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Abstract A subgroup of index pk of a finite p-group G is called a k-maximal subgroup
of G. Denote by d(G) the number of elements in a minimal generator-system of G and
by δk(G) the number of k-maximal subgroups which do not contain the Frattini subgroup
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1 Introduction

It is well-known that the finite p-groups are fundamental tools in understanding the structure

of finite groups and in the classification of finite simple groups. After the classification of finite

simple groups was completed, the study of p-groups has attracted much attention and the

finite p-groups have been investigated intensively over the past decades. However, the complex

behaviour of finite p-groups is well-known and it prevents any attempt at a general classification.

In fact, only the p-groups of order at most p7 have been completely classified for a general prime

p (see [12] for detail). This can be extended (see [5]) to the groups of order less than or equal

to p10 in the case p = 2. This situation has naturally led to restricting the study of p-groups

to special families.

The enumeration problem of p-groups is important in the study of finite p-groups, which

includes two aspects: One is to study the number of subgroups, elements and subsets of finite

p-groups. A classical result of Kulakoff [11] asserts: For a prime p > 2 and a group G of order

pn, sk(G) ≡ 1 or 1+p (mod p2), where sk(G) denotes the number of subgroups of order pk of G.

Along Kulakoff’s idea, many scholars investigated the possible case of sk(G) (mod p3) (see [2,

7, 10, 15, 17–18]). The other is to study the structure or properties of finite p-groups by means
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of the number of subgroups. Fan [8] characterized finite elementary abelian p-groups in term of

sk(G). Moreover, Qu [13] characterized finite non-elementary abelian p-groups whose number

of subgroups of possible order is maximal. More results about the enumeration of subgroups

can be referenced to [1, 3, 14, 16, 19]. In this paper, we continue to characterize the structure

of p-groups by the enumeration of subgroups.

In the enumeration of subgroups, a fundamental theorem is the enumeration principle given

by P. Hall in [9]. The theorem is stated as follows.

Theorem 1.1 (P. Hall Enumeration Principle)

s(G)−
∑

M∈S1

s(M) + p
∑

M∈S2

s(M)− p3
∑

M∈S3

s(M) + · · ·

+ (−1)kp
1
2k(k−1)

∑

M∈Sk

s(M) + · · ·+ (−1)dp
1
2d(d−1)s(Φ(G)) = 0,

where G is a finite p-group, d = d(G), s(M) denotes the number of subgroups contained in

a subgroup M of G, Si denotes the set consisting of all major subgroups (in the sense that

subgroups containing Φ(G)) of index pi of G.

We observe that in the enumeration principle, P. Hall introduced a kind of important sub-

groups, major subgroups, which play important roles in the study of finite p-groups. Moreover,

for a group G of order pn, P. Hall Enumeration Principle gives the relationship between the

number of major subgroups of index pk and the number of subgroups of index pk. For conve-

nience, a subgroup H of index pk is called a k-maximal subgroup of G. A k-maximal subgroup

H is called a k-major subgroup of G ifH is major; otherwise,H is called a non-major k-maximal

subgroup of G. Clearly, if H is a k-major subgroup of G, then 1 ≤ k ≤ d = d(G).

Let γk(G) and δk(G) denote the number of all k-major subgroups of G and the number

of non-major k-maximal subgroups of G, respectively. Then δk(G) = sn−k(G) − γk(G) for

k = 1, 2, · · · , d. Moreover, by the corresponding theorem, we have that γk(G) is equal to the

number of k-maximal subgroups of an elementary abelian group of order pd. P. Hall [9] proved

that

δk(G) ≡ 0 (mod pd−k+1).

It means that δk(G) ≡ 0 (mod p) for 1 ≤ k ≤ d.

A natural question is: How does δk(G) influence the structure of a p-group G?

Obviously, δ1(G) = 0 is true for any finite p-group G. So we get nothing in this case. It is

easy to see that for a finite p-group G, if δk(G) = 0 for some k ∈ {1, · · · , d}, then δt(G) = 0

for all t ∈ {1, · · · , k}. This implies that if k is a smaller positive integer, then there are many

p-groups with δk(G) = 0. So we pay our attention to the cases of k = d and k = d− 1. In this

paper, we study the finite p-groups with few non-major k-maximal subgroups. We prove that

if 0 < δk(G) < p2 for some k ∈ {1, 2, · · · , d}, then k = d and δd(G) = p. Moreover, we classify

all finite p-groups with δd(G) = 0, δd−1(G) = 0, δd(G) = p and δd(G) = p2, respectively.
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2 Preliminaries

In this section, we give some notation and background material of this article. The reader

is referred to [3] for any undefined notation and terminology in this article.

Let G be a finite p-group. We use exp(G), c(G) and d(G) to denote the exponent, the nilpo-

tency class of G and the number of elements in a minimal generator-system of G, respectively.

G is said to be of maximal class if |G| = pn (n ≥ 3) and c(G) = n− 1. Denote by Cpn and Cm
pn

the cyclic group of order pn and the direct product of m cyclic groups of order pn, respectively.

M ⋖G means that M is a maximal subgroup of G and H . G means that H is isomorphic to

a subgroup of G. Let H and K be two subgroups of G. We use H ∗K to denote the central

product of H and K.

For each positive integer i, we define

Ωi(G) = 〈a ∈ G | ap
i

= 1〉 and ℧i(G) = 〈ap
i

| a ∈ G〉.

Let

Mp(n,m) := 〈a, b | ap
n

= bp
m

= 1, [a, b] = ap
n−1

〉 (n ≥ 2, m ≥ 1),

Mp(n,m, 1) := 〈a, b, c | ap
n

= bp
m

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉 (n ≥ m ≥ 1).

To end this section, we list some known results which will be used in the sequel.

Lemma 2.1 (see [9]) Let G be a finite p-group and d = d(G). Then δk(G) ≡ 0

(mod pd−k+1) for 1 ≤ k ≤ d.

Lemma 2.2 (see [3]) Assume that G is a group of order pn, 0 ≤ k ≤ n. Then sk(G) ≡ 1

(mod p).

Lemma 2.3 (see [3]) Let G be a group of order pn. If G is neither cyclic nor a 2-group of

maximal class, then sk(G) ≡ 1 + p (mod p2) for 1 ≤ k < n.

Lemma 2.4 (see [3]) Let G be a group of order pn.

(1) If 1 < m < n and sm(G) = 1, then G is cyclic;

(2) If s1(G) = 1, then G is cyclic or generalized quaternion.

Lemma 2.5 (see [3]) Let G be a p-group with |G′| = p. Then

G = (A1 ∗A2 ∗ · · · ∗As)Z(G),

where A1, A2, · · · , As are minimal nonabelian, so G/Z(G) is elementary abelian of even rank.

In particular, if G/G′ is elementary abelian, then

|A1| = |A2| = · · · = |As| = p3.

Let E = A1 ∗A2 ∗ · · · ∗As. Then E is extraspecial and G = EZ(G).
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Lemma 2.6 (see [3]) Let G be a finite p-group. If c(G) < p, then G is regular.

The following lemmas are the classifications of finite p-groups with some properties, which

will be used in the sequel.

Lemma 2.7 (see [4]) Let G be a nonabelian p-group with d(G) = 3. Suppose that all

maximal subgroups of G are generated by two elements. If c(G) = 2, then |G| ≤ p6 and one of

the following holds:

(1) G = Mp(2, 1) ∗ Cp2 ∼= Mp(1, 1, 1) ∗ Cp2 ;

(2) G = Q8 × C2;

(3) G = 〈a, b, c | a4 = b4 = 1, c2 = a2b2, [a, b] = 1, [a, c] = a2, [b, c] = a2b2〉;

(4) G = 〈a, b, c | a4 = b4 = c2 = 1, [a, b] = 1, [a, c] = a2b2, [b, c] = a2〉;

(5) If p > 2, then G = 〈a, b, c, x, y | ap = bp
2

= cp
2

= 1, [b, c] = 1, [a, b] = x, [a, c] = y, bp =

xαyβ , cp = xγyδ, xp = yp = [b, x] = [b, y] = [c, x] = [c, y] = 1〉, where 4βγ + (δ − α)2 is a

quadratic non-residue mod p;

(6) |G| = 26, G = 〈a, b, c | a4 = b4 = c4 = 1, [a, b] = c2, [a, c] = b2c2, [b, c] = a2b2, [a2, b] =

[a2, c] = [b2, a] = [b2, c] = [c2, a] = [c2, b] = 1〉.

As a direct consequence of [4, Theorems 70.2, 70.4–70.5], we have the following lemma.

Lemma 2.8 Assume that G is a nonabelian p-group with d(G) = 3 and all maximal sub-

groups of G are generated by two elements. If c(G) > 2, then G is one of the following non-

isomorphic groups:

(1) 〈a, b, c, d | a4 = b4 = c4 = d2 = [a, d] = [b, d] = [c, d] = 1, [a, b] = c2, [a, c] =

b2c2, [b, c] = a2b2, [a2, b] = [a2, c] = [b2, c] = [c2, a] = d, [b2, a] = 1, [c2, b] = 1〉;

(2) H = G/G4 = 〈a, b, c, d, e, f | a4 = b4 = c4 = d2 = e2 = f2 = def = [a, d] = [b, d] =

[c, d] = [a, e] = [b, e] = [c, e] = 1, [a, b] = c2dǫ, [a, c] = b2c2dǫ, [b, c] = a2b2, [a2, b] = [b2, c] =

[c2, a] = f, [a2, c] = d, [b2, a] = [c2, b] = e〉, where ǫ = 0, 1.

Lemma 2.9 (see [6]) Suppose that G is a group of order 26 and all 2-maximal subgroups of

G are metacyclic. If G has a maximal subgroup which is not metacyclic, then G > H = 〈a, b, c |

a4 = b4 = 1, c2 = a2b2, [a, b] = 1, [a, c] = a2, [b, c] = a2b2〉 and G is one of the following

groups:

(1) 〈H, d | d2 = a2, [a, d] = a2b2, [b, d] = b2, [c, d] = 1〉;

(2) 〈H, d | d2 = b2, [a, d] = a2, [b, d] = a2b2, [c, d] = a−1〉;

(3) 〈H, d | d2 = b, [a, d] = b2, [b, d] = 1, [c, d] = a−1〉.

Lemma 2.10 (see [3]) Let G be a nonabelian group of order pn with cyclic maximal sub-

group. Then G is isomorphic to one of the following groups:

(1) Mp(n− 1, 1), where n ≥ 4 if p = 2;

(2) D2n = 〈a, b | a2
n−1

= 1, b2 = 1, [a, b] = a−2〉 (n ≥ 3), the dihedral group;
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(3) Q2n = 〈a, b | a2
n−1

= 1, b2 = a2
n−2

, [a, b] = a−2〉 (n ≥ 3), the generalized quaternion

group;

(4) SD2n = 〈a, b | a2
n−1

= 1, b2 = 1, [a, b] = a−2+2n−2

〉 (n ≥ 4), the semidihedral group.

3 The Classification for the Cases δd(G) = 0 and δd−1(G) = 0

In this section, we classify all finite p-groupsG with δd(G) = 0 and δd−1(G) = 0, respectively.

Throughout this section, we always assume that d = d(G) > 1.

We first consider the case δd(G) = 0. The next theorem gives the classification of all finite

p-groups G with δd(G) = 0.

Theorem 3.1 Let G be a group of order pn and d = d(G) > 1. Then δd(G) = 0 if and only

if either G ∼= Q8 or G ∼= Cn
p .

Proof If G ∼= Q8 or G ∼= Cn
p , then it is easy to verify that δd(G) = 0.

Conversely, suppose that δd(G) = 0. Then G contains only one d-maximal subgroup Φ(G)

and sn−d(G) = 1 + δd(G) = 1. If n− d > 1, then G is cyclic by Lemma 2.4. This contradicts

the assumption d > 1. Thus n− d ≤ 1. If n− d = 0, then G ∼= Cn
p . If n− d = 1, then G ∼= Q2n

by Lemma 2.4. Thus d = 2 and n = 3. That is, G ∼= Q8.

To classify all finite p-groups with δd−1(G) = 0, we need the following lemmas which give

some properties of a finite p-group G with δk(G) = 0 for some k ∈ {2, · · · , d}.

Lemma 3.1 Let G be a finite p-group and k a positive integer such that 2 ≤ k ≤ d. Then

the following conditions are equivalent:

(1) δk(G) = 0.

(2) Φ(H) = Φ(G) for every (k − 1)-maximal subgroup H of G.

(3) d(H) = d− (k − 1) for every (k − 1)-maximal subgroup H of G.

Proof (1)⇒(2) Suppose that (1) holds. Let H be any (k − 1)-maximal subgroup of G.

Then every maximal subgroup H̃ of H is a k-maximal subgroup of G. Since δk(G) = 0, we

have Φ(G) ≤ H̃ for all maximal subgroups H̃ of H . It follows that

Φ(G) ≤
⋂

H̃⋖H

H̃ = Φ(H).

Since every subgroup of a finite p-group is subnormal, we have Φ(H) ≤ Φ(G). Therefore

Φ(H) = Φ(G) and (2) holds.

(2)⇒(3) It is obvious.

(3)⇒(1) Suppose that (3) holds. To show that δk(G) = 0, it suffices to prove that Φ(G) ≤ H̃

for every k-maximal subgroup H̃ of G. Let H be a (k − 1)-maximal subgroup of G such that

H̃ ⋖H . Then Φ(H) ≤ H̃. Now d(H) = d − (k − 1) implies that |Φ(H)| = |H|

pd(H) = |H|pk−1

pd =
|G|
pd = |Φ(G)|. It follows from Φ(H) ≤ Φ(G) that Φ(G) = Φ(H). Hence Φ(G) ≤ H̃ and (1)

holds.
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Lemma 3.2 Let G be a finite p-group. If δk(G) = 0 for some k with 2 ≤ k ≤ d, then

G′ = Φ(G). In particular, if G is abelian, then G is elementary abelian.

Proof Let G = G/G′. It suffices to prove Φ(G) = 1. Assume that G = 〈x1〉 × 〈x2〉 ×

· · · × 〈xd〉 with o(x1) ≥ o(x2) ≥ · · · ≥ o(xd). Then M = 〈xp
1〉 × 〈x2〉 × · · · × 〈xd〉 is a maximal

subgroup of G. Since G′ ≤ Φ(G), we have δk(G) = 0 by the corresponding theorem. Whence

δ2(G) = 0. It follows from Lemma 3.1(3) that d(M) = d− 1. We thus have xp
1 = 1. Therefore

Φ(G) = 1.

Lemma 3.3 Let G be a finite p-group. If δk(G) = 0 for some positive integer k ∈

{2, 3, · · · , d}, then δk−1(M) = 0 for every maximal subgroup M of G.

Proof Observe that δ2(G) = 0. Then, by Lemma 3.1(2), Φ(M) = Φ(G) for every maximal

subgroup M of G. Notice that every (k− 1)-maximal subgroup of M is a k-maximal subgroup

of G. It follows from the fact that δk(G) = 0 that all (k − 1)-maximal subgroups of M contain

Φ(G) = Φ(M). Therefore δk−1(M) = 0.

Now we are ready for the classification of all finite p-groups G with δd−1(G) = 0.

Theorem 3.2 Let G be a finite p-group with d > 2. Then δd−1(G) = 0 if and only if one

of the following holds:

(1) G is elementary abelian;

(2) d = 3, G is one of the groups listed in Lemmas 2.7–2.8;

(3) d = 4, G ∼= D8 ∗Q8 or G ∼= P , where P = 〈x1, x2, x3, x4 | x4
1 = x4

2 = 1, x2
3 = x2

1x
2
2, x

2
4 =

x2
1, [x1, x2] = 1, [x1, x3] = x2

1, [x1, x4] = [x2, x3] = x2
1x

2
2, [x2, x4] = x2

2, [x3, x4] = 1〉.

Proof It is routine matter to verify that each group listed in the theorem satisfies δd−1(G)

= 0.

Conversely, suppose that G is a finite p-group with d > 2 such that δd−1(G) = 0. Then

G′ = Φ(G) by Lemma 3.2. Since d ≥ 3 and δd−1(G) = 0, we have δ2(G) = 0. If G is abelian,

then G is elementary abelian by Lemma 3.2 and (1) holds. Suppose that G is nonabelian.

There are three cases to be considered.

Case 1 d = 3. Then δ2(G) = 0. It follows from Lemma 3.1(3) that all maximal subgroups

of G are generated by two elements. It follows from Lemmas 2.7–2.8 that G is one of the groups

listed in Lemmas 2.7–2.8. Hence (2) holds.

Case 2 d = 4. Then δ3(G) = 0 and δ2(G) = 0. Let M be any maximal subgroup of G.

Then d(M) = 3 by Lemma 3.1(3). In addition, δ2(M) = 0 by Lemma 3.3. Hence M is one of

the groups listed in Lemmas 2.7–2.8 by Case 1.

We claim that p = 2.

Otherwise, let G be a counterexample of minimal order. Then G′ = Φ(G) by Lemma 3.2.

Let N be a normal subgroup of G such that |G′ : N | = p. Then G/N is also a counterexample.

By the minimality of G, we must have N = 1. Hence |G| = p5, |G′| = |Φ(G)| = p and
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M ∼= Mp(1, 1, 1) ∗ Cp2 . Notice that 1 6= ℧1(M) ≤ ℧1(G) ≤ Φ(G). We have |℧1(G)| = p. Since

|G′| = p and p > 2, we have that G is regular by Lemma 2.6. Hence |G : Ω1(G)| = |℧1(G)| = p.

Thus Ω1(G) is a maximal subgroup of G. But exp(Ω1(G)) = p since G is regular and |G′| = p.

This contradicts the fact that ℧1(M) 6= 1.

Suppose that |G| = 2n. Then n ≥ 5.

(i) Assume |G| = 25. Then |G′| = |Φ(G)| = 2 since G′ = Φ(G). It follows from Lemma 2.5

that G is isomorphic to one of the following groups:

D8 ∗Q8, D8 ∗D8 = Q8 ∗Q8, D8 ∗ C4 × C2 = Q8 ∗ C4 × C2, D8 × C2
2 , Q8 × C2

2 .

If G ≇ D8 ∗Q8, then G has an elementary abelian subgroup H of order 8. By Lemma 3.1(2),

Φ(G) = Φ(H) = 1, a contradiction. Therefore G ∼= D8 ∗Q8.

(ii) Assume |G| = 26. Then |G′| = |Φ(G)| = 4. It follows that M is the group listed in

Lemma 2.7(3) or (4).

We claim that every maximal subgroup of G is isomorphic to the group listed in Lemma

2.7(3).

Suppose to contrary that there exists a maximal subgroup M of G which is isomorphic

to the group listed in Lemma 2.7(4). Let K be a subgroup of M such that K ∼= C3
2 and

M ′ ≤ K. Notice that |M ′| = 4 and M ′ = G′. Then K E G. If K < CG(K), then there

exists L ≤ CG(K) such that K ⋖ L. So L is abelian, |L| = 24 and d(L) ≥ d(K) = 3. Since

δ3(G) = 0, we have d(L) = 2 by Lemma 3.1(3), a contradiction. So CG(K) = K and hence

G/K . Aut(K) ∼= GL(3, 2). Notice that the Sylow 2-subgroup of GL(3, 2) is isomorphic to

D8. It follows that G/K ∼= D8. However, since Φ(G) = G′ ≤ K, we have G/K is elementary

abelian, a contradiction. Therefore every maximal subgroup of G is isomorphic to the group

listed in Lemma 2.7(3).

By a direct calculation, we may show that every maximal subgroup of the group listed in

Lemma 2.7(3) is isomorphic to C2
4 or M2(2, 2). So all 2-maximal subgroups of G are metacyclic.

Hence G is isomorphic to one of the groups listed in Lemma 2.9. Notice that d = 4. Hence

G ∼= P .

(iii) We claim that |G| = 25 or 26.

Otherwise, suppose n ≥ 7 and let G be a counterexample of minimal order. Then G′ = Φ(G)

by Lemma 3.2. Let N be a normal subgroup of G such that |G : N | = 27 and N ≤ Φ(G). Then

G/N is also a counterexample. By the minimality of G, we must have N = 1. Hence |G| = 27,

|G′| = |Φ(G)| = 8 and M is isomorphic to the group listed in Lemma 2.7(6).

Now assume

M =

〈
a, b, c

∣∣∣∣∣
a4 = b4 = c4 = 1, [a, b] = c2, [a, c] = b2c2, [b, c] = a2b2,

[a2, b] = [a2, c] = [b2, a] = [b2, c] = [c2, a] = [c2, b] = 1

〉
.

Let G = G/〈a2〉. Then |G| = 26 and δ3(G) = 0. So every maximal subgroup H of G should be

isomorphic to the group listed in Lemma 2.7(3). In particular, each element in H \ Φ(H) is of
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order 4. But a ∈ M \ Φ(M) is an involution, a contradiction.

Case 3 d ≥ 5. In this case, we show that there is no finite p-group G such that δd−1(G) = 0.

Otherwise, let G be a counterexample of minimal order. Let H be a (d − 5)-maximal

subgroup of G. Then d(H) = 5. Take N ⊳ H such that |Φ(H) : N | = p. Then H/N is also

a counterexample. By the minimality of G, we have N = 1 and H = G. So |G| = p6 and

|G′| = |Φ(G)| = p. Assume that M is an arbitrary maximal subgroup of G. Then d(M) = 4

and δ3(M) = 0. Hence p = 2 and M ∼= D8 ∗Q8 by Case 2. It follows from Lemma 2.5 that

G ∼= D8 ∗Q8 × C2 or D8 ∗Q8 ∗ C4 = D8 ∗D8 ∗ C4.

Thus G has an elementary abelian subgroupH of order 8. By Lemma 3.1(2), Φ(G) = Φ(H) = 1.

This is a contradiction.

4 The Classification for the Cases δd(G) = p and δd(G) = p2

In this section, we classify all finite p-groups G with δd(G) = p and δd(G) = p2, where

d = d(G) > 1.

We first consider the case δd(G) = p2. The next theorem gives the classification of all finite

p-groups G with δd(G) = p2.

Theorem 4.1 Let G be a noncyclic group of order pn. Then δd(G) = p2 if and only if G

is a 2-group of maximal class and G ≇ Q8.

Proof If G is a 2-group of maximal class and G ≇ Q8, then d = 2, and δ2(G) = 22 by

counting the 2-maximal subgroups of G. Conversely, assume that δd(G) = p2. Then G is

not elementary abelian and so 1 ≤ n − d < n. If G is not a 2-group of maximal class, then

sn−d(G) = 1+δd(G) ≡ 1+p (mod p2) by Lemma 2.3. This contradicts the fact that δd(G) = p2.

Hence G is a 2-group of maximal class. Moreover, G ≇ Q8 by Theorem 3.1.

To classify all finite p-groups with δd(G) = p, we need the following results.

Proposition 4.1 Let G be a finite p-group with |G| = pn. Then 0 < δk(G) < p2 for some

k ∈ {2, · · · , d} if and only if k = d and δd(G) = p.

Proof The necessity is trivial.

Conversely, suppose that 0 < δk(G) < p2 for some k ∈ {2, · · · , d}. It follows from Lemma

2.1 that k = d. Notice that 0 < δd(G) < p2. Then G is not elementary abelian and so 1 < d < n.

If G is a 2-group of maximal class, then δd(G) = 0 or 22 by Theorem 3.1 and Theorem 4.1. This

contradicts the fact that 0 < δd(G) < p2. Hence G is neither cyclic nor a 2-group of maximal

class. It follows from Lemma 2.3 that sn−d(G) = δd(G) + 1 ≡ 1 + p (mod p2). This together

with 0 < δd(G) < p2 implies that δd(G) = p.

Lemma 4.1 Let G be a finite p-group with |G| = pn (n ≥ 3) and d ≥ 2. If δd(G) = p, then

δd−1(G) = 0.
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Proof It suffices to prove that each (d− 1)-maximal subgroup H contains Φ(G).

If H is cyclic, then Φ(H) is a d-maximal subgroup of G. Hence |Φ(H)| = |Φ(G)|. Clearly,

Φ(H) ≤ Φ(G). Therefore Φ(G) = Φ(H) is a subgroup of H .

If H is not cyclic, then H has at least 1 + p maximal subgroups by Lemma 2.2. But G has

only 1 + p d-maximal subgroups. Notice that every maximal subgroup of H is a d-maximal

subgroup of G. Hence H has just 1 + p maximal subgroups which are d-maximal subgroups of

G. Thus the d-maximal subgroup Φ(G) of G must be a maximal subgroup of H .

Now we give the classification of finite p-groups G with δd(G) = p.

Theorem 4.2 Let G be a finite p-group of order pn with d ≥ 2. Then δd(G) = p if and

only if G is one of the following non-isomorphic groups:

(1) Cpn−1 × Cp (n ≥ 3);

(2) Mp(n− 1, 1), where n ≥ 4 if p = 2;

(3) Q8 × C2.

Proof If G is one of the groups listed in the theorem, then it is easy to verify that δd(G) = p.

Conversely, suppose that G is a finite p-group of order pn such that δd(G) = p. Then

δd−1(G) = 0 by Lemma 4.1. Notice that G has exactly 1 + p d-maximal subgroups. If there is

no cyclic (d−1)-maximal subgroup of G, then each (d−1)-maximal subgroup can be generated

by the 1 + p d-maximal subgroups by Lemma 2.2. Thus G has only one (d − 1)-maximal

subgroup. This contradicts δd−1(G) = 0. Therefore G has a cyclic (d − 1)-maximal subgroup.

Moreover, the number of noncyclic (d− 1)-maximal subgroups of G is at most 1.

If d ≥ 3, then G is isomorphic to one of the groups listed in Theorem 3.2. By checking the

groups listed in Theorem 3.2, it follows that G ∼= Q8 × C2. Assume that d = 2. Then G has

a cyclic maximal subgroup. If G is abelian, then G ∼= Cpn−1 × Cp (n ≥ 3). If G is nonabelian,

then G is isomorphic to one of the groups listed in Lemma 2.10. By checking the groups listed

in Lemma 2.10, it follows that G ∼= Mp(n− 1, 1), where n ≥ 4 if p = 2.
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