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Abstract Consider the Cauchy problem of a time-periodic Hamilton-Jacobi equation on

a closed manifold, where the Hamiltonian satisfies the condition: The Aubry set of the

corresponding Hamiltonian system consists of one hyperbolic 1-periodic orbit. It is proved

that the unique viscosity solution of Cauchy problem converges exponentially fast to a

1-periodic viscosity solution of the Hamilton-Jacobi equation as the time tends to infinity.
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1 Introduction

Consider the time-periodic Hamilton-Jacobi equation

ut +H(x, ux, t) = 0, t ∈ [0,+∞), x ∈ M, (1.1)

where M is a closed (i.e., compact without boundary) and connected smooth manifold of

dimension m. We choose, once and for all, a C∞ Riemannian metric on M . It is classical

that there is a canonical way to associate to it a Riemannian metric on TM . The Hamiltonian

H(x, p, t) : T ∗M × R → R, defined by H(x, p, t) = sup
v∈TxM

{〈p, v〉x − L(x, v, t)}, is 1-periodic in

t, where 〈·, ·〉x represents the canonical pairing between the tangent and cotangent space, and

L(x, v, t) : TM × R → R is a C2 Lagrangian and satisfies the following conditions:

(H1) Periodicity. L is 1-periodic in the R factor.

(H2) Positive Definiteness. For each x ∈ M and each t ∈ R, the restriction of L to TxM×{t}

is strictly convex in the sense that its Hessian second derivative is everywhere positive definite.

(H3) Superlinear Growth. lim
‖v‖x→+∞

L(x,v,t)
‖v‖x

= +∞ uniformly on x ∈ M , t ∈ R, where ‖ · ‖x

denotes the norm on TxM induced by the Riemannian metric on M .

(H4) Completeness of the Euler-Lagrange Flow. The maximal solutions of the Euler-

Lagrange equation, which in local coordinates is

d

dt

∂L

∂v
(x, ẋ, t) =

∂L

∂x
(x, ẋ, t),
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are defined on all of R.

Such a Lagrangian L is usually called a time-periodic Tonelli Lagrangian in the literature.

Without loss of generality, we will from now on always assume that the Mañé critical value (see

[12]) of L is 0.

For a given time-periodic Tonelli Lagrangian L, it is well known that the function U :

M × [0,+∞) → R defined by U(x, t) = Ttu0(x) is the unique viscosity solution of the Cauchy

problem

{
ut +H(x, ux, t) = 0 in M × (0,+∞),
u|t=0 = u0 on M,

(1.2)

where u0 : M → R is a continuous function and Tt : C(M,R) → C(M,R), t ≥ 0 is the Lax-

Oleinik operator (see Section 2 for a definition) associated with the Lagrangian L (see [9] for

instance).

(H5) The Aubry set of L consists of one hyperbolic 1-periodic orbit.

For any given time-periodic Tonelli Lagrangian L satisfying (H5), we show that for each

u0 ∈ C(M,R), the unique viscosity solution U(x, t) of the Cauchy problem (1.2) converges

exponentially fast to a 1-periodic viscosity solution of (1.1) as t → +∞.

The main result of this paper is as follows.

Theorem 1.1 If a time-periodic Tonelli Lagrangian L : TM × R → R satisfies (H5), then

there exists ρ > 0 such that for each u0 ∈ C(M,R), there exists a constant K > 0 and a

1-periodic viscosity solution u of (1.1) such that

‖U(x, n+ τ)− u(x, 〈τ〉)‖∞ ≤ Ke−ρn, ∀n ∈ N, (1.3)

where τ ∈ [0, 1], 〈τ〉 = τ mod 1, and ‖ · ‖∞ denotes the supremum norm in the space C(M ×

[0, 1],R).

Remark 1.1 In fact, u(x, s) = inf
y∈M

(u0(y) + h0,s(y, x)) for all (x, s) ∈ M × S, where S is

the unit circle and h denotes the (extended) Peierls barrier (see Section 2 for a definition).

Remark 1.2 Inequality (1.3) implies that ‖U(x, t) − u(x, 〈t〉)‖0 ≤ K1e
−ρt, ∀t > 0, where

K1 > 0 is a constant and ‖ · ‖0 denotes the supremum norm in the space C(M,R).

Remark 1.3 The essence of Theorem 1.1 is that the Lax-Oleinik operators possess an

exponential convergence rate under the assumptions (H1)–(H5). See [8, 16–18] for various

results on the rate of convergence of the Lax-Oleinik operators for the autonomous case.

Remark 1.4 In [15], Sánchez-Morgado provides a similar result to Theorem 1.1 for M =

Tm, where Tm denotes the flat m-torus. Our method here is totally different from that used

in [15].

2 Preliminaries

The methods here are inspired from Mather-Mañé-Fathi theory (see [4–7, 10–14]) on Tonelli

Lagrangian systems. We introduce the notations used in the sequel and review some definitions

and results of Mather-Mañé-Fathi theory in this section.



Exponential Convergence to Time-Periodic Viscosity Solutions 71

We view S as a fundamental domain in R : I = [0, 1] with the two endpoints identified. The

unique coordinate s of a point in S will belong to I = [0, 1). The standard universal covering

projection π : R → S takes the form π(s̃) = 〈s̃〉, where 〈s̃〉 = s̃ mod 1 denotes the fractional

part of s̃ (s̃ = [s̃] + 〈s̃〉, where [s̃] is the greatest integer not greater than s̃). ‖ · ‖ denotes the

usual Euclidean norm.

The Euler-Lagrange equation generates a flow of diffeomorphisms φL
t : TM ×S → TM ×S,

t ∈ R, defined by

φL
t (x0, v0, t0) = (x(t+ t0), ẋ(t+ t0), 〈t+ t0〉),

where x : R → M is the maximal solution of the Euler-Lagrange equation with initial conditions

x(t0) = x0, ẋ(t0) = v0. The completeness and periodicity conditions grant that this correctly

defines a flow on TM × S.

Consider the action functional AL from the space of continuous and piecewise C1 curves

γ : [a, b] → M , defined by

AL(γ) =

∫ b

a

L(dγ(σ), σ)dσ,

where dγ : [a, b] → TM denotes the differential of γ.

Recall the definition of the Lax-Oleinik operators Tt associated with L. For each t ≥ 0 and

each u0 ∈ C(M,R), let

Ttu0(x) = inf
γ
{u0(γ(0)) + AL(γ)}

for all x ∈ M , where the infimum is taken among the continuous and piecewise C1 paths

γ : [0, t] → M with γ(t) = x. For each t ≥ 0, Tt is an operator from C(M,R) to itself.

As done by Mather in [14], it is convenient to introduce, for all t < t′ ∈ R and x, x′ ∈ M ,

the following quantity:

Ft,t′(x, x
′) = inf

γ
AL(γ),

where the infimum is taken over the continuous and piecewise C1 paths γ : [t, t′] → M such

that γ(t) = x and γ(t′) = x′. For all t < t′ ∈ R and all x, x′ ∈ M , there exists a continuous and

piecewise C1 path γ : [t, t′] → M with γ(t) = x and γ(t′) = x′ such that Ft,t′(x, x
′) = AL(γ)

(see [13, Tonelli’s Theorem]). Such a curve is called a Tonelli minimizer (for the fixed endpoint

problem). The function F : R × R ×M × M → R, (t, t′, x, x′) 7→ Ft,t′(x, x
′) is Lipschitz and

bounded on {t′ ≥ t+ 1} (see for example [2, Lemma 3.3]).

Following Mañé [12] and Mather [14], define the action potential and the extended Peierls

barrier as follows.

Action Potential. For each (s, s′) ∈ S× S, let

Φs,s′(x, x
′) = inf Ft,t′(x, x

′)

for all (x, x′) ∈ M ×M , where the infimum is taken on the set of (t, t′) ∈ R2 such that s = 〈t〉,

s′ = 〈t′〉 and t′ ≥ t+ 1.

Extended Peierls Barrier. For each (s, s′) ∈ S× S, let

hs,s′(x, x
′) = lim inf

t′−t→+∞
Ft,t′(x, x

′)
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for all (x, x′) ∈ M ×M , where the lim inf is restricted to the set of (t, t′) ∈ R
2 such that s = 〈t〉,

s′ = 〈t′〉. The function h : S× S×M ×M → R, (s, s′, x, x′) 7→ hs,s′(x, x
′) is Lipschitz (see [3,

Proposition 2] for details).

A continuous and piecewise C1 curve γ : R → M is called global semi-static if

AL(γ|[t,t′]) = Φ〈t〉,〈t′〉(γ(t), γ(t
′))

for all [t, t′] ⊂ R. An orbit (dγ(σ), 〈σ〉) is called global semi-static if γ is a global semi-static

curve. The Mañé set Ñ0 is the union in TM × S of the images of global semi-static orbits. A

continuous and piecewise C1 curve γ : R → M is called global static if

AL(γ|[t,t′]) = −Φ〈t′〉,〈t〉(γ(t
′), γ(t))

for all [t, t′] ⊂ R. An orbit (dγ(σ), 〈σ〉) is called global static if γ is a global static curve. The

Aubry set Ã0 is the union in TM × S of the images of global static orbits. For a time-periodic

Tonelli Lagrangian satisfying (H5), we have Ã0 = Ñ0.

A time-periodic Tonelli Lagrangian L is called regular, if the lim inf in the definition of the

functions hs,s′ is a limit for all s, s′, x, x′. According to [2, Lemma 5.4], a time-periodic Tonelli

Lagrangian L satisfying (H5) is regular. Thus, under the assumptions of Theorem 1.1, we have

lim
n→+∞

F0,n+τ (x, y) = h0,〈τ〉(x, y), ∀(τ, x, y) ∈ [0, 1]×M ×M.

Since the family of functions {F0,n+·(·, ·)}n is equi-Lipschitzian, we have

lim
n→+∞

F0,n+τ (x, y) = h0,〈τ〉(x, y) (2.1)

uniformly on (τ, x, y) ∈ [0, 1]×M ×M . Note that for each u0 ∈ C(M,R), each τ ∈ [0, 1], each

n ∈ N and each x ∈ M , we have

Tn+τu0(x) = inf
y∈M

(u0(y) + F0,n+τ (y, x)). (2.2)

From (2.1)–(2.2), it is easy to see that

lim
n→+∞

‖Tn+τu0(x) − inf
y∈M

(u0(y) + h0,〈τ〉(y, x))‖∞ = 0. (2.3)

In view of (2.3), the function u in Theorem 1.1 has the form

u(x, s) = inf
y∈M

(u0(y) + h0,s(y, x))

for all (x, s) ∈ M × S. Furthermore, from [17, Propositions 3.12–3.13], {u}u0∈C(M,R) is exactly

the set of 1-periodic viscosity solutions or backward weak KAM solutions of (1.1). Now we

recall the definition of the weak KAM solution of (1.1).

A backward weak KAM solution of the Hamilton-Jacobi equation (1.1) is a function w :

M × S → R such that w is dominated by L, i.e.,

w(x1, s1)− w(x2, s2) ≤ Φs2,s1(x2, x1), ∀(x1, s1), (x2, s2) ∈ M × S,

and for every (x, s) ∈ M × S, there exists a curve γ : (−∞, s̃] → M with γ(s̃) = x and 〈s̃〉 = s

such that

w(x, s) − w(γ(t), 〈t〉) = AL(γ[t,s̃]), ∀t ∈ (−∞, s̃].
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Similarly, we say that w : M×S → R is a forward weak KAM solution of (1.1) if w is dominated

by L, and for every (x, s) ∈ M × S, there exists a curve γ : [s̃,+∞) → M with γ(s̃) = x and

〈s̃〉 = s such that w(γ(t), 〈t〉) − w(x, s) = AL(γ[s̃,t]), ∀t ∈ [s̃,+∞).

We denote by S− (S+) the set of backward (forward) weak KAM solutions. Given (x0, s0) ∈

M × S, define w∗(x, s) := hs0,s(x0, x), w∗(x, s) := −hs,s0(x, x0) for (x, s) ∈ M × S. Then

w∗ ∈ S−, w∗ ∈ S+ (see [3, Lemma 9]).

Define the projected Aubry set A0 as

A0 := {(x, s) ∈ M × S | hs,s(x, x) = 0}.

Note that A0 = ΠÃ0, where Π : TM×S → M×S denotes the projection. Define an equivalence

relation on A0 by saying that (x1, s1) and (x2, s2) are equivalent if and only if

Φs1,s2(x1, x2) + Φs2,s1(x2, x1) = 0.

The equivalent classes of this relation are called static classes. Let A be the set of static

classes. For each static class Γ ∈ A, choose a point (x, 0) ∈ Γ and let A0 be the set of such

points. Under the assumptions of Theorem 1.1, A0 consists of only one point, denoted by

(p, 0) ∈ A0. Thus, for each backward weak KAM solution w of (1.1), we have

w(x, s) = min
(q,0)∈A0

(w(q, 0) + h0,s(q, x)) = w(p, 0) + h0,s(p, x) (2.4)

for all (x, s) ∈ M × S (see [3, Theorem 7]).

Proposition 2.1 Under the assumptions of Theorem 1.1, let V be a neighborhood of the

Aubry set Ã0 in TM ×S. Given 0 < a1 < a2 < 1, there exists T > 0 such that if n ≥ T , n ∈ N,

τ ∈ [0, 1], and γ : [0, n+ τ ] → M is a Tonelli minimizer for the fixed point problem, then

(dγ(σ), 〈σ〉)|[a1n,a2n] ⊂ V.

Proof Suppose by contradiction that there exist {ni}
+∞
i=1 ⊂ N with ni → +∞ as i → +∞,

{τni
}+∞
i=1 ⊂ [0, 1], a sequence {γni

}+∞
i=1 : [0, ni + τni

] → M of Tonelli minimizers, and {σni
}+∞
i=1

with a1ni ≤ σni
≤ a2ni such that

(dγni
(σni

), 〈σni
〉) /∈ V, i = 1, 2, · · · . (2.5)

For each i, we set xni
= γni

(ni + τni
), yni

= γni
(0). Passing as necessary to a subsequence,

we may suppose that xni
→ x0, yni

→ y0 and τni
→ τ0 as i → +∞, where x0, y0 ∈ M and

τ0 ∈ [0, 1].

Since

|F0,ni+τni
(yni

, xni
)− h0,〈τ0〉(y0, x0)| ≤ |F0,ni+τni

(yni
, xni

)− h0,〈τni
〉(yni

, xni
)|

+ |h0,〈τni
〉(yni

, xni
)− h0,〈τ0〉(yni

, xni
)|

+ |h0,〈τ0〉(yni
, xni

)− h0,〈τ0〉(y0, x0)|,

from (2.1) and the Lipschitz property of h, we have

lim
i→+∞

AL(γni
) = lim

i→+∞
F0,ni+τni

(yni
, xni

) = h0,〈τ0〉(y0, x0). (2.6)
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For each i, we set

(x̃ni
, ˙̃xni

, sni
) = (γni

(σni
), γ̇ni

(σni
), 〈σni

〉).

By (2.5), (x̃ni
, ˙̃xni

, sni
) /∈ V , ∀i. Since γni

are minimizing extremal curves, using the a pri-

ori compactness Lemma 3.4 in [17], we conclude that {(x̃ni
, ˙̃xni

, sni
)}+∞

i=1 are contained in a

compact subset of TM × S. So we may assume upon passing if necessary to a subsequence

that (x̃ni
, ˙̃xni

, sni
) → (x̃, ˙̃x, s) ∈ TM × S as i → +∞. Since (x̃ni

, ˙̃xni
, sni

) /∈ V , ∀i, one has

(x̃, ˙̃x, s) /∈ Ã0.

Let (dγ(σ), 〈σ〉) = φL
σ−s(x̃,

˙̃x, s), σ ∈ R. We assert that the orbit (dγ(σ), 〈σ〉) is global semi-

static, i.e., γ is a global semi-static curve. If this assertion is true, then (x̃, ˙̃x, s) ∈ Ñ0 = Ã0,

which is impossible since (x̃, ˙̃x, s) /∈ Ã0. This contradiction proves the proposition.

Based on the above arguments, it is sufficient to show that γ is a global semi-static curve.

We prove it by contradiction. Otherwise, there would be j1, j2 ∈ N such that

AL(γ|[s−j1,s+j2]) > Φs,s(γ(s− j1), γ(s+ j2)).

It implies that there exist j′1, j
′
2 ∈ N with s − j′1 + 1 ≤ s + j′2 and a minimizing curve γ̃ :

[s − j′1, s + j′2] → M satisfying γ̃(s − j′1) = γ(s − j1) and γ̃(s + j′2) = γ(s + j2) such that

AL(γ|[s−j1,s+j2]) > AL(γ̃|[s−j′
1
,s+j′

2
]). Thus, there exists δ > 0 such that

AL(γ̃|[s−j′
1
,s+j′

2
]) ≤ AL(γ|[s−j1,s+j2])− δ. (2.7)

Since (x̃ni
, ˙̃xni

, sni
) → (x̃, ˙̃x, s) ∈ TM×S as i → +∞, for every ε > 0, by the differentiability

of the solutions of the Euler-Lagrange equation with respect to initial values, we have

d((dγ(σ), 〈σ〉), (dγni
(σ + σni

− s), 〈σ + σni
− s〉)) < ε (2.8)

for all σ ∈ [s− j1, s+ j2] and i large enough. Using the periodicity of L, we have

AL(γni
|[σni

−j1,σni
+j2]) =

∫ s+j2

s−j1

L(dγni
(σ + σni

− s), 〈σ + σni
− s〉)dσ, (2.9)

In view of (2.8)–(2.9), we have

|AL(γni
|[σni

−j1,σni
+j2])−AL(γ|[s−j1,s+j2])| ≤ Cε (2.10)

for some constant C > 0 independent of ε and sufficiently large i. Since εmay be taken arbitrary

small, from (2.7) and (2.10) we obtain

AL(γni
|[σni

−j1,σni
+j2]) ≥ AL(γ|[s−j1,s+j2])− Cε

≥ AL(γ̃|[s−j′
1
,s+j′

2
]) +

3δ

4
, (2.11)

provided that i is large enough.

We set

x = γ̃(s− j′1) = γ(s− j1) and x = γ̃(s+ j′2) = γ(s+ j2).

For i large enough, consider the following curves on M . Let α1
i : [0, σni

− j1] → M with

α1
i (0) = yni

, α1
i (σni

− j1) = x and α2
i : [σni

− j1+ j′1 + j′2, τni
+ni− j1− j2+ j′1+ j′2] → M with
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α2
i (σni

− j1 + j′1 + j′2) = x and α2
i (τni

+ni − j1 − j2 + j′1 + j′2) = xni
be Tonelli minimizers. Set

γ̃ni
(σ) =





α1
i (σ), σ ∈ [0, σni

− j1],

γ̃(σ − σni
+ j1 + s− j′1), σ ∈ [σni

− j1, σni
− j1 + j′1 + j′2],

α2
i (σ), σ ∈ [σni

− j1 + j′1 + j′2, τni
+ ni − j1 − j2 + j′1 + j′2].

It is clear that γ̃ni
: [0, τni

+ni− j1− j2 + j′1+ j′2] → M is a continuous and piecewise C1 curve

connecting yni
and xni

.

We set xni
= γni

(σni
− j1) and xni

= γni
(σni

+ j2). For i large enough, compare AL(γ̃ni
)

with AL(γni
) as follows. In view of (2.8), we have

|AL(γ̃ni
|[0,σni

−j1])−AL(γni
|[0,σni

−j1])|

= |F0,σni
−j1(yni

, x)− F0,σni
−j1(yni

, xni
)|

≤ DLipε, (2.12)

where DLip > 0 is a Lipschitz constant of Ft,t′ which is independent of t, t′ with t+ 1 ≤ t′ (see

[2, Lemma 3.3]).

Note that

AL(γ̃ni
|[σni

−j1,σni
−j1+j′

1
+j′

2
])−AL(γni

|[σni
−j1,σni

+j2])

=

∫ s+j′
2

s−j′
1

L(dγ̃(σ), σ + sni
− s)dσ −AL(γni

|[σni
−j1,σni

+j2]).

Since sni
→ s as i → +∞,

∣∣∣AL(γ̃|[s−j′
1
,s+j′

2
])−

∫ s+j′
2

s−j′
1

L(dγ̃(σ), σ + sni
− s)dσ

∣∣∣ ≤ δ

4

for i large enough. Hence,

AL(γ̃ni
|[σni

−j1,σni
−j1+j′

1
+j′

2
])−AL(γni

|[σni
−j1,σni

+j2]) ≤ −
δ

2
. (2.13)

From the Lipschitz property of Ft,t′ and (2.8), we find

|AL(γ̃ni
|[σni

−j1+j′
1
+j′

2
,τni

+ni−j1−j2+j′
1
+j′

2
])−AL(γni

|[σni
+j2,τni

+ni])|

= |Fσni
−j1+j′

1
+j′

2
,τni

+ni−j1−j2+j′
1
+j′

2
(x, xni

)− Fσni
+j2,τni

+ni
(xni

, xni
)|

≤ DLipε. (2.14)

Since ε may be taken arbitrary small, from (2.12)–(2.14), we have

AL(γ̃ni
) ≤ AL(γni

)−
δ

4
(2.15)

for i large enough.

Since

|F0,τni
+ni−j1−j2+j′

1
+j′

2
(yni

, xni
)− h0,〈τ0〉(y0, x0)|

≤ |F0,τni
+ni−j1−j2+j′

1
+j′

2
(yni

, xni
)− h0,〈τni

〉(yni
, xni

)|+ |h0,〈τni
〉(yni

, xni
)− h0,〈τ0〉(yni

, xni
)|

+ |h0,〈τ0〉(yni
, xni

)− h0,〈τ0〉(y0, x0)|,
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from (2.1) and the Lipschitz property of h, we have

lim
i→+∞

F0,τni
+ni−j1−j2+j′

1
+j′

2
(yni

, xni
) = h0,〈τ0〉(y0, x0). (2.16)

Combining (2.6) and (2.15)–(2.16), we have

h0,〈τ0〉(y0, x0)−
δ

4
= lim

i→+∞
AL(γni

)−
δ

4

≥ lim inf
i→+∞

AL(γ̃ni
)

≥ lim
i→+∞

F0,τni
+ni−j1−j2+j′

1
+j′

2
(yni

, xni
)

= h0,〈τ0〉(y0, x0),

a contradiction. This contradiction shows that γ is global semi-static, which completes the

proof of the proposition.

3 Proof of the Main Result

Let (p, vp, 0) be the unique point in Ã0 with Π(p, vp, 0) = (p, 0) ∈ A0, where Π : TM×S1 →

M ×S denotes the projection. By (H5) the Aubry set Ã0 consists of one hyperbolic 1-periodic

orbit, denoted by Γ : φL
σ (p, vp, 0) = (dγp(σ), 〈σ〉), σ ∈ R.

Proof of Theorem 1.1 Our purpose is to show that there exists ρ > 0 such that for each

u0 ∈ C(M,R), there exists K > 0 such that the following two inequalities hold:

u(x, 〈τ〉) − Tn+τu0(x) ≤ Ke−ρn, ∀n ∈ N, ∀(x, τ) ∈ M × [0, 1]; (I1)

Tn+τu0(x)− u(x, 〈τ〉) ≤ Ke−ρn, ∀n ∈ N, ∀(x, τ) ∈ M × [0, 1]. (I2)

Step 1 We first prove inequality (I1). For any given y ∈ M , h0,·(y, ·) is a backward weak

KAM solution of (1.1). In view of (2.4), we have

h0,〈τ〉(y, x) = h0,0(y, p) + h0,〈τ〉(p, x) (3.1)

for all (x, τ) ∈ M × [0, 1]. Given u0 ∈ C(M,R) and (x, τ) ∈ M × [0, 1], it is easy to see that for

each n ∈ N, there exists a minimizing extremal curve γn : [0, τ+n] → M such that γn(τ+n) = x

and

Tn+τu0(x) = u0(γn(0)) +AL(γn). (3.2)

In view of (3.1), we have

u(x, 〈τ〉) = inf
y∈M

(u0(y) + h0,〈τ〉(y, x))

= inf
y∈M

(u0(y) + h0,0(y, p) + h0,〈τ〉(p, x)).

Thus, we have

u(x, 〈τ〉) ≤ u0(γn(0)) + h0,0(γn(0), p) + h0,〈τ〉(p, x)

≤ u0(γn(0)) + F0,n1
(γn(0), γn(σ)) + h0,0(γn(σ), p)

+ h0,0(p, γn(σ)) + F0,n2+τ (γn(σ), x) (3.3)
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for all σ ∈ [0, τ +n] and all n1, n2 ∈ N. For n ∈ N large enough, let jn =
[
2n
3

]
−
[
n
3

]
−1. Taking

n1 =
[
jn
2

]
+
[
n
3

]
+ 1, σ = n1 and n2 = n− n1, by (3.3), we obtain

u(x, 〈τ〉) ≤ u0(γn(0)) +AL(γn) + 2CLipd
(
γn

([jn
2

]
+
[n
3

]
+ 1

)
, p
)
, (3.4)

where CLip > 0 is a Lipschitz constant of h. From (3.2) and (3.4), we have

u(x, 〈τ〉) − Tn+τu0(x) ≤ 2CLipd
(
γn

([ jn
2

]
+
[n
3

]
+ 1

)
, p
)
. (3.5)

We now estimate the term in the right-hand side of (3.5). Consider the Poincaré map for

the time-periodic Lagrangian system L,

ϕ1,0 : TM → TM, (x0, v0) 7→ ϕ1,0(x0, v0),

where ϕt,0(x0, v0) = (x(t), ẋ(t)) and x(t) denotes the solution to the Euler-Lagrange equation

with initial conditions x(0) = x0, ẋ(0) = v0. Obviously, φL
t (x0, v0, 0) = (ϕt,0(x0, v0), 〈t〉). It is

easy to see that (p, vp) is a hyperbolic fixed point of ϕ1,0. According to the Hartman-Grobman

theorem, the Poincaré map ϕ1,0 is locally conjugate to its linear part at the hyperbolic fixed

point (p, vp). More precisely, there exist a neighborhood V (p, vp) of (p, vp) in TM as well as a

neighborhood U(0) of 0 in T(p,vp)(TM) and a homeomorphism f : V (p, vp) → U(0), such that

Dϕ1,0(p, vp) ◦ f = f ◦ ϕ1,0. (3.6)

Furthermore, there exists 0 < α < 1 such that f and f−1 are α-Hölder continuous (see [1]).

Denote for brevity P = (p, vp). As the problem here is a local one, we can, using a local chart,

suppose that ϕ1,0 is a map from R2m to itself with P as a hyperbolic fixed point.

Let B(P ) be a sufficiently small neighborhood of P in R2m such that B(P ) ⊂ V (P ) =

V (p, vp). We choose a tubular neighborhood WΓ of Γ such that for each (q, v, 〈σ〉) ∈ Γ,

d((q, v, 〈σ〉), ∂WΓ) = κ, where ∂WΓ denotes the boundary of WΓ and κ is a positive constant

small enough such that for each (q, v, 0) ∈ WΓ, (q, v) ∈ B(P ). For the tubular neighborhood

WΓ, applying Proposition 2.1, there exists T > 0 such that for n ∈ N with n ≥ T , we have

(dγn(σ), 〈σ〉)|[ n
3
, 2n

3
] ⊂ WΓ.

It follows that (
dγn

([n
3

]
+ 1

)
, 0
)
, · · · ,

(
dγn

([2n
3

])
, 0
)
∈ WΓ.

Thus, we have (
dγn

([n
3

]
+ 1

)
, · · · , dγn

([2n
3

]))
∈ B(P ),

i.e.,

ϕ
[n
3
]+1

1,0 (Pn
0 ), · · · , ϕ

[ 2n
3
]

1,0 (Pn
0 ) ∈ B(P ), (3.7)

where Pn
0 = (γn(0), γ̇n(0)). Set A = Dϕ1,0(P ) and Pn

1 = ϕ
[n
3
]+1

1,0 (Pn
0 ). By (3.6)–(3.7), we have

Af(Pn
1 ) = f ◦ ϕ

[n
3
]+2

1,0 (Pn
0 ), · · · , Ajnf(Pn

1 ) = f ◦ ϕ
[ 2n

3
]

1,0 (Pn
0 ).
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Thus Aif(Pn
1 ) ∈ U(0), i = 0, 1, · · · , jn. Hence, there exists ∆ > 0 such that

‖Aif(Pn
1 )‖ ≤ ∆, i = 0, 1, · · · , jn. (3.8)

As A : R2m → R2m is hyperbolic, there exists an invariant splitting R2m = Es ⊕ Eu. For

each z ∈ R
2m, we have z = zs + zu, zs ∈ Es, zu ∈ Eu and Az = Aszs +Auzu, where As = A|Es

and Au = A|Eu . Let f(Pn
1 ) = yns + ynu , y

n
s ∈ Es, ynu ∈ Eu and Ajnf(Pn

1 ) = zns + znu , z
n
s ∈ Es,

znu ∈ Eu. Let λ1, · · · , λm be the eigenvalues of As. Then |λi| < 1 for i = 1, · · · ,m. Since A is

similar to a symplectic matrix, 1
λ1

, · · · , 1
λm

are the eigenvalues of Au. Set λmax = max
1≤i≤m

|λi|. It

is a standard result that for arbitrary ε > 0, we have

‖Ai
szs‖ ≤ (λmax + ε)i‖zs‖, ∀zs ∈ Es (3.9)

for i ∈ N large enough. We choose ε0 > 0 small enough such that λmax + ε0 < 1. Then from

(3.9) we have ‖A
[ jn

2
]

s yns ‖ ≤ (λmax+ε0)
[ jn

2
]‖yns ‖ ≤ (λmax+ε0)

[ jn
2
]∆ for n large enough. Similarly,

we have ‖A
[ jn

2
]

u ynu‖ = ‖A
−(jn−[ jn

2
])

u znu‖ ≤ (λmax + ε0)
jn−[ jn

2
]‖znu‖ ≤ (λmax + ε0)

[ jn
2
]∆ for n large

enough. Thus, we have

‖A[ jn
2
]f(Pn

1 )‖ ≤ ‖A
[ jn

2
]

s yns ‖+ ‖A
[ jn

2
]

u ynu‖ ≤ 2∆(λmax + ε0)
[ jn

2
] (3.10)

for n large enough. Since jn =
[
2n
3

]
−
[
n
3

]
− 1, from (3.10) we have

‖A[ jn
2
]f(Pn

1 )‖ ≤ 2∆(λmax + ε0)
n
12 (3.11)

for n large enough. Note that A[ jn
2
]f(Pn

1 ) = f ◦ ϕ
[ jn

2
]+[n

3
]+1

1,0 (Pn
0 ) and f(P ) = 0. Since f−1 is

α-Hölder continuous, from (3.11) we have

‖ϕ
[ jn

2
]+[n

3
]+1

1,0 (Pn
0 )− P‖ = ‖f−1 ◦A[ jn

2
]f(Pn

1 )− f−1(0)‖

≤ C1‖A
[ jn

2
]f(Pn

1 )− 0‖α

≤ C12
α∆α(λmax + ε0)

αn
12 (3.12)

for n large enough, where C1 > 0 is a constant. Therefore, there exists a constant C2 > 0

independent of u0 ∈ C(M,R) and (x, τ) ∈ M × [0, 1] such that

d
(
γn

([jn
2

]
+
[n
3

]
+ 1

)
, p
)
≤ C2(λmax + ε0)

αn
12 (3.13)

for n large enough. Note that the above estimate is independent of (x, τ). By (3.5) and (3.13),

for sufficiently large n, we have

u(x, 〈τ〉) − Tn+τu0(x) ≤ 2CLipC2(λmax + ε0)
αn
12 , ∀(x, τ) ∈ M × [0, 1].

Hence, there exists a constant C3 > 0 such that

u(x, 〈τ〉) − Tn+τu0(x) ≤ C3(λmax + ε0)
αn
12 , ∀n ∈ N, ∀(x, τ) ∈ M × [0, 1],

where the constant C3 depends on u0. Since 0 < λmax + ε0 < 1, there exists ρ1 > 0 such that

(λmax + ε0)
α
12 = e−ρ1 . Thus, we have

u(x, 〈τ〉) − Tn+τu0(x) ≤ C3e
−ρ1n, ∀n ∈ N, ∀(x, τ) ∈ M × [0, 1]. (3.14)



Exponential Convergence to Time-Periodic Viscosity Solutions 79

Step 2 We now prove inequality (I2). Given u0 ∈ C(M,R) and (x, τ) ∈ M × [0, 1], there

exists y ∈ M such that

u(x, 〈τ〉) = u0(y) + h0,0(y, p) + h0,〈τ〉(p, x). (3.15)

To prove (I2), it suffices to show that for n ∈ N large enough, we can find a curve η :

[0, τ + n] → M with η(0) = y and η(τ + n) = x, such that

u0(η(0)) +AL(η)− u(x, 〈τ〉) ≤ Ce−θn (3.16)

for some constants C, θ > 0 independent of u0 ∈ C(M,R), (x, τ) ∈ M × [0, 1] and n ∈ N. In

fact, for n ∈ N large enough, if such a curve exists, then we have

Tn+τu0(x)− u(x, 〈τ〉) ≤ u0(η(0)) +AL(η)− u(x, 〈τ〉) ≤ Ce−θn,

which immediately implies the desired inequality (I2).

Our task now is to construct the curve mentioned above. Since h0,·(p, ·) is a backward weak

KAM solution of (1.1), there is a curve βx,〈τ〉 : (−∞, τ̃ ] → M with βx,〈τ〉(τ̃ ) = x and 〈τ̃ 〉 = 〈τ〉

such that

h0,〈τ〉(p, x)− h0,〈t〉(p, βx,〈τ〉(t)) = AL(βx,〈τ〉|[t,τ̃ ]), ∀t ∈ (−∞, τ̃ ]. (3.17)

It is clear that βx,〈τ〉 is a minimizing curve. From [2, Lemma 3.9], the α-limit set for any

minimizing orbit is contained in the Aubry set Ã0. Since Ã0 consists of one hyperbolic 1-

periodic orbit Γ, the α-limit set for (dβx,〈τ〉(σ), 〈σ〉) is exactly Γ. Similarly, since −h·,0(·, p) is a

forward weak KAM solution of (1.1), there exists a curve ωy,0 : [õ,+∞) → M with ωy,0(õ) = y

and 〈õ〉 = 0 such that

h0,0(y, p)− h〈t〉,0(ωy,0(t), p) = AL(ωy,0|[õ,t]), ∀t ∈ [õ,+∞). (3.18)

Moreover, ωy,0 is a minimizing curve and the ω-limit set for (dωy,0(σ), 〈σ〉) is also the hyperbolic

1-periodic orbit Γ (see [2, Lemma 3.9]).

Since Γ is a hyperbolic 1-periodic orbit, for the tubular neighborhood WΓ there exist con-

stants T1 > 0 and C4 > 0, such that

d((dωy,0(σ + õ), 〈σ + õ〉), (dγp(σ), 〈σ〉)) ≤ C4e
−µσ (3.19)

for all σ > T1, and

d((dβx,〈τ〉(σ + τ̃ ), 〈σ + τ̃ 〉),
(
dγp(σ + 〈τ〉), 〈σ + 〈τ〉〉)) ≤ C4e

µσ (3.20)

for all σ < −T1, where T1 and C4 depend only on WΓ, and µ denotes the smallest positive

Lyapunov exponent of Γ.

We are now in a position to construct the curve η. For n ∈ N large enough such that
n
3 > max{T1, 2}, choose 0 ≤ d1 < 1 so that

(
dγp

(
n
3 + d1

)
,
〈
n
3 + d1

〉)
= (p, vp, 0). Then from

(3.19) we obtain

d
((

dωy,0

(n
3
+ õ+ d1

)
,
〈n
3
+ õ+ d1

〉)
, (p, vp, 0)

)
≤ C4e

−µn
3 . (3.21)



80 K. Z. Wang

From 〈õ〉 = 0 and the property of Ft,t′ , we have

F0,n
3
+d1

(
y, ωy,0

(n
3
+ õ+ d1

))
= Fõ,n

3
+õ+d1

(
y, ωy,0

(n
3
+ õ+ d1

))

= AL(ωy,0|[õ,n
3
+õ+d1]), (3.22)

where the last equality holds since ωy,0 is a minimizing curve. Let η1 : [0, n3 + d1] → M with

η1(0) = y and η1(
n
3 + d1) = p be a Tonelli minimizer. Then, in view of (3.21)–(3.22), we have

|AL(η1)−AL(ωy,0|[õ,n
3
+õ+d1])|

=
∣∣∣F0,n

3
+d1

(y, p)− F0, n
3
+d1

(
y, ωy,0

(n
3
+ õ+ d1

))∣∣∣

≤ DLipC4e
−µn

3 , (3.23)

where DLip > 0 is a Lipschitz constant of Ft,t′ which is independent of t, t′ with t+ 1 ≤ t′.

For the above sufficiently large n ∈ N with n
3 > max{T1, 2}, let a(n) = 2n

3 − d1 + τ . It is

clear that a(n) ≥ n
3 and (dγp(−a(n) + 〈τ〉), 〈−a(n) + 〈τ〉〉) = (p, vp, 0). From (3.20) we have

d((dβx,〈τ〉(−a(n) + τ̃), 〈−a(n) + τ̃ 〉), (p, vp, 0)) ≤ C4e
−µn

3 . (3.24)

Since βx,〈τ〉 is a minimizing curve,

F−a(n)+τ̃ ,τ̃

(
βx,〈τ〉

(
− a(n) + τ̃

)
, x

)
= AL(βx,〈τ〉|[−a(n)+τ̃ ,τ̃ ]). (3.25)

Let η̃2 : [−a(n) + τ̃ , τ̃ ] → M with η̃2(−a(n) + τ̃ ) = p and η̃2(τ̃ ) = x be a Tonelli minimizer.

Then, by (3.24)–(3.25), we obtain

|AL(η̃2)−AL(βx,〈τ〉|[−a(n)+τ̃ ,τ̃ ])|

= |F−a(n)+τ̃ ,τ̃ (p, x)− F−a(n)+τ̃ ,τ̃ (βx,〈τ〉(−a(n) + τ̃ ), x)|

≤ DLipC4e
−µn

3 . (3.26)

Define a curve η2 : [n3 + d1,
n
3 + d1 + a(n)] → M by η2(ς) = η̃2(ς −

n
3 − a(n) − d1 + τ̃ ). Then

AL(η2) = AL(η̃2).

Consider the curve η : [0, τ + n] → M connecting y and x defined by

η(σ) =





η1(σ), σ ∈
[
0,

n

3
+ d1

]
,

η2(σ), σ ∈
[n
3
+ d1, τ + n

]
.

(3.27)

Now it remains to show that the curve defined by (3.27) is just the one we need. For n ∈ N

large enough, from (3.15) we get

u0(η(0)) +AL(η)− u(x, 〈τ〉) = u0(η(0)) +AL(η) − u0(y)− h0,0(y, p)− h0,〈τ〉(p, x)

= AL(η1) +AL(η2)− h0,0(y, p)− h0,〈τ〉(p, x). (3.28)

In view of (3.28), (3.23) and (3.26), we have

u0(η(0)) +AL(η)− u(x, 〈τ〉) ≤ AL(ωy,0|[õ,n
3
+õ+d1]) +AL(βx,〈τ〉|[−a(n)+τ̃ ,τ̃ ])

+ 2DLipC4e
−µn

3 − h0,0(y, p)− h0,〈τ〉(p, x). (3.29)
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From (3.29) and (3.17)–(3.18), we have

u0(η(0)) +AL(η)− u(x, 〈τ〉)

≤ −h0,0

(
ωy,0

(n
3
+ õ+ d1

)
, p
)
− h0,0(p, βx,〈τ〉(−a(n) + τ̃ )) + 2DLipC4e

−µn
3

≤ 2(CLip +DLip)C4e
−µn

3 ,

where the last inequality follows from h0,0(p, p) = 0, (3.21) and (3.24). Let

C5 = 2(CLip +DLip)C4.

Note that C5 and µ are independent of (x, τ) ∈ M × [0, 1], u0 ∈ C(M,R) and n ∈ N, which

means that (3.16) holds.

Thus, for n ∈ N large enough, we have

Tn+τu0(x)− u(x, 〈τ〉) ≤ C5e
−µn

3 , ∀(x, τ) ∈ M × [0, 1].

Hence, there exists a constant C6 > 0 such that

Tn+τu0(x)− u(x, 〈τ〉) ≤ C6e
−µn

3 , ∀n ∈ N, ∀(x, τ) ∈ M × [0, 1], (3.30)

where the constant C6 depends on u0.

Let ρ2 = 1
3µ, K = max{C3, C6} and ρ = min{ρ1, ρ2}. Then from (3.14) and (3.30), we have

‖Tn+τu0(x) − u(x, 〈τ〉)‖∞ ≤ Ke−ρn, ∀n ∈ N.

The proof is now complete.
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[11] Mañé, R., Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity,
9, 1996, 273–310.

[12] Mañé, R., Lagrangian flows: The dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat., 28, 1997,
141–153.

[13] Mather, J., Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207,
1991, 169–207.

[14] Mather, J., Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43, 1993, 1349–
1386.

[15] Sánchez-Morgado, H., Hyperbolicity and exponential long-time convergence for space-time periodic
Hamilton-Jacobi equations, Proc. Amer. Math. Soc., 143, 2015, 731–740.

[16] Wang, K. and Yan, J., The rate of convergence of the Lax-Oleinik semigroup-degenerate fixed point case,
Sci. China Math., 54, 2011, 545–554.

[17] Wang, K. and Yan, J., A new kind of Lax-Oleinik type operator with parameters for time-periodic positive
definite Lagrangian systems, Commun. Math. Phys., 309, 2012, 663–691.

[18] Wang, K. and Yan, J., The rate of convergence of the new Lax-Oleinik type operator for time-periodic
positive definite Lagrangian systems, Nonlinearity, 25, 2012, 2039–2057.


