

n
+,

f ′(τ(x)), x ∈ S
n
−.

Here, both S
n
+ and S

n
− are identified with D

n.

Remark 3.1 If f ′|X(n−1) ≃ f |X(n−1) , then one can also define difference cochain ∆F (f, f
′),

where F is a homotopy from f |X(n−1) to f ′|X(n−1) . For the details, the readers may refer to [1,

Chapter 4].

Lemma 3.1 (see [1, Theorem 4.2.9]) Let f, f ′ : (X, ⋆) → (X, ⋆) be two cellular self-maps

on a connected n-dimensional finite CW-complex such that f ′|X(n−1) = f |X(n−1) . Then f and

f ′ are homotopic if and only if the difference cochain ∆(f, f ′) vanishes.

Consider the universal covering π : (X̃, ⋆̃) → (X, ⋆) with base point. Similarly, one can

define difference cochain ∆(f̃ , f̃ ′) for some self-maps f̃ and f̃ ′ on X̃ . By definition, we obtain

immediately the following lemma.

Lemma 3.2 Let

f, f ′ : (X, ⋆) → (X, ⋆)

be two cellular self-maps on a connected n-dimensional finite CW-complex such that f ′|X(n−1) =

f |X(n−1). Let f̃ and f̃ ′ be respectively liftings of f and f ′ with respect to the universal covering

space π : (X̃, ⋆̃) → (X, ⋆), fixing the base point ⋆̃. Then π♯(∆(f̃ , f̃ ′)(τ̃ )) = ∆(f, f ′)(τ) for any

n-cell τ of X and its lifting τ̃ .

4 Main Result

In this section, we illustrate a relation between difference RT(f) − RT(f ′) of Reidemeister

traces and difference cochain ∆(f̃ , f̃ ′) for two given self-maps f and f ′. Throughout this section,

we always assume the following assumption.

Assumption 4.1 The CW-complex Y is a connected, n-dimensional finite CW-complex

which has a unique 0-cell ⋆, where n ≥ 2. The universal covering space Ỹ with base point ⋆̃ of

Y is (n− 1)-connected, i.e., πj(Ỹ , ⋆̃) = 0 for j < n.
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Thus, the universal covering space Ỹ has a structure of CW-complex which is π1(Y, ⋆)-

equivariant.

Lemma 4.1 Let Y be as in Assumption 4.1. Let f, f ′ : (Y, ⋆) → (Y, ⋆) be two cellular

self-maps such that fπ = f ′
π. Then f |Y (n−1) ≃ f ′|Y (n−1) : Y (n−1) → Y .

Proof We denote the set of 1-cells of Y by {e11, · · · , e
1
k}. Each cell e1i has a characteristic

map χi : (I, 0, 1) → (Y, ⋆, ⋆). It is well-known that {[e11], · · · , [e
1
k]} constitute a basis of genera-

tors of π1(Y, ⋆). By the assumption that fπ = f ′
π, we see that f ◦ χi ≃ f ′ ◦ χi for each i. Since

Y (1) =
k∨
i=1

e1i , f |Y (1) ≃ f ′|Y (1) : Y (1) → Y .

Since πj(Y ) = πj(Ỹ ) = 0 for j = 2, 3, · · · , n − 1, we obtain that f |Y (n−1) ≃ f ′|Y (n−1) by a

usual argument in homotopy theory.

Lemma 4.2 Let Y be as in Assumption 4.1. Let f, f ′ : (Y, ⋆) → (Y, ⋆) be two cellular self-

maps such that f |Y (n−1) ≃ f ′|Y (n−1) . Then there exists a self-map f ′′ : Y → Y , with f ′′ ≃ f ′

and f ′′|Y (n−1) = f |Y (n−1) .

Proof Let H : Y (n−1) × I → Y be a homotopy from f |Y (n−1) to f ′|Y (n−1) . We consider the

partial homotopyH∪f ′ : (Y (n−1)×I)∪(Y ×{1} → Y ) whose definition is obvious. Since Y (n−1)

is a sub-complex of Y , by using the homotopy extension property, the partial homotopy H ∪ f ′

can be extended into a homotopy G : Y × I → Y . The self-map f ′′, defined by f ′′(x) = G(x, 0),

is the desired self-map.

Lemma 4.3 Let Y as in Assumption 4.1. Let f, f ′ : (Y, ⋆) → (Y, ⋆) be two cellular self-maps

such that f |Y (n−1) = f ′|Y (n−1) . Let f̃ and f̃ ′ be respectively the liftings of f and f ′ such that

f̃(⋆̃) = f̃ ′(⋆̃) = ⋆̃. Then

θ(∆(f̃ , f̃ ′)(τ̃ )) = [f̃(τ̃)− f̃ ′(τ̃ )]

for any n-cell τ of X and its lifting τ̃ , where θ : πn(Ỹ , ⋆̃) → Hn(Ỹ ,Z) is the Hurewicz homo-

morphism.

Proof Since f |Y (n−1) = f ′|Y (n−1) and f̃(⋆̃) = f̃ ′(⋆̃), we have that f̃ |
Ỹ (n−1) = f̃ ′|

Ỹ (n−1) .

Hence, f̃(τ̃ )− f̃ ′(τ̃ ) is an n-cycle of Ỹ .

By definition of difference cochain (see Definition 3.1), ∆(f̃ , f̃ ′)(τ̃ ) is the homotopy class of

a continuous map d(f̃ , f̃ ′, τ̃) : Sn+ ∪ S
n
− → Ỹ , given by

d(f̃ , f̃ ′, τ̃ )(x) =

{
f̃(τ̃ (x)), x ∈ S

n
+,

f̃ ′(τ̃ (x)), x ∈ S
n
−.

Our conclusion holds by definition of the Hurewicz homomorphism.

It should be mentioned that since Ỹ is (n − 1)-connected, the Hurewicz homomorphism

θ : πn(Ỹ , ⋆̃) → Hn(Ỹ ,Z) is an isomorphism.

Since Y is n-dimensional, the homology Hn(Ỹ ;Z) is a subgroup of Cn(Ỹ ;Z). Let {τi | i =

1, 2, · · · , r} be the set of all n-cells of Y , each τi is chosen a lifting τ̃i. We have, for each i,

Cn(Ỹ ,Z) =

r⊕

k=1

Z[π1(Y, ⋆)] · τ̃k
Pi→ Z[π1(Y, ⋆)] · τ̃i

ǫi→ Z[π1(Y, ⋆)] → Z[π1(Y, ⋆)fπ ], (4.1)
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where Pi is the projection onto the ith factor, ǫi is the augmentation map and the last arrow

is the quotient map.

Theorem 4.1 Let Y be a connected, n-dimensional finite CW-complex which has a unique

0-cell ⋆ and πi(Y ) = 0 for i = 2, 3, · · · , n − 1. Suppose that f, f ′ : Y → Y are two cellular

self-maps, which satisfy that fπ = f ′
π. Let f̃ and f̃ ′ be respectively the liftings of f and f ′ such

that f̃(⋆̃) = f̃ ′(⋆̃) = ⋆̃. Then

RT(f)− RT(f ′) = (−1)n
r∑

i=1

Φi ◦ θ(∆(f̃ , f̃ ′)(τ̃i)), (4.2)

where {τi | i = 1, 2, · · · , r} is the set of all n-cells of Y , for each τi a lifting τ̃i is chosen,

θ : πn(Ỹ , ⋆̃) → Hn(Ỹ ,Z) is the Hurewicz homomorphism, and Φi is the composition of homo-

morphisms appearing in (4.1).

Proof By Lemma 4.2 and the homotopy invariance of Reidemeister traces, we may assume

that f ′|Y (n−1) = f |Y (n−1) .

Suppose that f̃(τ̃i) =
r∑

k=1

τ̃kβi,k, f̃ ′(τ̃i) =
r∑

k=1

.τ̃kβ
′
i,k, where βi,k and β′

i,k are elements of

Z[π1(Y, ⋆)]. Since f
′|Y (n−1) = f |Y (n−1) , by definition of Reidemeister trace, we see that

RT(f)− RT(f ′) = (−1)n
r∑

i=1

[βi,i − β′
i,i]fπ = (−1)n

r∑

i=1

[ǫi ◦ Pi(f̃(τ̃i)− f̃ ′(τ̃i))]fπ .

Thus, Equation (4.2) follows immediately from Lemma 4.3.

With a given homomorphism ϕ : π1(Y, ⋆) → π1(Y, ⋆), we can form a set {f : Y → Y |

fπ = ϕ}/homotopy. If it is not empty, we can choose one self-map in this set and call it basic

self-map, although the choice is not canonical. We would like to determine the Reidemeister

trace RT(f) of an arbitrary self-map f . To this end, it suffices to compute the Reidemeister

traces of basic maps in virtue of Theorem 4.1.

5 Spherical 3-Dimensional Manifolds

In this section, we shall apply our main theorem (Theorem 4.1) to self-maps on spherical

3-manifold X , i.e., the 3-manifold in the form of S3/G, where G is a finite subgroup of SU(2),

acting freely on S
3. In this situation, we shall see that Theorem 4.1 can be simplified greatly.

Since it is a smooth manifold, X = S
3/G has a CW cellular decomposition with unique 0-cell

and unique 3-cell τ . In this section, we shall take such a decomposition of X . Hence our results

in the previous section can be applied. Clearly, this decomposition yields a G-equivariant CW

cellular decomposition of S3. For more details about equivariant CW cellular decomposition,

the readers may refer to [19].

Recall that Olum [16–17] showed the following proposition.

Proposition 5.1 Let X be an orientable 3-manifold with finite fundamental group and

trivial π2(X). Every endomorphism ψ : π1(X) → π1(X) is induced by a (base-point preserving)

continuous self-map f : X → X. Furthermore, if f ′ is also a continuous self-map of X such

that fπ = f ′
π = ψ, then deg(f) ≡ deg(f ′) mod |π1(X)|.
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Clearly, each spherical 3-manifold satisfies the conditions in Proposition 5.1.

Proposition 5.2 Let f and f ′ be two self-maps on a spherical 3-manifold X = S
3/G such

that fπ = f ′
π. Then

RT(f)− RT(f ′) =
deg(f ′)− deg(f)

|G|
·
∑

α∈G

[α]fπ , (5.1)

where |G| is the order of group G.

Proof By a similar argument as in Lemmas 4.1–4.2, we see that there is a self-map f ′′ on

X such that f ′′ ≃ f ′ and f ′′|X(2) = f |X(2) . Hence, RT(f ′) = RT(f ′′) and deg(f ′) = deg(f ′′).

To prove Equation (5.1), it suffices to show that

RT(f)− RT(f ′′) =
deg(f ′′)− deg(f)

|G|

∑

α∈G

[α]fπ .

Let π : S3 → X be the universal covering map. By general position, there is a ball B

inside the unique 3-cell τ of X such that f ′′−1(B) is a disjoint union of balls: B+
1 , · · · , B

+
k ,

B−
1 , · · · , B

−
l . Moreover, we may assume that the restriction of f ′′ on each B+

i is orientation-

preserving homeomorphism and the restriction of f ′′ on each B+
j is an orientation-reversing

homeomorphism, where all orientations inherit from the universal covering space S
3. On the

other hand, π−1(B) =
|G|⋃
j=1

Bj , where for each j, Bj is homeomorphic to B under π|Bj
. We

write X ′ to be X −B+
1 ∪ S3 −B1/ ∼, where x ∼ y if f ′′(x) = π(y) for x ∈ ∂B+

1 and y ∈ ∂B1.

Thus, deg(f ′′) = k − l. Then it is clear that X ′ ∼= X . Under this identification, we construct a

map f1 : X ′ → X as follows:

f1(x) =

{
f ′′(x), x ∈ X −BX1 ,

π(x), x ∈ S3 −B1.

By considering the preimage of the center point of B under f1 and their signs, it is easy to

see that deg(f1) = (k − 1) − l − (|G| − 1) = deg(f ′′) − |G|. By definition of f1, we have that

f1|X(2) = f ′′|X(2) . By the definition of difference cochain ∆(f1, f
′′), it follows that ∆(f1, f

′′)(τ)

is equal to the homotopy class [d(f1, f
′′, τ)].

Since τ preserves the orientation, it is not difficult to see that d(f1, f
′′, τ) is homotopic

to the composition π ◦ (−idS3). Hence, ∆(f1, f
′′)(τ) = −[π]. By Lemma 3.2, we see that

∆(f̃1, f̃ ′′)(τ̃ ) = −[idS3 ]. Then θ(∆(f̃1, f̃ ′′)(τ̃ )) = −
∑
α∈G

τ̃ · α. Together with Theorem 4.1, this

implies that difference of the Reidemeister traces

RT(f1)− RT(f ′′) = (−1)3
(
−

∑

α∈G

[α]fπ

)
=

∑

α∈G

[α]fπ .

Since f |X(2) = f ′′|X(2) , we have that fπ = f ′′
π . Hence, deg(f) − deg(f ′′) is some multiple

of |G| by Proposition 5.1. Without loss of generality, we can assume that deg(f) = deg(f ′′)−

m · |G| for some integer m. We can construct self-maps f1, · · · , fm such that fm ≃ f and
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RT(fi)− RT(fi−1) = −
∑
α∈G

[α]fπ for i = 1, · · · ,m, where f0 is taken to be f ′′. Hence,

RT(f)− RT(f ′′) = RT(fm)− RT(f ′)

=

m∑

i=1

(RT(fi)− RT(fi−1))

= m ·
∑

α∈G

[α]fπ

=
deg(f ′)− deg(f)

|G|

∑

α∈G

[α]fπ .

This proves the proposition.

In order to compute the Reidemeister trace RT(f) and hence the Nielsen number N(f)

for every self-map f on a spherical 3-manifold X , Equation (5.1) implies strongly for us that

there may be a priori a formula for RT(f). Hence, the formulation of difference of Reidemeister

traces in terms of difference cochain seems to be a correct way to fulfill the computations of

Reidemeister traces. What is left to do is to spell out the “a priori” formula.

Note that L(f) = 1− deg(f) for any self-map on S
3/G. It is also true for any lifting f̃ of f .

From [13, Lemma 3.4] or [14, Chapter II, 5], we know that the fixed point class determined by

[α]fπ , hence by lifting αf̃ , has index

L(f̃)

|Fix(τα ◦ fπ)|
=

1− deg(f̃)

|Fix(τα ◦ fπ)|
=

1− deg(f)

|Fix(τα ◦ fπ)|
,

where τα is the inner-automorphism determined by α. We obtain the following lemma.

Lemma 5.1 Let f : X → X be a self-map on a spherical 3-manifold X. Then

RT(f) =
∑

[α]∈(π1(X))fπ

1− deg(f)

|Fix(τα ◦ fπ)|
[α]. (5.2)

In what follows, we shall give a complete computation for self-map on S
3/T ⋆24. The group

T ⋆24 admits a presentation: 〈a, b | a2 = b3 = (ab)3 = −1〉. There is a normal subgroup given by

〈a, bab−1〉, which is isomorphic to Q8 = {±1,±i,±j,±k}, which is a subgroup of quaternion

number H. Thus, the group T ⋆24 sits in the following short exact sequence:

1 → Q8 → T ⋆24 → Z3 → 1.

Since Q8 consists of elements of order two and order four, each endomorphism ψ of T ⋆24 restricts

to Q8 as an endomorphism. In this way, by a direct computation, we know that up to an inner

automorphism, all endomorphisms of T ⋆24 are

id, ψI , φ, ψI ◦ φ, trivial endomorphism,

where φ(a) = 1, φ(b) = b2, ψI(a) = a−1 and ψI(b) = b−1. By (5.2) and a direct computation,

we have the following proposition.

Proposition 5.3 Let f : S3/T ⋆24 → S
3/T ⋆24 be a self-map, having degree d. Then we have
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fπ RT(f) N(f) d mod 24

id
1−deg(f)

24 ([1] + [a2] + 6[a]
+4[b] + 4[b−1] + 4[b2] + 4[b−2])

{
0, if d = 1,
7, if d 6= 1

1

ψI 1−deg(f)
4 (2[1] + [ab] + [ba])

{
0, if d = 1,
3, if d 6= 1

1

φ (1− deg(f)) · [1] 1 16

ψI ◦ φ 1−deg(f)
3 ([1] + [b] + [b−1]) 3 16

trivial (1− deg(f)) · [1] 1 0

These results improve the computation in [11, §3.2]. The last column comes from [3].

Moreover, our arguments here can be applied to more general situation, especially for the orbit

space S
n/G.
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[2] Borsari, L. and Gonçalves, D., Obstruction theory and minimal number of coincidences for maps from a
complex into a manifold, Topol. Methods Nonlinear Anal., 21(1), 2003, 115–130.

[3] Du, X., On self-mapping degrees of S3-geometry manifolds, Acta Math. Sin. (Engl. Ser.), 25, 2009, 1243–
1252.

[4] Fadell, E. and Husseini, S., Fixed point theory for non-simply-connected manifolds, Topology, 20(1), 1981,
53–92.

[5] Fuller, F. B., The homotopy theory of coincidences, Ann. of Math., 59(2), 1954, 219–226.

[6] Geoghegan, R., Nielsen fixed point theory, Handbook of Geometric Topology, Daverman, R. J. and Sher,
R. B. (eds.), Elsevier, 2001, 499–521.
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[10] Gonçalves, D., Penteado, D. and Vieira, J. P., Abelianized obstruction for fixed points of fiber-preserving
maps of surface bundles, Topol. Methods Nonlinear Anal., 33(2), 2009, 293–305.
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