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Abstract Let Ω be a bounded and connected open subset of R
N with a Lipschitz-

continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a
fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S.
Kesavan, asserts that any vector field v = (vi) ∈ (D′(Ω))N , such that all the components
1

2
(∂jvi + ∂ivj), 1 ≤ i, j ≤ N , of its symmetrized gradient matrix field are in the space

H−1(Ω), is in effect in the space (L2(Ω))N . The objective of this paper is to show that this
vector version of J. L. Lions lemma is equivalent to a certain number of other properties
of interest by themselves. These include in particular a vector version of a well-known
inequality due to J. Nečas, weak versions of the classical Donati and Saint-Venant compat-
ibility conditions for a matrix field to be the symmetrized gradient matrix field of a vector
field, or a natural vector version of a fundamental surjectivity property of the divergence
operator.
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Saint-Venant compatibility conditions
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1 Introduction

All notations and definitions are not explained here, see Section 2.

Given any open subset Ω of RN, the implication

f ∈ L2(Ω) ⇒ f ∈ H−1(Ω) and grad f ∈H−1(Ω)

clearly holds. While the converse implication, viz.,

f ∈ H−1(Ω) and grad f ∈H−1(Ω) ⇒ f ∈ L2(Ω),

does not necessarily hold in general (see, e.g., the counterexample of Geymonat and Gilardy

[11]), it does if Ω is a domain in R
N , i.e., a bounded and connected open subset of RN with

a Lipschitz-continuous boundary, the set Ω being locally on the same side of its boundary (for

details about domains, see Adams [1] or Nečas [22]).

This fundamental observation is due to J. L. Lions (see the footnote 27 in Magenes and

Stampacchia [19]). Its first published proofs appeared in Theorem 3.2 in Chapter 3 of Duvaut
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and Lions [10] and in Tartar [23], for domains with sufficiently smooth boundaries. It was later

shown by Geymonat and Suquet [14] that this implication holds in fact if Ω is any domain in

R
N , i.e., with a boundary that is only Lipschitz-continuous.

This result was further generalized by Borchers and Sohr [6] and Amrouche and Girault [4],

who showed that the assumption “f ∈ H−1(Ω)” can be replaced by the weaker assumption

“f ∈ D′(Ω)” and that the spaces H−1(Ω), resp. L2(Ω), can be replaced with the more general

spaces H−m(Ω), resp. H−m+1(Ω), where m is now any integer ≥ 1, according to the following

result.

Theorem 1.1 (J. L. Lions Lemma) Let Ω be a domain in R
N and let m ≥ 1 be an integer.

Then the following implication holds:

f ∈ D′(Ω) and grad f ∈H−m(Ω) ⇒ f ∈ H−m+1(Ω).

Note that it was also shown in [4, 6] that, more generally,

f ∈ D′(Ω) and grad f ∈ W−m,p(Ω) ⇒ f ∈ W−m+1,p(Ω)

for any integer m ≥ 1 and any p ∈ R such that p > 1.

J. L. Lions lemma was then generalized to vector-valued distributions, i.e., in D
′(Ω) (instead

of “scalar” distributions in D′(Ω)), by Amrouche, Ciarlet, Gratie and Kesavan [3] according to

the following result.

Theorem 1.2 (Vector Version of J. L. Lions Lemma) Let Ω be a domain in R
N and let

m ≥ 1 be an integer. Then the following implication holds:

v = (vi) ∈ D
′(Ω) and ∇sv =

(1
2
(∂jvi + ∂ivj)

)
∈ H

−m(Ω) ⇒ v ∈H−m+1(Ω).

Proof Let v = (vi) ∈ D
′(Ω) be such that (∇sv)ij = 1

2 (∂jvi + ∂ivj) ∈ H−m(Ω). Then the

well-known identity

∂j(∂kvi) = ∂j(∇sv)ik + ∂k(∇sv)ij − ∂i(∇sv)jk,

which holds here in the space H−m−1(Ω) ⊂ D′(Ω), implies that ∂kvi ∈ H−m(Ω), which in turn

implies that vi ∈ H−m+1(Ω), thanks to two successive applications of J. L. Lions lemma (see

Theorem 1.1).

Incidentally, Theorem 1.2 shows that the natural analog in the vector version of J. L. Lions

lemma of the gradient operator grad of the scalar case is the symmetrized gradient operator

∇s.

We shall be concerned in this paper with the special case m = 1 of Theorem 1.2, viz., with

the implication

v ∈ D
′(Ω) and ∇sv ∈ H

−1(Ω) ⇒ v ∈ L2(Ω).

More specifically, our main objective is to show that this implication is in effect equivalent

to a certain number of other fundamental properties (cf. Theorems 3.1, 4.1–4.2), by means of

natural “vector versions” of similar equivalences that were shown to hold in [2] in the scalar

case.
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2 Notations and Other Preliminaries

Throughout the article, an integer N ≥ 2 is given and, unless otherwise specified, Latin

indices take their values in the set {1, 2, · · · , N}.

All the functions, matrices, etc., considered here are real. The notations KerA and ImA

respectively designate the kernel and the image, also known as the range, of a linear operator

A. If B is a subset of a vector space X and λ ∈ R, then λB := {λx ∈ X ; x ∈ B}.

Let X be a normed vector space. Given any x ∈ X and any r > 0, the notation B(x; r)

designates the open ball with center x and radius r; given x ∈ X and a subset B of X , the

distance from x to B is defined as d(x,B) := inf{d(x; y); y ∈ B}; a subset B of X is said to

be starlike with respect to an open ball B(x; r) if, for every z ∈ B, the convex hull of the set

{z} ∪B(x; r) is contained in B.

The dual of a topological space X is denoted X ′ and the duality between X ′ and X is

denoted X′〈·, ·〉X ; given a subspace Z of X , the polar set Z0 of Z is defined by

Z0 := {x′ ∈ X ′; X′〈x′, x〉X = 0 for all x ∈ Z}.

Given two normed vector spaces X and Y , the notation L(X ;Y ) designates the space

of all continuous linear operators from X into Y , equipped with the operator norm. Given

A ∈ L(X ;Y ), its dual is the operator A′ ∈ L(Y ′;X ′) defined by X′〈A′y′, x〉X = Y ′〈y′, Ax〉Y for

all x ∈ X and all y′ ∈ Y ′.

The notations (a)i and (A)ij respectively designate the i-th component of a vector a ∈ R
N

and the components at the i-th row and j-th column of an N × N matrix A. The notation

A = (aij) means that aij = (A)ij . The Kronecker’s symbol is denoted δij . The notation a · b

designates the Euclidean inner product of two vectors a ∈ R
N and b ∈ R

N . The set of all

N ×N symmetric, resp. antisymmetric, matrices is denoted S
N , resp. AN .

In what follows, Ω denotes a non-empty open subset of RN , x = (xi) designates a generic

point in Ω, and ∂i := ∂
∂xi

and ∂ij := ∂2

∂xi∂xj
respectively designate the partial derivative

operators of the first and second order, in the classical sense or in the sense of distributions.

The notation ∂α, where α = (α1, α2, · · · , αN ) is a multi-index, designates the partial differential

operator ∂|α|

∂x
α1

1
∂x

α2

2
···∂x

αN
N

, with |α| =
∑
i

αi. The support of a function f : Ω → R is denoted

supp f , and f |A designates the restriction of f to a subset A of Ω.

The notation D(Ω) designates the space of functions ϕ ∈ C∞(Ω) such that suppϕ is a

compact subset of Ω. The space D(Ω) is equipped with its inductive limit topology (cf., e.g.,

Vo Khac [25]). Then a sequence (ϕn)
∞
n=1 of functions ϕn ∈ D(Ω) converges to a function

ϕ ∈ D(Ω) in this topology if there exists a compact subset K of Ω such that

suppϕ ⊂ K and suppϕn ⊂ K for all n ≥ 1,

sup
x∈K

|∂αϕn(x)− ∂αϕ(x)| → 0 as n → ∞ for each multi-index α.

Such a convergence is denoted

ϕn → ϕ in D(Ω) as n → ∞.

The notation D′(Ω) designates the dual space of D(Ω), i.e., the space of distributions on Ω.

The notations Hm(Ω) for each integer m ≥ 0, with H0(Ω) := L2(Ω), and the notations Hm
0 (Ω)

and H−m(Ω) for each integer m ≥ 1, designate the usual Sobolev spaces and their duals.
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Spaces of functions or distributions, vector fields, and symmetric matrix fields, i.e., with

values in S
N , are respectively denoted by italic capitals, boldface capitals, and special Roman

capitals. For instance,

D(Ω) = D(Ω;RN ), H1
0 (Ω) = H1

0 (Ω;R
N ),

D
′(Ω) = D′(Ω; SN ), H

−1(Ω) = H−1(Ω; SN ), etc.

Such spaces are equipped with their natural product norms. For instance,

‖v‖H1(Ω) :=
{∫

Ω

(∑

i

|vi|
2 +

∑

i,j

|∂jvi|
2
)
dx

} 1

2

for each v = (vi) ∈H
1(Ω),

‖eij‖H1(Ω) :=
{∫

Ω

(∑

i,j

|eij |
2 +

∑

i,j,k

|∂keij |
2
)
dx

} 1

2

for each e = (eij) ∈ H
1(Ω), etc.

The following differential operators will be used in the sequel:

grad : D′(Ω) → D
′(Ω), with (grad f)i := ∂if for each f ∈ D′(Ω),

∇s : D
′(Ω) → D

′(Ω), with (∇sv)ij :=
1

2
(∂jvi + ∂ivj) for each v = (vi) ∈ D

′(Ω),

div : D′(Ω) →D′(Ω), with (div e)i :=
∑

j

∂jeij for each e = (eij) ∈ D
′(Ω).

Note that, when Ω is connected, the kernel of the symmetrized gradient operator ∇s has a

well-known characterization, viz.,

Ker∇s = {v ∈ D
′(Ω); there exist A ∈ A

N and b ∈ R
N such that

v(x) = Ax+ b for each x ∈ Ω}.

3 An Equivalence Theorem

We now show that the vector version of J. L. Lions lemma of Theorem 1.2 with m = 1 is

equivalent to a certain number of other properties, respectively noted (a), (b), (c), (d), (e), (f),

and (g), in the next theorem.

In addition to their interest per se, some of these properties have interesting interpretations.

For instance, property (b) constitutes a “weak” vector version of J. L. Lions lemma, which

is nothing but the natural vector version of the “original” lemma of J. L. Lions.

Property (c) constitutes a natural vector version of a well-known inequality due to Nečas in

the “scalar” case (see [21–22], or Bramble [7] for a different proof).

Property (e) constitutes a weak version of the classical Donati compatibility conditions;

see [3, 12–13], where such conditions were used to define and analyze an intrinsic approach to

linearized elasticity (a quick introduction to Donati compatibility conditions is found in Sub-

section 6.18 of [8]). These conditions are said here to be “weak” to reflect that the given matrix

field e is now in the space H−1(Ω) instead of the space L2(Ω) and the duality H−1(Ω)〈e, s〉H1

0
(Ω)

replaces the inner product
∫
Ω e.sdx.

Property (f) constitutes the natural vector version of the surjectivity of the operator div :

H1
0 (Ω) → {f ∈ L2(Ω);

∫
Ω fdx = 0}, a fundamental property which goes back to Ladyzhenskaya

[17], Ladyzhenskaya and Solonnikov [18], Temam [24], Bagovskii [5].

Note that the implications (b) implies (c), (c) implies (d), and (d) implies (e), in Theorem 3.1

were already established, albeit in a slightly different form, in [3]; in particular, the introduction
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of the space denoted L2
0(Ω), instead of the quotient space L2(Ω)/Ker∇s in [3], somewhat

simplifies the arguments. Otherwise, the implications (e) implies (f), (f) implies (g), and (g)

implies (a), are new.

The definition of a domain in R
N has been given in Section 1.

Theorem 3.1 (Equivalence Theorem) Let Ω be a domain in R
N . The following properties

are equivalent:

(a) Vector version of J. L. Lions lemma:

v ∈ D
′(Ω) and ∇sv ∈ H

−1(Ω) ⇒ v ∈ L2(Ω).

(b) Weak vector version of J. L. Lions lemma:

v ∈H−1(Ω) and ∇sv ∈ H
−1(Ω) ⇒ v ∈ L2(Ω).

(c) Vector version of Nečas inequality: There exists a constant C0(Ω) such that

‖v‖L2(Ω) ≤ C0(Ω)(‖v‖H−1(Ω) + ‖∇sv‖H−1(Ω)) for all v ∈ L2(Ω).

(d) The operator ∇s has a closed range: The image of the space

L2
0(Ω) :=

{
v ∈ L2(Ω);

∫

Ω

v · rdx = 0 for all r ∈ Ker∇s

}

under the operator ∇s is a closed subspace of the space H
−1(Ω).

(e) Weak Donati compatibility conditions: Given a symmetric matrix field e ∈ H
−1(Ω),

there exists a vector field v ∈ L2
0(Ω) such that

∇sv = e

if (and clearly only if)

H−1(Ω)〈e, s〉H1

0
(Ω) = 0 for all s ∈ H

1
0(Ω) that satisfy div s = 0 in Ω.

If this is the case, the vector field v is uniquely determined in the space L2
0(Ω).

(f) The operator

div : H1
0(Ω) → L2

0(Ω)

is onto: Consequently, for each vector field v ∈ L2
0(Ω), there exists a unique symmetric matrix

field e(v) in the orthogonal complement (Kerdiv)⊥ of Kerdiv in the Hilbert space H
1
0(Ω) that

satisfies

div(e(v)) = v in Ω,

and there exists a constant C1(Ω) such that

‖e(v)‖H1

0
(Ω) ≤ C1(Ω)‖v‖L2

0
(Ω) for all v ∈ L2

0(Ω).

(g) Approximation property: Assume that the domain Ω is starlike with respect to an open

ball. Then there exists a constant C2(Ω) with the following property: Given any vector field ϕ

in the space

D0(Ω) :=
{
ψ ∈ D(Ω);

∫

Ω

ψ · rdx = 0 for all r ∈ Ker∇s

}
,
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there exist symmetric matrix fields en(ϕ) ∈ D(Ω), n ≥ 1, such that

‖en(ϕ)‖H1(Ω) ≤ C2(Ω)‖ϕ‖L2(Ω) for all n ≥ 1,

div(en(ϕ)) → ϕ in D(Ω) as n → ∞.

Proof (a) implies (b): Obvious.

(b) implies (c). It is easily verified that the space

V (Ω) := {v ∈H−1(Ω); ∇sv ∈ H
−1(Ω)}

equipped with the norm ‖ · ‖H−1(Ω) + ‖∇s · ‖H−1(Ω) is a Banach space. Since the canonical

injection ι : L2(Ω) → V (Ω), which is clearly continuous, is onto by (b), the open mapping

theorem shows that the inverse mapping ι−1 is continuous, which is precisely what inequality

(c) expresses.

(c) implies (d). First, note that L2
0(Ω) is the orthogonal complement of Ker∇s in L2(Ω);

consequentlyL2
0(Ω) is closed in L2(Ω) and the restriction to L2

0(Ω) of the operator∇s : L
2(Ω) →

H
−1(Ω) is one-to-one.

Second, by a well-known property of linear operators between Banach spaces, property (d)

holds if

‖v‖L2(Ω) ≤ C(Ω)‖∇sv‖H−1(Ω) for all v ∈ L2
0(Ω).

Assume by contradiction that such a constant C(Ω) does not exist. Then there exists in this

case a sequence (vk)
∞
k=1 of vector fields vk ∈ L2

0(Ω) that satisfy

‖vk · ‖L2(Ω) = 1 for all k ≥ 1 and ‖∇svk · ‖H−1(Ω) → 0 as k → ∞.

By the Rellich-Kondrasov theorem “in the space L2(Ω)” (cf., e.g., Theorem 6.11–3 in [8]),

there thus exists a subsequence (vℓ)
∞
ℓ=1 of (vk)

∞
k=1 that converges in the space H−1(Ω), on the

one hand.

Since the sequence (∇svℓ)
∞
ℓ=1 converges in the space H

−1(Ω) (to 0) on the other hand, the

sequence (vℓ)
∞
ℓ=1 is a Cauchy sequence with respect to the norm ‖ · ‖H−1(Ω) + ‖∇s · ‖H−1(Ω),

hence also with respect to the norm ‖ · ‖L2(Ω) by (c).

Therefore, there exists an element v ∈ L2
0(Ω) such that

vℓ → v in L2
0(Ω) as ℓ → ∞,

and thus,

∇svℓ → ∇sv = 0 in H
−1(Ω) as ℓ → ∞,

since the operator ∇s : L2(Ω) → H
−1(Ω) is continuous. Consequently, v = 0 since ∇s :

L2
0(Ω) → H

−1(Ω) is one-to-one. But this contradicts the relation ‖vℓ‖L2(Ω) = 1 for all ℓ ≥ 1.

(d) implies (e). First, the operator div : H1
0(Ω) → L2(Ω) maps the space H

1
0(Ω) into

the subspace L2
0(Ω) of L2(Ω). To see this, note that, for all e = (eij) ∈ H

1
0(Ω) and all

r = (ri) ∈ Ker∇s,

∫

Ω

div e · rdx =
∑

i,j

∫

Ω

(∂jeij)ridx = −
∑

i,j

∫

Ω

eij∂jridx

= −
1

2

∑

i,j

∫

Ω

eij(∂jri + ∂irj)dx = 0.
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Next, given any vector field v = (vi) ∈ L
2
0(Ω) and any matrix field e = (eij) ∈ H

1
0(Ω),

H−1(Ω)〈∇sv, e〉H1

0
(Ω) =

1

2

∑

i,j

H−1(Ω)〈∂jvi + ∂ivj , eij〉H1

0
(Ω)

=
∑

i,j

H−1(Ω)〈∂jvi, eij〉H1

0
(Ω) = −

∑

i,j

L2

0
(Ω)〈vi, ∂jeij〉L2

0
(Ω)

= −L2

0
(Ω)〈v,div e〉L2

0
(Ω)

(the spaceL2
0(Ω) is identified here with its dual space). These relations mean that∇s : L

2
0(Ω) →

H
−1(Ω) is the dual operator of −div : H1

0(Ω) → L2
0(Ω).

Banach closed range theorem then shows that the operator ∇s has a closed range (property

(d)) if and only if

Im∇s = (Kerdiv)0,

which is exactly property (e).

Finally, the solution v ∈ L2
0(Ω) to the equation ∇sv = e is unique since ∇s : L

2
0(Ω) →

H
−1(Ω) is one-to-one.

(e) implies (f). The relations above also mean that −div : H1
0(Ω) → L2

0(Ω) is the dual

operator of ∇s :L
2
0(Ω) → H

−1(Ω). Banach closed range theorem then shows that

Imdiv = (Ker∇s)
0.

But ∇s : L
2
0(Ω) → H

−1(Ω) is one-to-one, as already noted. Therefore

Imdiv = L2
0(Ω),

as was to be proved. The continuous operator div : (Kerdiv)⊥ → L2
0(Ω) is thus onto.

Since the same operator is also one-to-one, the open mapping theorem shows that it has a

continuous inverse, which is precisely what the other assertions in (f) express.

(f) implies (g). There is no loss of generality in assuming that Ω is starlike with respect to

a ball B(0; r), i.e., centered at the origin.

Let ϕ ∈ D0(Ω) be given and kept fixed in the ensuing argument. Since D0(Ω) ⊂ L2
0(Ω),

there exists a unique matrix field e = (eij) ∈ (Kerdiv)⊥ ⊂ H
1
0(Ω) such that

div e = ϕ and ‖e‖H1(Ω) ≤ C1(Ω‖ϕ‖L2

0
(Ω)

with a constant C1(Ω) independent of ϕ ∈ D0(Ω). Of course, the matrix field e, like the matrix

fields sn and en introduced below, all depend on ϕ.

Given any integer n0 ≥ 1 that satisfies n0 > 2
r
, let

λn := 1−
2

nr
, Ωn := λnΩ ⊂ Ω for each n ≥ n0,

sn(y) := λne
( y

λn

)
, if y ∈ Ωn,

sn(y) := 0, if y ∈ Ω− Ωn for each n ≥ n0.

For all n ≥ n0, we thus have

dist(x, ∂Ω) >
2

n
for all x ∈ Ωn
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(the assumption that Ω is starlike with respect to B(0; r) is used here), and

sn|Ωn
∈ H

1
0(Ωn), sn|Ω−Ωn

= 0, div sn = ϕ
( ·

λn

)
in Ω,

where ϕ
(

·
λn

)
designates the extension by 0 on Ω− Ωn of the vector field defined by ϕ

(
y
λn

)
if

y ∈ Ωn and by 0 if y ∈ Ω− Ωn.

Let (ρn)
∞
n=1 be a sequence of mollifiers, i.e., that satisfy

ρn ∈ C∞(RN ), supp ρn ⊂ B
(
0;

1

n

)
, and

∫

Ω

ρn(y)dy = 1,

and let, for each n ≥ n0,

Ω̃n :=
{
x ∈ Ω; dist(x, ∂Ω) >

1

n

}
,

en(x) :=

∫

B(x; 1
n
)

sn(y)ρn(x − y)dy, if x ∈ Ω̃n,

en(x) := 0, if x ∈ Ω− Ω̃n.

In other words,

en = sn ∗ ρn,

where ∗ designates the convolution product.

Then the smoothing property of such convolution products and the inclusions supp en ⊂

{Ω̃n}
− together imply that

en ∈ D(Ω) for each n ≥ n0.

Besides, by another well-known property of convolution products,

‖en‖H1(Ω) ≤ ‖sn‖H1(Ω).

Taking as a new variable y = x
λn

∈ Ω for each x ∈ Ωn gives

‖sn‖
2
H1(Ω) = ‖sn‖

2
H1(Ωn)

=
∑

i,j

∫

Ωn

(∣∣∣λneij

( x

λn

)∣∣∣
2

+
∑

k

∣∣∣∂keij
( x

λn

)∣∣∣
2)

dx

=
∑

i,j

∫

Ω

(
λN+2
n |eij(y)|

2 +
∑

k

λN
n |∂keij(y)|

2
)
dy ≤ ‖e‖2

H1(Ω),

so that, as announced,

‖en‖H1(Ω) ≤ ‖sn‖H1(Ω) ≤ ‖e‖H1(Ω) ≤ C1(Ω)‖ϕ‖L2

0
(Ω) for all n ≥ n0.

It remains to show that

div en → ϕ in D(Ω) as n → ∞

(the definition of convergence in the space D(Ω) is recalled in Section 2).

Since suppϕ ⋐ Ω and

div en = div(sn ∗ ρn) = (divsn) ∗ ρn = ϕ
( ·

λn

)
∗ ρn for all n ≥ n0,
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there exist a constant α > 0 and an integer n1 ≥ n0 such that

(suppdiv en) ∪ (suppϕ) ⊂ K := {x ∈ Ω; dist(x, ∂Ω) ≥ α} for all n ≥ n1,

on the one hand.

Using yet another well-known property of convolution products with mollifiers, we infer

that, for each multi-index α and each integer n ≥ n1,

∂α(div en) = ∂α

(
ϕ
( ·

λn

)
∗ ρn

)
= ∂α

(
ϕ
( ·

λn

))
∗ ρn.

Using that
∫
Ω ρn(y)dy = 1, we may thus write

∂α(diven)(x) − ∂αϕ(x) =

∫

Ω

1

λ
|α|
n

(
∂αϕ

(x− y

λn

)
− ∂αϕ(x)

)
ρn(y)dy

=

∫

Ω

{( 1

λ
|α|
n

− 1
)
∂αϕ

(x− y

λn

)
+ ∂αϕ

(x− y

λn

)
− ∂αϕ(x)

}
ρn(y)dy

at each x ∈ Ω. Consequently,

sup
x∈K

|∂α(diven)(x) − ∂αϕ(x)|

≤
( 1

λ
|α|
n

− 1
)
sup
z∈Ω

|∂αϕ(z)|

+ sup
x∈K

∣∣∣
∫

B(0; 1
n
)

{
∂αϕ

(
x+

(1− λn

λn

)
x−

y

λn

)
− ∂αϕ(x)

}
ρn(y)dy

∣∣∣.

It is clear that sup
x∈K

sup
y∈B(0; 1

n
)

∣∣( 1−λn

λn

)
x− y

λn

∣∣ → 0 as n → ∞ since λn = 1− 2
nr

→ 1 as n → ∞.

Together, this property and the uniform continuity and boundedness of each partial derivative

∂αϕ on Ω therefore imply that

sup
x∈K

∣∣∂α(diven)(x) − ∂αϕ(x)
∣∣ → 0, as n → ∞,

on the other hand.

We have thus shown that div en → ϕ in D(Ω) as n → ∞.

(g) implies (a). Let a vector field v ∈ D
′(Ω) such that ∇sv ∈ H

−1(Ω). In order to show

that v ∈ L2(Ω), it suffices to show that there exists a constant C(Ω,v) such that

|D′(Ω)〈v,ϕ〉D(Ω)| ≤ C(Ω,v)‖ϕ‖L2(Ω) for all ϕ ∈ D(Ω),

thanks to the density of D(Ω) in L2(Ω) and to F. Riesz representation theorem.

To this end, we proceed in three stages, numbered (i)–(iii).

(i) There exists a constant c0(Ω) independent of v with the following property: Given any

ϕ ∈ D(Ω), there exists a vector field ϕ̃ ∈ D(Ω), which depends on ϕ, such that

(ϕ− ϕ̃) ∈ D0(Ω) :=
{
ψ ∈ D(Ω);

∫

Ω

ψ · rdx = 0 for all r ∈ Ker∇s

}
,

‖ϕ− ϕ̃‖L2(Ω) ≤ c0(Ω)‖ϕ‖L2(Ω).
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Assume without loss of generality that 0 ∈ Ω. It is easily seen, by defining appropriate

products of N even or odd functions in D(R) with small enough support, that there exist

functions θi ∈ D(Ω), 1 ≤ i ≤ N , that satisfy

∫

Ω

θ1dx = 1 and

∫

Ω

θ1xjdx = 0, 1 ≤ j ≤ N,

∫

Ω

θidx = 0 and

∫

Ω

θixjdx = 2δij , 1 ≤ j ≤ N, 2 ≤ i ≤ N.

Let ek denote the basis vectors of RN . Then the vector fields defined by

ηk := θ1ek ∈ D(Ω), 1 ≤ k ≤ N, and ηkℓ := θℓek ∈ D(Ω), 1 ≤ k < ℓ ≤ N,

satisfy respectively

∫

Ω

(ηk)idx = δik and

∫

Ω

(ηk)ixjdx = 0, 1 ≤ i, j, k ≤ N,

∫

Ω

(ηkℓ)idx = 0 and

∫

Ω

(ηkℓ)ixjdx = 2δikδjℓ, 1 ≤ i, j,≤ N, 1 ≤ k < ℓ ≤ N.

Given any vector field ϕ = (ϕi) ∈ D(Ω), let the vector field ϕ̃ ∈ D(Ω) be defined by

ϕ̃ :=
∑

k

( ∫

Ω

ϕkdx
)
ηk +

1

2

∑

k<ℓ

(∫

Ω

(ϕkxℓ − ϕℓxk)dx
)
ηkℓ.

We then claim that the vector field (ϕ − ϕ̃) ∈ D(Ω) satisfies the announced properties:

First, ∫

Ω

ϕ̃idx =
∑

k

( ∫

Ω

ϕkdx
)( ∫

Ω

(ηk)idx
)
=

∫

Ω

ϕidx, 1 ≤ i ≤ N.

Second, given any numbers aij satisfying aij = −aji, 1 ≤ i, j ≤ N ,

∑

i,j

∫

Ω

(ϕi − ϕ̃i)aijxjdx =
∑

i<j

∫

Ω

{(ϕi − ϕ̃i)xj − (ϕj − ϕ̃j)xi}aijdx.

Noting that

∫

Ω

ϕ̃ixjdx =
1

2

∑

k<ℓ

(∫

Ω

(ϕkxℓ − ϕℓxk)dx
) ∫

Ω

(ηkℓ)ixjdx

=






∫

Ω

(ϕixj − ϕjxi)dx, if i < j,

0, if i ≥ j,

and that, likewise,

∫

Ω

ϕ̃jxidx =






∫

Ω

(ϕjxi − ϕixj)dx, if j < i,

0, if i ≤ j,

we infer that ∫

Ω

{(ϕi − ϕ̃i)xj − (ϕj − ϕ̃j)xi}dx = 0 for all i < j.
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We have thus shown that
∫

Ω

(ϕ− ϕ̃) · (Ax+ b)dx = 0 for all A ∈ A
N and all b ∈ R

N ,

i.e., that (ϕ − ϕ̃) ∈ D0(Ω), by the characterization of the space Ker∇s (cf. Section 2). The

existence of a constant c0(Ω) independent of ϕ ∈ D(Ω) such that ‖ϕ−ϕ̃‖L2(Ω) ≤ c0(Ω)‖ϕ‖L2(Ω)

follows from the triangle inequality and the Cauchy-Schwarz inequality.

(ii) Assume that Ω is starlike with respect to a ball. Since (ϕ− ϕ̃) ∈ D0(Ω), there exist by

(g) matrix fields en ∈ D(Ω), n ≥ 1, that depend on (ϕ− ϕ̃), hence on ϕ, such that

‖en‖H1(Ω) ≤ C2(Ω)‖ϕ− ϕ̃‖L2(Ω) ≤ C2(Ω)c0(Ω)‖ϕ‖L2(Ω) for all n ≥ 1,

div en → (ϕ− ϕ̃) in D(Ω) as n → ∞.

Given any ϕ ∈ D(Ω), the scalar 〈v,ϕ〉 can therefore be written as

〈v,ϕ〉 = 〈v, ϕ̃〉+ lim
n→∞

〈v,diven〉,

where, for notational brevity, we let

〈·, ·〉 := D′(Ω)〈·, ·〉D(Ω),

like in the rest of this part of the proof. Let us examine the two terms appearing in the above

expression of 〈v,ϕ〉.

First, by definition of ϕ̃ (see (i)),

〈v, ϕ̃〉 =
∑

k

(∫

Ω

ϕkdx
)
〈v,ηk〉+

1

2

∑

k,ℓ

(∫

Ω

(ϕkxℓ − ϕℓxk)dx
)
〈v,ηkℓ〉.

Hence there exists a constant c1(Ω,v) such that

|〈v, ϕ̃〉| ≤ c1(Ω,v)‖ϕ‖L2(Ω) for all ϕ ∈ L2(Ω).

Second, the assumption that ∇sv ∈ H
−1(Ω) implies that

〈v,div en〉 = − H−1(Ω)〈∇sv, en〉H1

0
(Ω) for all n ≥ 1,

hence that

|〈v,div en〉| ≤ ‖∇sv‖H−1(Ω)‖en‖H1

0
(Ω) ≤ c2(Ω,v)‖ϕ‖L2(Ω),

with c2(Ω,v) := ‖∇sv‖H−1(Ω)C2(Ω)c0(Ω).

Consequently,

|〈v,ϕ〉| ≤ C(Ω,v)‖ϕ‖L2(Ω) for all ϕ ∈ D(Ω)

with C(Ω,v) := c1(Ω,v) + c2(Ω,v). We have thus shown that the vector version of J. L. Lions

lemma holds on a domain that is starlike with respect to a ball.

(iii) Finally, assume that Ω is a general domain. In this case, arguments similar to those

used in Maz’ya [20] or Costabel and McIntosh [9] show that Ω can be written as a finite union

Ω =

m⋃

j=1

Ωj
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of domains Ωj ⊂ Ω, 1 ≤ j ≤ m, each of which is starlike with respect to a ball.

Given any open subset U of Ω and any vector field θ ∈ D(U), the notation θ♯ designates in

what follows the extension of θ by 0 on Ω− U , so that θ♯ ∈ D(Ω).

For each 1 ≤ j ≤ m, the linear form

ϕ ∈ D(Ωj) → D′(Ω)〈v,ϕ
♯〉D(Ω) ∈ R

defines a distribution, denoted vj , on Ωj , which therefore satisfies

D′(Ωj)〈vj ,ϕ〉D(Ωj) = D′(Ω)〈v,ϕ
♯〉D(Ω) for all ϕ ∈ D(Ωj).

Consequently, given any matrix field e ∈ D(Ωj),

D′(Ωj)〈∇svj , e〉D(Ωj) = −D′(Ωj)〈vj ,div e〉D(Ωj)

= −D′(Ω)〈v, (dive)
♯〉D(Ω) = H−1(Ω)〈∇sv, e

♯〉H1

0
(Ω),

and thus

|D′(Ωj)〈∇svj , e〉D(Ωj)| ≤ ‖∇sv‖H−1(Ω)‖e‖H1

0
(Ωj) for all e ∈ D(Ωj).

The last relation shows that ∇svj ∈ H
−1(Ωj). The vector version of J. L. Lions lemma on

the domain Ωj (see (ii)) thus implies that each vector field vj ∈ D
′(Ωj) can be identified with

a vector field in L
2(Ωj), in the sense that

D′(Ωj)〈vj ,ϕ〉D(Ωj) =

∫

Ωj

vj ·ϕdx for all ϕ ∈ D(Ωj).

Besides, given any 1 ≤ j, k ≤ N , the relation
∫

Ωj∩Ωk

vj ·ϕdx =

∫

Ωj

vj ·ϕ
♯|Ωj

dx = D′(Ω)〈v,ϕ
♯〉D(Ω)

=

∫

Ωk

vk ·ϕ♯|Ωk
dx =

∫

Ωj∩Ωk

vk ·ϕdx for all ϕ ∈ D(Ωj ∩ Ωk)

shows that vj = vk in Ωj ∩Ωk. The relations w|Ωj
:= vj , 1 ≤ j ≤ m, therefore unambiguously

define a vector field w ∈ L2(Ω).

It remains to show that v = w. Given any vector field ϕ ∈ D(Ω), let (αj)
m
j=1 denote

a partition of unity associated with the open covering suppϕ ⊂
m⋃
j=1

Ωj, i.e., made up with

functions αj ∈ D(Ω), 1 ≤ j ≤ m, that satisfy

suppαj ⊂ Ωj , 1 ≤ j ≤ m, and

m∑

j=1

αj(x) = 1 for all x ∈ suppϕ.

We then have

D′(Ω)〈v,ϕ〉D(Ω) =

m∑

j=1

D′(Ω)〈v, αjϕ〉D(Ω)

=

m∑

j=1

D′(Ωj)〈vj , (αjϕ)|Ωj
〉D(Ωj) =

m∑

j=1

∫

Ωj

vj · (αjϕ)|Ωj
dx

=

m∑

j=1

∫

Ωj

w|Ωj
· (αjϕ)|Ωj

dx =

∫

Ω

w · ϕdx for all ϕ ∈ D(Ω).

Consequently, v = w ∈ L2(Ω) as announced. This completes the proof.
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4 Two Further Equivalences

To conclude, we also state two further properties that are also equivalent to the vector

version of J. L. Lions lemma.

The first equivalence asserts that the “weak” version of the Donati compatibility conditions

(e) of Theorem 3.1 can be replaced by an even “weaker” version, in the sense that the “trial

fields” s need be only in the space D(Ω) instead of in the space H
1
0(Ω). More specifically, we

have the following theorem.

Theorem 4.1 Let Ω be a domain in R
N . The vector version of J. L. Lions lemma, viz.,

v ∈ D
′(Ω) and ∇sv ∈ H

−1(Ω) ⇒ v ∈ L2(Ω)

is equivalent to the following version of the Donati compatibility conditions: Given a matrix

field e ∈ H
−1(Ω), there exists a vector field v ∈ L2

0(Ω) such that

∇sv = e

if (and clearly only if)

H−1(Ω)〈e, s〉H1

0
(Ω) = 0 for all s ∈ D(Ω) that satisfy div s = 0 in Ω.

If this is the case, the vector field v is uniquely determined in the space L2
0(Ω).

Proof The principle of the proof is identical to that of the proof of Theorem 4.1 in [2], or

similar to that of the proof of Theorem 2.3 in Chapter 1 of Girault and Raviart [15]; for this

reason, the proof is omitted. Suffices it to mention that establishing the sufficiency of the above

Donati conditions relies not only on the vector version of J. L. Lions lemma itself, but also on

the one of its consequences, viz., the sufficiency of the weak Donati compatibility conditions (e)

established in Theorem 3.1.

The second equivalence asserts that the vector version of J. L. Lions lemma is equivalent to a

weak version of the well-known Saint-Venant compatibility conditions, “weak” in the sense that

the matrix field e is now given in the spaceH−1(Ω), instead of in the space L2(Ω) as in [3], where

such conditions played a crucial role for defining an intrinsic approach to linearized elasticity

(a quick introduction to the Saint-Venant compatibility condition is found in Subsection 6.19

of [8]).

Theorem 4.2 Let Ω be a simply-connected domain in R
N . Then the vector version of J.

L. Lions lemma, viz.,

v ∈ D
′(Ω) and ∇sv ∈ H

−1(Ω) ⇒ v ∈ L2(Ω)

is equivalent to the following weak Saint-Venant compatibility conditions: Given a matrix field

e = (eij) ∈ H
−1(Ω), there exists a vector field v ∈ L2

0(Ω) such that ∇sv = e if (and clearly

only if)

∂ℓjeik + ∂kiejℓ − ∂ℓiejk − ∂kjeiℓ = 0 in H−3(Ω).

If this is the case, the vector field v is uniquely determined in the space L2
0(Ω).

Proof This equivalence was already established in Theorem 7.3 of [3] in the special case

whereN = 3, by means of arguments, essentially based on a clever idea due to Kesavan [16], that

can be easily extended to any integer N ≥ 2 and which, for this reason, will not be reproduced
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here. We simply emphasize that the assumption of simple-connectedness of the domain Ω

is crucially needed here, as the proof relies on the sufficiency of the “classical” Saint-Venant

compatibility condition, which itself relies on the “classical” Poincaré lemma (for details, see

again Subsection 6.19 of [8]).
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