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Abstract The authors prove a general Schwarz lemma at the boundary for holomorphic

mappings from the polydisc to the unit ball in any dimensions. For the special case of one

complex variable, the obtained results give the classic boundary Schwarz lemma.
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1 Introduction

The Schwarz lemma is known as one of the most important results in complex analysis.

The Schwarz-Pick lemma is a variant of the Schwarz lemma, which essentially states that a

holomorphic self-map of the unit disk decreases the distance of points in the Poincaré metric.

It has been generalized to the derivatives of arbitrary order in one complex variable (see [1–2]).

Concerning several complex variables, Rudin [3] gave a first derivative estimate for the bounded

holomorphic functions on the polydisc, which is really a precursor to Schwarz-Pick estimate in

high dimensions. Knese [4] studied the extremal problem for the holomorphic functions from the

polydisk to the disk. Later, Liu [5] generalized the result of [1–2] to the holomorphic mappings

on the unit ball and polydisc in Cn.

The Schwarz lemma at the boundary is another active topic in complex analysis (see [6]),

which was applied to geometric function theory of one complex variable and several complex

variables [7–10] as well as Hilbert space (see [11]). The following result is the classic boundary

version of Schwarz lemma in one complex variable.

Theorem 1.1 (see [6]) Let D be the unit disk in C, and let f be the self-holomorphic

mapping of D. If f is holomorphic at z = 1 with f(0) = 0 and f(1) = 1, then f ′(1) ≥ 1.

It is a well-known result that there are no biholomorphic mappings between Dn and Bn.

Therefore, holomorphic mappings between Dn and Bn are interesting in several complex vari-

ables. There have been many results proved about such mappings since the 1970s (see [5,

12–13]). Before giving the proof of the boundary version of Schwarz lemma for holomorphic

mappings between Dn and BN , we give some notations and definitions first.
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For any z = (z1, · · · , zn)
T, w = (w1, · · · , wn)

T ∈ C
n, the inner product and the correspond-

ing norm are given by 〈z, w〉 =
n
∑

j=1

zjwj , ‖z‖ = 〈z, z〉
1

2 . In addition, denote ‖z‖∞ = max
1≤j≤n

|zj |.

Let Dn ⊂ Cn be the polydisc in the n-dimensional complex space, which is described by

Dn = {z ∈ Cn | ‖z‖∞ < 1}. ∂Dn = {z ∈ Cn | ‖z‖∞ = 1} denotes the topological boundary of

Dn, and the distinguished boundary of Dn is given by T n = {z ∈ Cn | |zj | = 1, 1 ≤ j ≤ n}

(see [3]). Denote by H(Dn, BN ) the set of all holomorphic mappings from Dn to BN . For any

f ∈ H(Dn, BN ), we denote it by f = (f1, · · · , fN )T and the Jacobian matrix of f at z ∈ Dn is

given by

Jf (z) =
( ∂fi

∂zj

)

N×n
.

For a bounded domain V ∈ Cn, Cα(V ) for 0 < α < 1 is the set of all functions f on V for

which

sup
{ |f(z)− f(z′)|

|z − z′|α

∣

∣

∣
z, z′ ∈ V

}

is finite. Ck+α(V ) is the set of all functions f on V whose kth order partial derivatives exist

and belong to Cα(V ) for an integer k ≥ 0.

Remark 1.1 From the definition of the norm on Dn, the boundary points could be clas-

sified into several kinds. Let z0 = (z1, · · · , zn)
T ∈ ∂Dn. If there are only r components of

z0 whose norm equals 1, then we denote the set of all this kind of boundary points by Er,

1 ≤ r ≤ n. It is easy to see that there are n different Er for ∂Dn, i.e.,

⋃

1≤r≤n

Er = ∂Dn.

Especially, En = T n which is the distinguished boundary of Dn.

In this paper, we study the mapping f ∈ H(Dn, BN ) for any n,N ≥ 1. Our main results

are listed as follows.

Theorem 1.2 Let f ∈ H(Dn, BN ) for any n,N ≥ 1. Given z0 ∈ ∂Dn, assume z0 ∈ Er

with the first r components at the boundary of D for some 1 ≤ r ≤ n. If f is C1+α at z0
and f(z0) = w0 ∈ ∂BN , then there exist a sequence of nonnegative real numbers γ1, · · · , γr

satisfying
r
∑

j=1

γj ≥ 1 and λ ∈ R such that

Jf (z0)
T
w0 = λdiag(γ1, · · · , γr, 0, · · · , 0)z0, (1.1)

where λ = |1−aTw0|
2

1−‖a‖2 > 0, a = f(0) and diag represents the diagonal matrix.

Remark 1.2 Especially, when r = n, z0 ∈ T n. Denote by eni the i-th column of identity

matrix In with degree n. If z0 ∈ Er is given by other expression such as z0 =
r
∑

j=1

enlj where lj

are different from each other and ij ∈ {1, · · · , n} for 1 ≤ j ≤ r. Then from the proof of the

theorem, diag(γ1, · · · , γr, 0, · · · , 0) should be replaced by the diagonal matrix M with the ij-th

row and ij-th column element M(ij, ij) = γij (j = 1, · · · , r), otherwise being 0.

For r = 1, we have the following corollary.
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Corollary 1.1 Let f ∈ H(Dn, BN ) for any n ≥ 1. Given z0 ∈ E1 ⊂ ∂Dn, if f is C1+α at

z0 and f(z0) = w0 ∈ ∂BN , then there exists a real number λ ∈ R such that

Jf (z0)
T
w0 = λz0, (1.2)

where λ ≥ |1−aTw0|
2

1−‖a‖2 > 0 and a = f(0).

For N = 1, the following result is obtained.

Corollary 1.2 Let f ∈ H(Dn, D) for any n ≥ 1. Given z0 ∈ ∂Dn, assume z0 ∈ Er with

the first r components in the boundary of D for some 1 ≤ r ≤ n. If f is C1+α at z0 and

f(z0) = eiθ ∈ ∂D for 0 ≤ θ ≤ 2π. Then there exist a sequence of nonnegative real numbers

γ1, · · · , γr satisfying
r
∑

j=1

γj ≥ 1 and λ ∈ R such that

Jf (z0)
T
eiθ = λdiag(γ1, · · · , γr, 0, · · · , 0)z0, (1.3)

where λ = |1−aeiθ|2

1−|a|2 > 0 and a = f(0).

Remark 1.3 This theorem is a general Schwarz lemma at the boundary for holomorphic

mappings from the polydisc to the unit ball in any dimensions. For n = N = 1, Corollary 1.1

gives Theorem 1.1 in [6]. The smooth condition of f is C1+α at z0 here.

The Kobayashi distances for the polydisc in Cn is given as follows (see [14]):

KDn(z, w) =
1

2
log

1 + ‖ϕz(w)‖∞
1− ‖ϕz(w)‖∞

, z, w ∈ Dn, (1.4)

where ϕz(w) is the automorphism of Dn given by

ϕz(w) =
( w1 − z1

1− z1w1
, · · · ,

wn − zn

1− znwn

)T

.

Meanwhile, the Kobayashi distances for the unit ball in CN could be expressed by

KBN (z, w) =
1

2
log

1 + ‖φz(w)‖

1− ‖φz(w)‖
, z, w ∈ BN , (1.5)

where φz(w) is the automorphism of BN , and

φz(w) =
z − Pz(w) − szQz(w)

1− 〈w, z〉
, z, w ∈ BN

with Pz being the orthogonal projection of Cn by

Pz(w) =
〈w, z〉

‖z‖2
z, if z 6= 0,

and Qz(w) = w − Pz(w), as well as sz =
√

1− ‖z‖2 (see [15]). It is found that φz(0) =

z, φz(z) = 0 and φz = φ−1
z .

It is the fact that the Kobayashi distance non-increases under holomorphic mappings (see

[16]). Consider the mapping f ∈ H(Dn, BN ) and f(0) = 0. Then from (1.4)–(1.5), KBN (f(0),

f(w)) ≤ KDn(0, w), i.e.,
1

2
log

1 + ‖f(w)‖

1− ‖f(w)‖
≤

1

2
log

1 + ‖w‖∞
1− ‖w‖∞

.

Since t → 1
2 log

1+t
1−t

is an increasing function for t ∈ [0, 1), we have ‖f(w)‖ ≤ ‖w‖∞. Therefore,

the following lemma is obtained which would play an important role in the proof of main results.
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Lemma 1.1 Assume f ∈ H(Dn, BN ) for any n,N ≥ 1. If f(0) = 0, then

‖f(w)‖ ≤ ‖w‖∞, w ∈ Dn.

2 Proof of Theorem 1.2

We will prove the theorem in the following five steps.

Step 1 Let z0 ∈ Er ⊂ ∂Dn. Without loss of generality, we assume z0 =
r
∑

i=1

eni . f is C1+α

in a neighborhood V of z0. Moreover, we assume f(0) = 0 and f(z0) = w0 = eN1 ∈ ∂BN .

Let p = z0, qj = −
r
∑

i=1

eni + ikenj for 1 ≤ j ≤ r. Then p+ tqj = (1 − t)z0 + iktenj for t ∈ R.

‖p+ tqj‖∞ < 1 ⇔ |1− t+ikt| < 1 and |1− t| < 1 ⇔ 0 < t < 2
1+k2 , which means that for a given

k ∈ R when t → 0+, p+ tqj ∈ Dn ∩ V . For such t, taking the Taylor expansion of f(p+ tqj) at

t = 0, we have

f(p+ tqj) = w0 + Jf (z0)qjt+ O(t1+α).

By Lemma 1.1,

‖f(p+ tqj)‖
2 = ‖w0 + Jf (z0)qjt+O(t1+α)‖2 ≤ ‖p+ tqj‖

2
∞,

i.e.,

1 + 2Re(w0
TJf (z0)qjt) +O(t1+α) ≤ 1− 2t+O(t2).

Substitute w0 = eN1 and let t → 0+, we have

Re
(

eN1
T
Jf (z0)

(

−

r
∑

i=1

eni + ikenj

))

≤ −1,

i.e.,

Re
(

−

r
∑

i=1

∂f1(z0)

∂zi
+ ik

∂f1(z0)

∂zj

)

≤ −1.

Let ∂f1(z0)
∂zj

= Re∂f1(z0)
∂zj

+ iIm∂f1(z0)
∂zj

. Then from the above inequality, one gets

−Re

r
∑

i=1

∂f1(z0)

∂zi
− kIm

∂f1(z0)

∂zj
≤ −1,

i.e.,

−kIm
∂f1(z0)

∂zj
≤ Re

r
∑

i=1

∂f1(z0)

∂zi
− 1. (2.1)

Since (2.1) is valid for any k ∈ R, so that

Im
∂f1(z0)

∂zj
= 0, 1 ≤ j ≤ r,

which gives

Re

r
∑

i=1

∂f1(z0)

∂zi
≥ 1 (2.2)
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and

∂f1(z0)

∂zj
= Re

∂f1(z0)

∂zj
, 1 ≤ j ≤ r. (2.3)

Step 2 Let p = z0, qj = −
r
∑

i=1

eni + kenj for 1 ≤ j ≤ r and k ≤ 0. Then p + tqj =

(1 − t)z0 + ktenj for t ∈ R. ‖p+ tqj‖∞ < 1 ⇔ |1 − t+ kt| < 1 and |1 − t| < 1 ⇔ 0 < t < 2
1−k

,

which means that for any given k ≤ 0, there are t → 0+ such that p + tqj ∈ Dn ∩ V . Taking

the Taylor expansion of f(p+ tqj) at t = 0, we have

‖f(p+ tqj)‖
2 = ‖w0 + Jf (z0)qjt+O(t1+α)‖2 ≤ ‖p+ tqj‖

2
∞,

i.e.,

1 + 2Re(w0
TJf (z0)qjt) +O(t1+α) ≤ 1− 2t+ t2.

Substituting w0 = eN1 and letting t → 0+, we have

Re
(

eN1
T
Jf (z0)

(

−
r

∑

i=1

eni + kenj

))

≤ −1,

i.e.,

Re
(

−
r

∑

i=1

∂f1(z0)

∂zi
+ k

∂f1(z0)

∂zj

)

≤ −1.

From (2.3), one gets

−
r

∑

i=1

∂f1(z0)

∂zi
+ k

∂f1(z0)

∂zj
≤ −1,

which is equal to

k
∂f1(z0)

∂zj
≤

r
∑

i=1

∂f1(z0)

∂zi
− 1.

The right-hand side of the above inequality is nonnegative from (2.2)–(2.3). Since k ≤ 0 is

arbitrary, it is obtained that

∂f1(z0)

∂zj
≥ 0, 1 ≤ j ≤ r. (2.4)

Step 3 Let ql = −
r
∑

j=1

enj + ikenl for r + 1 ≤ l ≤ n and k 6= 0 ∈ R. Then p + tql =

(1−t)
r
∑

j=1

enj +iktenl for t ∈ R. ‖p+tql‖∞ < 1 ⇔ |1−t| < 1 and |ikt|2 < 1 ⇔ 0 < t < min
{

1
|k| , 2

}

.

Therefore, given a k(6= 0) ∈ R, there exist t → 0+ such that p+ tq ∈ Dn ∩ V . Similarly, taking

the Taylor expansion of f(p+ tql) at t = 0, we have

f(p+ tql) = w0 + Jf (z0)qlt+O(t1+α).

By Lemma 1.1,

‖f(p+ tql)‖
2 = ‖w0 + Jf (z0)qlt+O(t1+α)‖2 ≤ ‖p+ tql‖

2
∞,
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i.e.,

1 + 2Re
(

w0
TJf (z0)

(

−

r
∑

j=1

enj + ikenl

)

t
)

+ O(t1+α) ≤ 1− 2t+O(t2).

Substituting w0 = eN1 and letting t → 0+, we have

Re
(

eN1
T
Jf (z0)

(

−
r

∑

j=1

enj + ikenl

))

≤ −1,

i.e.,

Re
(

−

r
∑

j=1

∂f1(z0)

∂zj
+ ik

∂f1(z0)

∂zl

)

≤ −1.

From the above inequality as well as inequality (2.3), one has

−kIm
∂f1(z0)

∂zl
≤

r
∑

j=1

∂f1(z0)

∂zj
− 1.

Since the right-hand side of the above inequality is a nonnegative scalar, with the similar

argument to Step 1, we have

Im
∂f1(z0)

∂zl
= 0, r + 1 ≤ l ≤ n.

Meanwhile, if we assume p = z0, q = −
r
∑

j=1

enj + kenl for r + 1 ≤ l ≤ n and any k 6= 0 ∈ R. It is

easy to find

Re
∂f1(z0)

∂zl
= 0, r + 1 ≤ l ≤ n

as well. Therefore,

∂f1(z0)

∂zl
= 0, r + 1 ≤ l ≤ n. (2.5)

As a result of (2.2) and (2.4)–(2.5), we have

Jf (z0)
T
w0 = diag(λ1, · · · , λr, 0, · · · , 0)z0 (2.6)

for w0 = eN1 , z0 =
r
∑

j=1

enj and λj =
∂f1(z0)

∂zj
≥ 0 with

r
∑

j=1

λj ≥ 1 and 1 ≤ j ≤ r.

Step 4 Now let z0 ∈ Er be any given point at ∂Dn with the first r components in the

boundary of D, i.e., z0 is not necessary
r
∑

j=1

enj . Then there exists a special kind of diagonal

unitary matrix Uz0 such that Uz0(z0) =
r
∑

j=1

enj . Assume f(0) = 0, f(z0) = w0 and w0 is not

necessary eN1 at ∂BN . Similarly, there is a Uw0
such that Uw0

(w0) = eN1 . Denote

g(z) = Uw0
◦ f ◦ Uz0

T
.

Then g(0) = 0, g
(

r
∑

j=1

enj
)

= eN1 . Moreover,

Jg(z) = Uw0
Jf (Uz0

T
z)Uz0

T
. (2.7)
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From Steps 2 and 3, we have

Jg

(

r
∑

j=1

enj

)

T

eN1 = diag(λ1, · · · , λr, 0, · · · , 0)

r
∑

j=1

enj ,

where λj =
∂g1(z0)

∂zj
≥ 0 with

r
∑

j=1

λj ≥ 1 and 1 ≤ j ≤ r, which is equal to

Uw0
Jf

(

Uz0

T
r

∑

j=1

enj

)

Uz0

T

T

eN1 = diag(λ1, · · · , λr, 0, · · · , 0)
r

∑

j=1

enj ,

i.e.,

Uz0Jf (z0)
T
Uw0

T
eN1 = diag(λ1, · · · , λr, 0, · · · , 0)

r
∑

j=1

enj .

Multiplying Uz0

T
at both sides of the above equation gives

Uz0

T
Uz0Jf (z0)

T
Uw0

T
eN1 = Uz0

T
diag(λ1, · · · , λr, 0, · · · , 0)

r
∑

j=1

enj .

Since Uz0

T
is also a diagonal matrix, we have

Uz0

T
diag(λ1, · · · , λr, 0, · · · , 0) = diag(λ1, · · · , λr, 0, · · · , 0)Uz0

T
,

and therefore,

Jf (z0)
T
w0 = diag(λ1, · · · , λr, 0, · · · , 0)Uz0

T
r

∑

j=1

enj = diag(λ1, · · · , λr, 0, · · · , 0)z0, (2.8)

where λj =
∂g1(z0)

∂zj
≥ 0 with

r
∑

j=1

λj ≥ 1 and 1 ≤ j ≤ r.

Step 5 Let f(z0) = w0 with z0 ∈ ∂Dn, w0 ∈ ∂BN . If f(0) = a 6= 0, then we use the

automorphism of BN to get the result. Assume that φa(w) is an automorphism of BN such

that φa(a) = 0. Then φa(w0) ∈ ∂BN as well. With similar analysis to Step 3, there exists a

Uφa
such that Uφa

(φa(w0)) = w0. Let

h = Uφa
◦ φa ◦ f.

Then h(0) = 0, h(z0) = w0. As a result from Step 4, there is a sequence of real numbers γj ≥ 0

and
r
∑

j=1

γj ≥ 1 such that

Jh(z0)
T
w0 = diag(γ1, · · · , γr, 0, · · · , 0)z0.

According to the expression of h, it is obtained that

Jh(z0)
T
w0 = Uφa

Jφa
(w0)Jf (z0)

T
w0 = Jf (z0)

T
Jφa

(w0)
T
Uφa

T
w0. (2.9)
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Since Uφa
(φa(w0)) = w0, we have Uφa

T
w0 = φa(w0). From the expression of the automorphism

φa given by [15], we have the following equality:

Jφa
(w0)

T
Uφa

T
w0 = Jφa

(w0)
T
φa(w0) =

1− ‖a‖2

|1− aTw0|2
w0.

Therefore, combining with (2.9) we get

Jf (z0)
T 1− ‖a‖2

|1− aTw0|2
w0 = diag(γ1, · · · , γr, 0, · · · , 0)z0.

Consequently,

Jf (z0)
T
w0 = λdiag(γ1, · · · , γr, 0, · · · , 0)z0, (2.10)

where λ = |1−aTw0|
2

1−‖a‖2 > 0,
r
∑

j=1

γj ≥ 1 and a = f(0).
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