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Abstract Consider the Cauchy problem of a time-periodic Hamilton-Jacobi equation on
a closed manifold, where the Hamiltonian satisfies the condition: The Aubry set of the
corresponding Hamiltonian system consists of one hyperbolic 1-periodic orbit. It is proved
that the unique viscosity solution of Cauchy problem converges exponentially fast to a
1-periodic viscosity solution of the Hamilton-Jacobi equation as the time tends to infinity.
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1 Introduction

Consider the time-periodic Hamilton-Jacobi equation
us + H(z,u.,t) =0, te€[0,4+00), x € M, (1.1)

where M is a closed (i.e., compact without boundary) and connected smooth manifold of
dimension m. We choose, once and for all, a C°° Riemannian metric on M. It is classical
that there is a canonical way to associate to it a Riemannian metric on T'M. The Hamiltonian

H(x,p,t) : T*M x R — R, defined by H(x,p,t) = sup {(p,v), — L(x,v,t)}, is 1-periodic in
vETy M
t, where (-, -), represents the canonical pairing between the tangent and cotangent space, and

L(z,v,t) : TM x R — R is a C? Lagrangian and satisfies the following conditions:
(H1) Periodicity. L is 1-periodic in the R factor.
(H2) Positive Definiteness. For each 2z € M and each ¢t € R, the restriction of L to T, M x {t}
is strictly convex in the sense that its Hessian second derivative is everywhere positive definite.
(H3) Superlinear Growth.  lim 220 — 4 o0 yniformly on o € M, t € R, where || - ||,

lolle—+o0 M0l
denotes the norm on 7, M induced by the Riemannian metric on M.

(H4) Completeness of the Euler-Lagrange Flow. The maximal solutions of the Euler-
Lagrange equation, which in local coordinates is

d8L( 1) 8L( 1)

— T,z = — (T, x

dt dv oz
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are defined on all of R.

Such a Lagrangian L is usually called a time-periodic Tonelli Lagrangian in the literature.
Without loss of generality, we will from now on always assume that the Mané critical value (see
[12]) of L is 0.

For a given time-periodic Tonelli Lagrangian L, it is well known that the function U :
M x [0, 4+00) — R defined by U(x,t) = Tiug(z) is the unique viscosity solution of the Cauchy
problem

{ut-i-H(x,Umat):o inMX(O,-i-OO), (1 2)

Ult=0 = uo on M,

where ug : M — R is a continuous function and T} : C(M,R) — C(M,R), t > 0 is the Lax-
Oleinik operator (see Section 2 for a definition) associated with the Lagrangian L (see [9] for
instance).

(H5) The Aubry set of L consists of one hyperbolic 1-periodic orbit.

For any given time-periodic Tonelli Lagrangian L satisfying (H5), we show that for each
ug € C(M,R), the unique viscosity solution U(z,t) of the Cauchy problem (1.2) converges
exponentially fast to a 1-periodic viscosity solution of (1.1) as t — +o0.

The main result of this paper is as follows.

Theorem 1.1 If a time-periodic Tonelli Lagrangian L : TM x R — R satisfies (H5), then
there exists p > 0 such that for each ug € C(M,R), there exists a constant K > 0 and a
1-periodic viscosity solution @ of (1.1) such that

|U(x,n+ 1) —a(x,(T))]|oo < Ke™", Vn €N, (1.3)
where 7 € [0,1], (1) =7 mod 1, and || - ||« denotes the supremum norm in the space C(M x
[0,1],R).
Remark 1.1 In fact, u(x,s) = iél]@(U()(y) + hos(y,x)) for all (x,s) € M x S, where S is
y
the unit circle and h denotes the (extended) Peierls barrier (see Section 2 for a definition).

Remark 1.2 Inequality (1.3) implies that ||U(z,t) —u(z, (t))|lo < Kie™**, Vt > 0, where
K1 > 0is a constant and || - ||o denotes the supremum norm in the space C(M,R).

Remark 1.3 The essence of Theorem 1.1 is that the Lax-Oleinik operators possess an
exponential convergence rate under the assumptions (H1)-(H5). See [8, 16-18] for various
results on the rate of convergence of the Lax-Oleinik operators for the autonomous case.

Remark 1.4 In [15], Sdnchez-Morgado provides a similar result to Theorem 1.1 for M =
T, where T™ denotes the flat m-torus. Our method here is totally different from that used
in [15].

2 Preliminaries

The methods here are inspired from Mather-Mané-Fathi theory (see [4-7, 10-14]) on Tonelli
Lagrangian systems. We introduce the notations used in the sequel and review some definitions
and results of Mather-Mané-Fathi theory in this section.
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We view S as a fundamental domain in R : T = [0, 1] with the two endpoints identified. The
unique coordinate s of a point in S will belong to I = [0,1). The standard universal covering
projection 7 : R — S takes the form 7(3) = (), where (3) = § mod 1 denotes the fractional
part of § (8 = [s] + (5), where [3] is the greatest integer not greater than ). || - | denotes the
usual Euclidean norm.

The Euler-Lagrange equation generates a flow of diffeomorphisms ¢ : TM xS — TM x S,
t € R, defined by

F (0, v0,t0) = (2(t +to), Z(t + to), {t + to)),

where x : R — M is the maximal solution of the Euler-Lagrange equation with initial conditions
x(to) = xo, @(to) = vo. The completeness and periodicity conditions grant that this correctly
defines a flow on T'M x S.

Consider the action functional A; from the space of continuous and piecewise C' curves
v : [a,b] = M, defined by

b
Ay) = / L(d(0), 0)do,

where dv : [a,b] — T'M denotes the differential of .
Recall the definition of the Lax-Oleinik operators T; associated with L. For each ¢ > 0 and
each ug € C(M,R), let

Tiuo(x) = inf{uo(v(0)) + Ar(v)}

for all z € M, where the infimum is taken among the continuous and piecewise C! paths
v :[0,t] = M with v(t) = 2. For each t > 0, T} is an operator from C'(M,R) to itself.
As done by Mather in [14], it is convenient to introduce, for all ¢ < t' € R and z, 2’ € M,
the following quantity:
Fip(z,2') = igf Ar(v),

where the infimum is taken over the continuous and piecewise C! paths v : [t,#/] — M such
that v(t) = z and y(t') = 2/. Forallt < t' € R and all 2, 2’ € M, there exists a continuous and
piecewise C! path 7 : [t,#] — M with F(t) = x and () = 2’ such that F} 4 (z,2') = AL(7)
(see [13, Tonelli’s Theorem]). Such a curve is called a Tonelli minimizer (for the fixed endpoint
problem). The function F': Rx R x M x M — R, (¢t,t',z,2") — F,y(x,2') is Lipschitz and
bounded on {t’ >t + 1} (see for example [2, Lemma 3.3]).

Following Mané [12] and Mather [14], define the action potential and the extended Peierls
barrier as follows.

Action Potential. For each (s,s") € S x S, let

D, o (z,2") = inf F} p(z,2")

for all (z,2") € M x M, where the infimum is taken on the set of (¢,#') € R? such that s = (t),
s =()and t/ >t+1.
Extended Peierls Barrier. For each (s,s’) € S x S, let

how(@,0) = liminf Fy (o)
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for all (x,2") € M x M, where the liminf is restricted to the set of (¢,t') € R? such that s = (t),
s’ = (t'). The function h: S x Sx M x M — R, (s,s',x,2") = hs ¢ (z,2") is Lipschitz (see [3,
Proposition 2] for details).

A continuous and piecewise C! curve + : R — M is called global semi-static if

AL(7|[t7t’]) = (I)(t>7(t’)(7(t)77(t/))

for all [¢,#'] € R. An orbit (dy(0), (¢)) is called global semi-static if 7 is a global semi-static
curve. The Mané set Ny is the union in TM x S of the images of global semi-static orbits. A
continuous and piecewise C! curve v : R — M is called global static if

AL (Vi) = =Py, iy (v (), 7 (1))

for all [t,¢'] C R. An orbit (dv(o), (o)) is called global static if 7 is a global static curve. The
Aubry set ,Zo is the union in T'M x S of the images of global static orbits. For a time-periodic
Tonelli Lagrangian satisfying (H5), we have Ay = No.

A time-periodic Tonelli Lagrangian L is called regular, if the liminf in the definition of the
functions h ¢ is a limit for all s, s’, x, 2/. According to [2, Lemma 5.4], a time-periodic Tonelli
Lagrangian L satisfying (H5) is regular. Thus, under the assumptions of Theorem 1.1, we have

lim Foyr(2,y) = ho,(ry(z,y), Y(r,2,y) €[0,1] x M x M.

n—-+oo

Since the family of functions {Fy n+.(-, ) }n is equi-Lipschitzian, we have

lim  Fopyr(2,y) = ho, ) (7,y) (2.1)

n—-+oo

uniformly on (7,z,y) € [0,1] x M x M. Note that for each ug € C(M,R), each T € [0,1], each
n € N and each x € M, we have

Thtruo(z) = yiélf/[(UO(y) + Fontr (Y, 7)) (2.2)

From (2.1)—(2.2), it is easy to see that

n——+o0o

tim T ti(e) = i (uo(9) + b, (5:2)) ow = 0. (2.3)
In view of (2.3), the function @ in Theorem 1.1 has the form

u(z,s) = yigﬂg(uo(y) + ho,s(y, 7))

for all (x,s) € M x S. Furthermore, from [17, Propositions 3.12-3.13], {@},,cc(m,r) is exactly
the set of 1-periodic viscosity solutions or backward weak KAM solutions of (1.1). Now we
recall the definition of the weak KAM solution of (1.1).

A backward weak KAM solution of the Hamilton-Jacobi equation (1.1) is a function w :
M x S — R such that w is dominated by L, i.e.,

’LU(xl,S]_) - ’LU((EQ,SQ) S q)527s1 (1’2,1’1), v(xlasl)a ($2,82) e M x S7

and for every (x,s) € M x S, there exists a curve v : (—00,3] = M with () = x and (5) = s
such that

w(z,s) —w(y(t), (1) = A(yes), V€ (=00, 5],
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Similarly, we say that w : M xS — R is a forward weak KAM solution of (1.1) if w is dominated
by L, and for every (z,s) € M x S, there exists a curve v : [s,+00) — M with y(5) = x and
(8) = s such that w(y(t), (t)) —w(z,s) = AL(vsy), Vt €[5, +00).

We denote by S_ (S;+) the set of backward (forward) weak KAM solutions. Given (zg, so) €
M x S, define w*(z,s) := hgys(xo,x), we(z,s) = —hss,(x,20) for (z,s) € M x S. Then
w* € S_, w, € Sy (see [3, Lemma 9]).

Define the projected Aubry set Ay as

Aog :={(z,8) € M xS | hss(x,x) = 0}.

Note that Ay = H.zg, where Il : TM xS — M xS denotes the projection. Define an equivalence
relation on Ag by saying that (z1,s1) and (22, s2) are equivalent if and only if

(1)51,52 ($1,$2) + (1)52,51 ($2,$1) =0.

The equivalent classes of this relation are called static classes. Let A be the set of static
classes. For each static class I' € A, choose a point (z,0) € T' and let Ag be the set of such
points. Under the assumptions of Theorem 1.1, Ay consists of only one point, denoted by
(p,0) € Ag. Thus, for each backward weak KAM solution w of (1.1), we have

w(x, 8) = (q%l)iéle(w(qa O) + h075(q7 1‘)) = w(pa O) + h075(p7 CC) (24)

for all (x,s) € M x S (see [3, Theorem 7]).

Proposition 2.1 Under the assumptions of Theorem 1.1, let V be a meighborhood of the
Aubry set Ag in TM xS. Given 0 < a1 < as < 1, there exists T' > 0 such that ifn > T, n € N,
7€ [0,1], and v : [0,n + 7] = M is a Tonelli minimizer for the fized point problem, then

(d7(0)7 <U>)|[a1n7a2n] cV.

Proof Suppose by contradiction that there exist {n;};-> C N with n; — 400 as i — +oo,

{70, }557 € [0,1], a sequence {7, }i : [0,m; + 7n,] — M of Tonelli minimizers, and {,, };%
with a1n; < o,, < agn; such that
(dﬁyni (Uni)7 <0'n1>) ¢ V., 1=12,---. (25)

For each i, we set @n, = Yn,(Ni + Tn;), Yn, = Tn;(0). Passing as necessary to a subsequence,
we may suppose that x,, — xo, yn, = yo and 7,, — 79 as i — 400, where xg, yo € M and
T0 € [0, 1]

Since

|F0)n'i+7—ni (Ynis Tn;) — hO.,(To) (0, 0)| < |F07n7:+7'ni (Yni> Tn;) — hO.,(TnQ (Yni» Tn, )|
+ |h0,('rni>(ynia$m) - h‘O,(T0>(yni?$ni)
+ |h0.,(~ro) (yn7 ) an) - h0,<7'0> (y07 CCQ)|,

from (2.1) and the Lipschitz property of h, we have

lim AL(’WM,) = lim F07n71+7—ni (ymﬂani) = h0,<70>(y07x0)' (26)

1—~+00 1—+00
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For each ¢, we set
(%nw;fnm 8n;) = (Vi (0n:)s ni (Ons )5 (On;)-
By (2.5), (Zn,,Tn,sSn,) € V, Vi. Since 7,, are minimizing extremal curves, using the a pri-
ori compactness Lemma 3.4 in [17], we conclude that {(Z,,,Zn,,sn,)}7>° are contained in a
compact subset of TM x S. So we may assume upon passing if necessary to a subsequence
that (Zn,,Tn,,sn,) — (F,2,5) € TM x S as i — 400. Since (Zn,,Tn,,5n,) € V, Vi, one has
(,7,5) ¢ Ao.

Let (dvy(o), (o)) = ¢%_,(Z,%,s), o € R. We assert that the orbit (dv(c), (¢)) is global semi-
static, i.e., v is a global semi-static curve. If this assertion is true, then (z, f, s) € /\70 = VZQ,
which is impossible since (Z, ?c, s) ¢ ;473. This contradiction proves the proposition.

Based on the above arguments, it is sufficient to show that v is a global semi-static curve.
We prove it by contradiction. Otherwise, there would be ji, jo € N such that

AL(’}/'[S—jl,s+j2]) > (I)s,s('y(s - jl)u’y(s +]2))

It implies that there exist ji, j5 € N with s — 51 + 1 < s + j4 and a minimizing curve 7 :
[s — ji,s + j4] — M satisfying ¥(s — 71) = (s — j1) and F(s + 75) = (s + j2) such that
AL(Vis—jr.s4421) > ALVl [s—j1,s14z1)- Thus, there exists § > 0 such that

AL(%“S—ji,s-’-jé]) < AL (7|[s—j1,s+j2]) — 0. (27)

Since (Zn,, Tn,, 5n,) — (T, %,5) € TM xS asi — +00, for every ¢ > 0, by the differentiability
of the solutions of the Euler-Lagrange equation with respect to initial values, we have

d((dv(9), (), (dVn, (0 + on; = 8), (0 + on; —8))) <& (2.8)

for all o € [s — j1, 8 + j2] and 7 large enough. Using the periodicity of L, we have

s+j2
Arllon, i) = [ Lo+ an = s) o+ on —shdo. (29)

—J1

In view of (2.8)—(2.9), we have

|AL(’77M|[O'M —J1,0n; +j2]) - AL(’7|[S—j1,S+j2])| S Ce (210)

for some constant C' > 0 independent of € and sufficiently large 7. Since € may be taken arbitrary
small, from (2.7) and (2.10) we obtain

AL (’WL_ [on, —jl,ani-i-jg]) > AL (’Y|[s—j17s+j2]) —Ce
30

s (2.11)

> AL (Vis—j,s455) +
provided that ¢ is large enough.
We set
T=7(s—j1) =(s—j) and z="75(s+j3) =7(s+ja).
For i large enough, consider the following curves on M. Let af : [0,0,, — j1] — M with
i (0) = Yn,, af(on, —j1) =T and aF : [0, — j1 + J1 + Jo, T, + 14 — J1 — Jo + J1 + 5] = M with
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aZ(on, —j1+j1 +7%) = z and & (7, +ni — j1 — jo + j1 + j5) = zn, be Tonelli minimizers. Set

al(o), o €[0,0n, — j1],

3
7717%(0') = f’?(o’ — On, +a+s _.j:/L)v oc [Uni —].1,0'”1» - +]i +.]é]7
a3 (o), 0 € [on, — 1+ J1 + J2 Tny + 10— J1 — Jo + J1 + 5]
It is clear that 7y, : [0, s, +n; — j1 — j2 + j1 + j4] — M is a continuous and piecewise C'! curve
connecting y,, and ;.
We set Tp, = Yn,(0n, —j1) and z,,, = v, (0n, + j2). For i large enough, compare Ar(Vn,)
with Ar(vy,) as follows. In view of (2.8), we have

|AL (77171» |[0,0n73 —jl]) — AL (’anz |[0,U77,,i —j1])|
= |F0,0n73 —J1 (ym ) T) - FO,UM —J1 (ym ) Tm)
< Dripe, (2.12)

where Dy, > 0 is a Lipschitz constant of F ;» which is independent of ¢, ¢ with ¢t +1 <t (see
[2, Lemma 3.3]).
Note that

AL(Vniliow, —jvsom, i +i5435]) = AL(Ynil (0w, — 1,0, +2])

5475
— [T E@0).0 + s = )40 = Au (oo~ 1)
s—j}

Since s,, — s as i — +00,

_ s+j5 _ )
LGl — [ L(T0)0 + 50— 5)d0] < 5
s—7j1
for i large enough. Hence,
~ )
ALOnilton,~g1.0n,—g1+5+5) = ALl 1,00, +221) < —5- (2.13)
From the Lipschitz property of F; 4 and (2.8), we find
|AL (Vi l(, =144 4347, 4= s —datds43)) — AL Wnilfon, 42, 4]
= |Foni—j1+j{+j§,7'ni+m —j1—Jja+3;+ib (,Zn,) — FO’vli"I‘jQ»Tni"anﬂ (Enl s Tn,)]
S DLipE. (214)
Since ¢ may be taken arbitrary small, from (2.12)—(2.14), we have
AL(WM) < AL('YW,) Y (215)

4

for i large enough.
Since

|F0,Tn73 +ni—j1—j2+351 +35 (ymv xm) - h07<7'o> (y()v $0)|
< |F0>Tni +ni—j1—Jje2+i1+74 (ynm xm) - h0,<7'n73> (ym ) xn7)| + |h0,<7'n73> (ym ) an) - hO,(m) (ym ) xn7)|
+ |h07<7'0> (ymv xm) - h07(7'o> (y()v $0)|,
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from (2.1) and the Lipschitz property of h, we have

z—lg—ri-noo F07Tni +ni—j1—j2+71 +75 (ynq ) an) = h0,<7'0> (y07 xO)' (216)

Combining (2.6) and (2.15)—(2.16), we have

NS

) .
h0><7'0> (y07 1‘0) - Z - z—lg-noo Ap (’7117) -
> liminf Ap,(Fn,)
1—+400
2 M For ni—ji—jatii+g (Ynis o)
= ho,(z0) (Y0, o),
a contradiction. This contradiction shows that ~ is global semi-static, which completes the
proof of the proposition.

3 Proof of the Main Result

Let (p, vp, 0) be the unique point in Ao with (p, vy, 0) = (p,0) € Ag, where IT: TM x S' —

M x S denotes the projection. By (H5) the Aubry set Ay consists of one hyperbolic 1-periodic
orbit, denoted by T : ¢Z(p, v,,0) = (dv, (o), (o)), o € R.

Proof of Theorem 1.1 Our purpose is to show that there exists p > 0 such that for each
uog € C(M,R), there exists K > 0 such that the following two inequalities hold:
Uz, (1)) — Thtruo(z) < Ke ", VneN, VY(z,7) € M x [0,1]; (11)
Thiruo(x) —a(z, (1)) < Ke ™", ¥YneN, V(z,7) € M x [0,1]. (12)
Step 1 We first prove inequality (I1). For any given y € M, ho.(y,-) is a backward weak
KAM solution of (1.1). In view of (2.4), we have
ho,(r) (Y, ) = ho,0(y, ) + ho,(r) (P, ) (3.1)

for all (z,7) € M x [0,1]. Given up € C(M,R) and (z,7) € M x [0,1], it is easy to see that for
each n € N, there exists a minimizing extremal curve v, : [0, 7+n] — M such that v, (7+n) =z
and

Tgruo(z) = uo(1n(0)) + AL (n)- (3.2)

In view of (3.1), we have

E(CL‘, <T>) = ylél]&(’u,o(y) + hO,(T) (ya {E))

= yigﬂg(uO(y) + ho,0(y,p) + ho,(ry (p; T))-

Thus, we have
u(z, (1)) < uo(7(0)) + ho,0(7n(0),p) + ho () (P, )

< up(1n(0)) + Fo,ny (1(0), Y0 (0)) + ho,o(vn(0), )
+ ho,0(0, ¥0(0)) + Fonptr (yn(0), ) (3.3)
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for all o € [0, 74 n] and all ny,ny € N. For n € N large enough, let j,, = [2?"} — [%} — 1. Taking
ny = [37"} + [%} + 1, 0 =nq and ny = n — ny, by (3.3), we obtain

_ Jn n

(e, (7)) < u0(3(0)) + Az () + 2Cupd (va ([ 5] + [5] +1):p): (3.4)

where Crip > 0 is a Lipschitz constant of h. From (3.2) and (3.4), we have

@z, (7)) — Tosrtio(z) < 20Lipd(%([%"] +[5]+1).0). (3.5)

We now estimate the term in the right-hand side of (3.5). Consider the Poincaré map for
the time-periodic Lagrangian system L,

1,0 TM — TM, (x0,v0) — ¢1,0(x0,v0),

where @ o(z0,v0) = (2(t), £(t)) and z(t) denotes the solution to the Euler-Lagrange equation
with initial conditions z(0) = z¢, ©(0) = vo. Obviously, ¢ (z¢,v0,0) = (pr.0(x0,v0), (). It is
easy to see that (p, v,) is a hyperbolic fixed point of ¢1 9. According to the Hartman-Grobman
theorem, the Poincaré map ¢ o is locally conjugate to its linear part at the hyperbolic fixed
point (p,v,). More precisely, there exist a neighborhood V' (p,v,) of (p,v,) in TM as well as a
neighborhood U(0) of 0 in T{;,,)(T'M) and a homeomorphism f : V'(p,v,) — U(0), such that

Do1,o(p,vp) o f = fowio. (3.6)

Furthermore, there exists 0 < a < 1 such that f and f~! are a-Holder continuous (see [1]).
Denote for brevity P = (p,v,). As the problem here is a local one, we can, using a local chart,
suppose that @1 is a map from R?™ to itself with P as a hyperbolic fixed point.

Let B(P) be a sufficiently small neighborhood of P in R?™ such that B(P) C V(P) =
V(p,vp). We choose a tubular neighborhood Wt of T' such that for each (¢,v,(o)) € T,
d((q,v,{0)),0Wr) = k, where OWr denotes the boundary of Wr and x is a positive constant
small enough such that for each (¢,v,0) € Wr, (¢,v) € B(P). For the tubular neighborhood
Wr, applying Proposition 2.1, there exists 7" > 0 such that for n € N with n > T', we have

(dVn(0), (0))]ja 20 C Wr.

(i [2] 3)0) (o ([2])0) <

It follows that

Thus, we have

i.e.,
2141 n 2n n
AP ey e BP), (3.7)
where P = (7,(0),4(0)). Set A = Dyp1 o(P) and P = o\31"" (Pr). By (3.6)-(3.7), we have

APy = fo BTy, oo, AP = fo o3P,
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Thus A f(P") € U(0), i =0,1,---,j,. Hence, there exists A > 0 such that

As A : R?™ — R?™ is hyperbolic, there exists an invariant splitting R*™ = E* @ E*. For
each z € R?™, we have 2z = 2z, + 2y, 2s € E®, 2, € E* and Az = A,z, + Ay 2z, where A; = Al s
and A, = Algu. Let f(P]') = y? +y7, y" € B, y" € E* and Al f(P]') = 21 + 27, 2" € E®,

zle E". Let A1, -+, A, be the eigenvalues of A;. Then |\;| < 1fori=1,---,m. Since A is
similar to a symplectic matrix, Ve , % are the eigenvalues of A,. Set Apax = max Al Tt
m <i<m

is a standard result that for arbitrary € > 0, we have

||A;ZS|| < (Amax + 5)i||35||7 Vzs € E® (3.9)
for © € N large enough. We choose g > 0 small enough such that Ayax + €9 < 1. Then from
(3.9) we have ||A[57n]y2|| < ()\ma_x+so)[]7"] 7 < Amax~+€0)ZTA for n large enough. Similarly,

we have | ALy || = 1140 9 720 < e + 20)70 122 < (Ammax + 0) FA for n large
enough. Thus, we have

AL (PR < AT 2+ 1A Y2 < 28 A + 20) % (3.10)
for n large enough. Since j, = [%”] — [%] — 1, from (3.10) we have
AV £ (PP < 28 (A + £0) 2 (3.11)

In

for n large enough. Note that A[%]f(Pln) =fo ‘P[1,20
a-Hélder continuous, from (3.11) we have

H_[%]H(PO”) and f(P) = 0. Since f~1is

In

[51+[3141 pn - in] i pn -
||801726 ) - Pl=f 1°A[2]f(P1)—f 1(0)”
< Cif|ATE p(Pp) - 0]
< C129AY Amax +€0) (3.12)
for n large enough, where C; > 0 is a constant. Therefore, there exists a constant Cy > 0

independent of ug € C(M,R) and (z,7) € M x [0, 1] such that

d(wn([%"] + [g} +1),p) < Co(Amax +20) ¥ (3.13)

for n large enough. Note that the above estimate is independent of (z,7). By (3.5) and (3.13),
for sufficiently large n, we have

(2, (1)) = Tnarto(z) < 2CLipCo(Amax + €0) T, V(z,7) € M x [0,1].
Hence, there exists a constant C'5 > 0 such that
Tz, (1)) — Tpyrio(z) < Cs(Amax +€0) 72, VneN, Y(z,7) € M x [0,1],

where the constant C's depends on ug. Since 0 < Apax + €9 < 1, there exists p; > 0 such that
(Amax + €0)12 = e~PL. Thus, we have

u(x, (1)) — Thyruo(x) < C3e™ " VYneN, V(x,7) € M x [0,1]. (3.14)
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Step 2 We now prove inequality (I2). Given ug € C(M,R) and (z,7) € M x [0, 1], there
exists y € M such that

ﬂ(d?, <T>) = Uo(y) + h0,0(yvp) + h07<7'> (pv ZIJ) (315)

To prove (I2), it suffices to show that for n € N large enough, we can find a curve 7 :
[0,7 +n] — M with n(0) =y and n(r +n) = z, such that

uo(1(0)) + Ar(n) — a(x, (1)) < Ce™" (3.16)

for some constants C, 6 > 0 independent of ug € C(M,R), (z,7) € M x [0,1] and n € N. In
fact, for n € N large enough, if such a curve exists, then we have

Ttruo(@) = a(x, (1)) < uo((0)) + AL (n) = u(w, (1)) < Ce™®",

which immediately implies the desired inequality (I12).

Our task now is to construct the curve mentioned above. Since hg .(p, ) is a backward weak
KAM solution of (1.1), there is a curve 3, (r) : (—00,7] = M with 3, -/(7) = z and (7) = (7)
such that

ho, 7y (D, ) = ho 1y (D, Ba,(ry (1) = AL(Ba,(r)lie,7)), Yt € (=00, 7]. (3.17)

It is clear that f, (ry is a minimizing curve. From [2, Lemma 3.9], the a-limit set for any
minimizing orbit is contained in the Aubry set Ay. Since Ay consists of one hyperbolic 1-
periodic orbit I, the a-limit set for (df,, (r)(0), (0)) is exactly I'. Similarly, since —h. o(-,p) is a
forward weak KAM solution of (1.1), there exists a curve wy o : [0, +00) = M with w, ¢(0) =y

and (0) = 0 such that

ho,0(y,p) — hayolwyo(t),p) = Ar(wyolss), Vt € [0, +00). (3.18)

Moreover, wy ¢ is a minimizing curve and the w-limit set for (dw,,o(co), (o)) is also the hyperbolic
1-periodic orbit T' (see [2, Lemma 3.9]).

Since I' is a hyperbolic 1-periodic orbit, for the tubular neighborhood Wt there exist con-
stants 77 > 0 and Cy4 > 0, such that

d((dwy,0(o +0), {0 +0)), (d¥p(0),(0))) < Cae™? (3.19)
for all o > T1, and
d((dBy,(ry (0 +7), (o + 7)), (dyp(o + (1)), (0 + (1)) < Cye? (3.20)

for all ¢ < —T3, where 77 and C4 depend only on Wr, and p denotes the smallest positive
Lyapunov exponent of I'.

We are now in a position to construct the curve 7. For n € N large enough such that
2 > max{T1,2}, choose 0 < di < 1 so that (dv,(% + d1),(% +d1)) = (p,p,0). Then from
(3.19) we obtain

d((dwy)o(g +o+ dl), <g +o+ d1>), (p, vp, 0)) < Cye™Ms, (3.21)
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From (0) = 0 and the property of F} ;/, we have

n n ~
Fo)%+d1 (y,CUy7O(§ +o0+ dl)) = F5,§+5+d1 (y,w%o(g +o0+ dl))

= Ar(wy,o0l[3,2 15+d:])s (3.22)

where the last equality holds since wy o is a minimizing curve. Let n; : [0, % + di] — M with
m(0) =y and 71 (5 + d1) = p be a Tonelli minimizer. Then, in view of (3.21)-(3.22), we have

|AL(m) — Ar(wyol@, 2 +5+d:))]
no
= FO,%+d1 (y,p) — Fo,ngul1 (y,wy,o(§ +o0+ dl)) ‘
< DyipCae™%, (3.23)
where Dy, > 0 is a Lipschitz constant of Fy ; which is independent of ¢, ¢’ with ¢t +1 <¢'.

For the above sufficiently large n € N with % > max{T1,2}, let a(n) = 2 —dy + 7. It is
clear that a(n) > % and (dvy,(—a(n) + (1)), (—a(n) + (1))) = (p,vp,0). From (3.20) we have

d((dBg,(ry(—a(n) +7), (—a(n) + 7)), (p,vp,0)) < Cue M3, (3.24)
Since 3, (ry is a minimizing curve,

F_ o177 (Bemy (—a(n) +7),2) = AL(Be (n) |l [—a(n)+7.7))- (3.25)

Let 12 : [—a(n) + 7,7] — M with 72(—a(n) +7) = p and 72(7) = x be a Tonelli minimizer.
Then, by (3.24)—(3.25), we obtain

|AL (772) - AL(ﬁw,(T>|[—a(n)+7~'77~'])|
= |F_am)+77(0: ) — Fam)+7,7(Be,(ry (—a(n) +7), x)|
S DLipC4e_“%. (326)

Define a curve nz : [§ +d1, 5 +di +a(n)] — M by n2(s) = n2(c — § —a(n) —dy + 7). Then
Ap(n2) = AL (7).
Consider the curve 7 : [0, 7 +n] — M connecting y and = defined by

m(o), o€ {O,g + dl},

n(o) = (3.27)

na(o), o€ [% +d1,T+7’L}.

Now it remains to show that the curve defined by (3.27) is just the one we need. For n € N
large enough, from (3.15) we get

uo(n(0)) + Ar(n) —a(z, (1)) = uo(n(0)) + AL(n) — uo(y) — ho,o(y:p) — ho,(r) (P, @)
= AL(Ul) + AL (7]2) - h0,0(yvp) - h07<7'> (pv ZIJ) (328)

In view of (3.28), (3.23) and (3.26), we have

uo(n(0)) + Ar(n) —u(z, (7)) < Ar(wyol@, 2 +5+d]) + ALBe (1)l [—a(n)+7.7])
+2DipCae ™35 — hoo(y, p) — ho,(ry (p, ). (3.29)
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From (3.29) and (3.17)—(3.18), we have

uo(n(0)) + Ar(n) —a(z, (7))

n ~ ~ . n
< —hoyo (wy,o (5 +0+ dl) ,p) = ho,o(p; Be,(ry(—a(n) + 7)) + 2Dy, Cre™ "'

< 2(CLip + Drip)Cae "5,
where the last inequality follows from ho o(p,p) = 0, (3.21) and (3.24). Let
Cs = 2(CLrip + Drip)Cl.

Note that C5 and p are independent of (x,7) € M x [0,1], up € C(M,R) and n € N, which
means that (3.16) holds.
Thus, for n € N large enough, we have

Tpiruo(z) — Uz, (1)) < Cse ™5, V(x,7) € M x [0,1].
Hence, there exists a constant Cs > 0 such that
Tn+‘ru0(x) - ﬂ(za <T>) < Oﬁe_ugv Vn € Na V(Ji, T) €M x [07 1]7 (330)

where the constant Cs depends on ug.
Let pa = 1, K = max{C3,Cs} and p = min{p1, p2}. Then from (3.14) and (3.30), we have

| Tt ruo(x) —u(z, (7)) ||oo < Ke ", ¥neN.
The proof is now complete.
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