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Abstract In this paper, the complete convergence and the complete moment convergence
for extended negatively dependent (END, in short) random variables without identical dis-
tribution are investigated. Under some suitable conditions, the equivalence between the
moment of random variables and the complete convergence is established. In addition,
the equivalence between the moment of random variables and the complete moment con-
vergence is also proved. As applications, the Marcinkiewicz-Zygmund-type strong law of
large numbers and the Baum-Katz-type result for END random variables are established.
The results obtained in this paper extend the corresponding ones for independent random
variables and some dependent random variables.

Keywords Extended negatively dependent random variables, Complete convergence,
Complete moment convergence

2000 MR Subject Classification 60F15

1 Introduction

It is well known that complete convergence plays a very important role in the probability

limit theory and mathematical statistics, especially in establishing the strong convergence rate

for partial sums of random variables. The concept of complete convergence was introduced by

Hsu and Robbins [1] as follows.

Definition 1.1 A sequence {Un, n ≥ 1} of random variables is said to converge completely

to a constant a if for any ε > 0,
∞∑

n=1
P (|Un − a| > ε) < ∞.

In this case, we write Un → a completely. In view of the Borel-Cantelli lemma, this implies

that Un → a almost surely (a.s., in short). The converse is true if random variables {Un, n ≥ 1}
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are independent. Hsu and Robbins [1] proved that the arithmetic means of independent and

identically distributed (i.i.d., in short) random variables converges completely to the expected

value if the variance of the summands is finite. Erdös [2] proved the converse. The result of

Hsu-Robbins-Erdös is a fundamental theorem in probability theory and has been extended in

several directions by many authors. One of the most important generalizations was provided

by Baum and Katz [3] for the strong law of large numbers as follows.

Theorem 1.1 Let 1
2 < α ≤ 1 and αp > 1. Let {Xn, n ≥ 1} be independent and identically

distributed random variables with zero means. Then the following statements are equivalent:

(i) E|X1|
p < ∞;

(ii) for all ε > 0,

∞∑

n=1

nαp−2P
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > εnα
)
< ∞. (1.1)

Up to now, there have been many versions of the Baum-Katz-type results for independent

and dependent random variables, such as Gut [4], Peligrad and Gut [5], Wang et al. [6], Shen

and Wu [7], and so on.

Chow [8] generalized the concept of complete convergence and introduced the concept of

complete moment convergence, which is more general than complete convergence. Let {Zn, n ≥

1} be a sequence of random variables, and an > 0, bn > 0, q > 0. If
∞∑

n=1
anE{b−1

n |Zn| − ε}q+ <

∞ for all ε > 0, then the above result is called the complete moment convergence.

Chow [8] obtained the following result on the complete moment convergence for i.i.d. random

variables.

Theorem 1.2 Suppose that {Xn, n ≥ 1} is a sequence of i.i.d. random variables with

EX1 = 0, α > 1
2 , p ≥ 1 and αp > 1. If E[|X1|

p + |X1| log(1 + |X1|)] < ∞, then for all ε > 0,

∞∑

n=1

nαp−2−αE
{

max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣− εnα
}

+
< ∞. (1.2)

Since Chow [8] established the result of Theorem 1.2 for i.i.d. random variables, many

authors have studied this type of complete moment convergence for dependent random variables.

See, for example, Chen and Wang [9] for the ϕ-mixing sequence, Wu et al. [10] and Wang et

al. [11] for ρ̃-mixing sequence and the martingale difference sequence, respectively, and so on.

We should point out that the key techniques used in the proofs of Theorems 1.1–1.2 are

the Rosenthal-type maximal moment inequality and the truncation methods. All the litera-

tures above adopted these approaches or added extra conditions. There are many sequences

of random variables satisfying the Rosenthal-type maximal moment inequality, such as inde-

pendent random variables, negatively associated random variables, negatively supperadditive

dependent random variables, ϕ-mixing random variables, ρ̃-mixing random variables, asymp-

totically almost negatively associated random variables, and so on. But negatively orthant

dependent random variables and extended negatively dependent random variables do not sat-

isfy the Rosenthal-type maximal moment inequality. If we want to generalize the results of

Theorems 1.1–1.2 for i.i.d. random variables to the case of the extended negatively dependent

setting, we should use different methods. The main purpose of this paper is to generalize the

results of Theorems 1.1–1.2 for i.i.d. random variables to the case of the extended negatively

dependent setting without identical distribution. In addition, we will present the sufficient
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and necessary conditions of complete moment convergence for extended negatively dependent

random variables.

Now, let us recall the definition of extended negatively dependent random variables.

Definition 1.2 A finite collection of random variables X1, X2, · · · , Xn is said to be ex-

tended negatively dependent (END, in short), if there exists a constant M > 0 such that both

P (X1 > x1, X2 > x2, · · · , Xn > xn) ≤ M

n∏

i=1

P (Xi > xi)

and

P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) ≤ M

n∏

i=1

P (Xi ≤ xi)

hold for all real numbers x1, x2, · · · , xn. An infinite sequence {Xn, n ≥ 1} is said to be END if

every finite subcollection is END.

An array of random variables {Xni, 1 ≤ i ≤ n, n ≥ 1} is called rowwise END random

variables if for every n ≥ 1, {Xni, 1 ≤ i ≤ n} are END random variables.

The concept of the END sequence was introduced by Liu [12]. In the case M = 1, the

notion of END random variables reduces to the well-known notion of the so-called negatively

orthant dependent (NOD, in short) random variables, which was introduced by Joag-Dev and

Proschan [13]. They also pointed out that the negatively associated (NA, in short) random

variables are NOD and thus NA random variables are END. Hence, the class of END includes

the independent sequence, the NA sequence and the NOD sequence as special cases. Studying

the limiting behavior of END random variables is of great interest.

Some applications for the END sequence have been found. See, for example, Chen et

al. [14] established the strong law of large numbers for extend negatively dependent random

variables and showed its applications to risk theory and renewal theory; Shen [15] presented

some probability inequalities for END sequences and gave some applications; Wu and Guan [16]

presented some convergence properties for the partial sums of END random variables; Wang and

Wang [17] investigated a more general precise large deviation result for random sums of END

real-valued random variables in the presence of consistent variation; Qiu et al. [18] and Wang

et al. [19–21] provided some results on complete convergence for sequences of END random

variables or arrays of rowwise END random variables; Wang et al. [22] studied the complete

consistency for the estimator of nonparametric regression models based on END errors, and

so on forth. The main purpose of the paper is to generalize the results of Theorems 1.1–1.2

for i.i.d. random variables to the case of the END setting, and the sufficient and necessary

conditions of complete moment convergence for END random variables will also be established.

This work is organized as follows: Some important lemmas are provided in Section 2. The

main results and their proofs are presented in Section 3.

Throughout this paper, the symbol C denotes a positive constant which is not necessarily

the same in each appearance, and an = O(bn) stands for an = C(bn). I(A) is the indicator

function of an event A. Denote log x = lnmax(x, e).

2 Preliminaries

In this section, we will provide some important lemmas, which will be applied to prove the

main results of this paper. The first one is a basic property for END random variables, which

was given by Liu [23].
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Lemma 2.1 Let random variables X1, X2, · · · , Xn be END. If f1, f2, · · · , fn are all non-

decreasing (or nonincreasing) functions, then random variables f1(X1), f2(X2), · · · , fn(Xn) are

END.

The next one is the Marcinkiewicz-Zygmund-type inequality and the Rosenthal-type in-

equality for partial sums and maximum partial sums of END random variables.

Lemma 2.2 Let p ≥ 1 and {Xn, n ≥ 1} be a sequence of END random variables with

EXi = 0 and E|Xi|
p < ∞ for each i ≥ 1. Then there exists a positive constant Cp depending

only on p such that

E
∣∣∣

n∑

i=1

Xi

∣∣∣
p

≤ Cp

n∑

i=1

E|Xi|
p, 1 ≤ p ≤ 2, (2.1)

E
(

max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣
p)

≤ Cp log
p n

n∑

i=1

E|Xi|
p, 1 ≤ p ≤ 2, (2.2)

E
∣∣∣

n∑

i=1

Xi

∣∣∣
p

≤ Cp

[ n∑

i=1

E|Xi|
p +

( n∑

i=1

E|Xi|
2
) p

2
]
, p ≥ 2 (2.3)

and

E
(

max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣
p)

≤ Cp log
p n

[ n∑

i=1

E|Xi|
p +

( n∑

i=1

E|Xi|
2
) p

2
]
. (2.4)

Proof The inequality (2.3) has been established by Shen [15]. The inequality (2.1) can

be obtained in a similar way as that of Corollary 2.2 in Asadian et al. [24]. The inequalities

(2.2) and (2.4) can be proved by using the inequalities (2.1), (2.3) in a similar way as that of

Theorem 2.3.1 in Stout [25], respectively. The details of the proof are omitted.

With Lemma 2.2 accounted for, we can get the following important property for END

random variables, which will play an important role in proving the main results of this paper.

The proof is similar to that of Lemma A6 in Zhang and Wen [26], so the details are omitted.

Lemma 2.3 Let {Xn, n ≥ 1} be a sequence of END random variables. Then there exists

a positive constant C such that for any x ≥ 0 and all n ≥ 1,

[
1− P

(
max

1≤k≤n
|Xk| > x

)]2 n∑

k=1

P (|Xk| > x) ≤ CP
(

max
1≤k≤n

|Xk| > x
)
. (2.5)

The following is a basic property for stochastic domination. For the proof, one can refer to

Wu [27], or Wang et al. [6].

Lemma 2.4 Let {Xn, n ≥ 1} be a sequence of random variables, which is stochastically

dominated by a random variable X, i.e., there exists a positive constant C such that

P (|Xn| > x) ≤ CP (|X | > x)

for all x ≥ 0 and n ≥ 1. Then for any α > 0 and b > 0, the following two statements hold:

(i) E|Xn|
αI(|Xn| ≤ b) ≤ C1[E|X |αI(|X | ≤ b) + bαP (|X | > b)],

(ii) E|Xn|
αI(|Xn| > b) ≤ C2E|X |αI(|X | > b),

where C1 and C2 are positive constants. Consequently, E|Xn|
α ≤ CE|X |α, where C is a positive

constant.
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The last one comes from Sung [28].

Lemma 2.5 Let Yn, Zn, n ≥ 1 be random variables. Then for any q > 1, ε > 0 and a > 0,

E
(
max
1≤j≤n

∣∣∣
j∑

i=1

(Yi + Zi)
∣∣∣− εa

)+

≤
( 1

εq
+

1

q − 1

) 1

aq−1
E
(
max
1≤j≤n

∣∣∣
j∑

i=1

Yi

∣∣∣
q)

+ E
(
max
1≤j≤n

∣∣∣
j∑

i=1

Zi

∣∣∣
)
.

3 Main Results and Their Proofs

In this section, we will give the main results of this paper, including the sufficient and nec-

essary conditions of complete convergence and complete moment convergence for END random

variables.

3.1 Sufficient and necessary conditions for complete convergence

Theorem 3.1 Let α > 1
2 and αp > 1. Let {Xn, n ≥ 1} be a sequence of END random

variables with EXn = 0 if p ≥ 1. If there exists a random variable X and two positive constants

C1 and C2 such that

C1P (|X | > x) ≤ P (|Xn| > x) ≤ C2P (|X | > x) (3.1)

for all x ≥ 0 and n ≥ 1, then the following statements are equivalent:

(i) E|X |p < ∞;

(ii) for all ε > 0,

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > εnα
)
< ∞. (3.2)

Proof (ii) ⇒ (i) is trivial. So it suffices to show (i) ⇒ (ii). We consider the following two

cases.

Case 1 0 < p < 1.

For fixed n ≥ 1, denote, for 1 ≤ i ≤ n, that

Yni = XiI(|Xi| ≤ nα), Zni = XiI(|Xi| > nα).

Noting that Xi = Yni + Zni, we have that for all ε > 0,

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > εnα
)

≤
∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

Yni

∣∣∣ >
εnα

2

)
+

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

Zni

∣∣∣ >
εnα

2

)

.
= H1 +H2. (3.3)

It follows from Markov’s inequality, Cr inequality and Lemma 2.4, that

H1 ≤ C

∞∑

n=1

nαp−2−α

n∑

i=1

E|Yni|

≤ C

∞∑

n=1

nαp−1−α[E|X |I(|X | ≤ nα) + nαP (|X | > nα)]
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≤ C

∞∑

n=1

nαp−1−αE|X |I(|X | ≤ nα) + CE|X |p

≤ C

∞∑

n=1

nαp−1−α

n∑

k=1

E|X |I((k − 1)α < |X | ≤ k
α

)

≤ C

∞∑

n=1

nαp−1−α

n∑

k=1

k
α

P ((k − 1)α < |X | ≤ k
α

)

≤ C

∞∑

k=1

kα+αp−αP ((k − 1)α < |X | ≤ k
α

)

≤ CE|X |p < ∞ (3.4)

and

H2 ≤ C

∞∑

n=1

nαp−2−αp
2

n∑

i=1

E|Zni|
p
2

≤ C

∞∑

n=1

n
αp
2

−1E|X |
p
2 I(|X | > nα)

= C

∞∑

n=1

n
αp
2

−1
∞∑

k=n

E|X |
p
2 I(kα < |X | ≤ (k + 1)α)

≤ C

∞∑

n=1

n
αp
2

−1
∞∑

k=n

k
αp
2 P (kα < |X | ≤ (k + 1)α)

≤ C

∞∑

k=1

kαpP (kα < |X | ≤ (k + 1)α)

≤ CE|X |p < ∞. (3.5)

Hence, the desired result (3.2) follows from (3.3)–(3.5) immediately.

Case 2 p ≥ 1.

Noting that αp > 1, we take a suitable q such that 1
αp

< q < 1. For fixed n ≥ 1, denote for

1 ≤ i ≤ n that

X
(1)
ni = −nαqI(Xi < −nαq) +XiI(|Xi| ≤ nαq) + nαqI(Xi > nαq),

X
(2)
ni = (Xi − nαq)I(Xi > nαq),

X
(3)
ni = (Xi + nαq)I(Xi < −nαq).

Noting that
j∑

i=1

Xi =

j∑

i=1

X
(1)
ni +

j∑

i=1

X
(2)
ni +

j∑

i=1

X
(3)
ni

for 1 ≤ j ≤ n, we have that for all ε > 0,

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > εnα
)

≤

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

X
(1)
ni

∣∣∣ >
εnα

3

)
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+

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

X
(2)
ni

∣∣∣ >
εnα

3

)

+

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

X
(3)
ni

∣∣∣ >
εnα

3

)

.
= I1 + I2 + I3. (3.6)

Hence, in order to prove (3.2), it suffices to show that I1 < ∞, I2 < ∞ and I3 < ∞.

For I1, we firstly show that

n−α max
1≤j≤n

∣∣∣
j∑

i=1

EX
(1)
ni

∣∣∣ → 0, as n → ∞. (3.7)

It follows from EXn = 0, Markov’s inequality and Lemma 2.4, that

n−α max
1≤j≤n

∣∣∣
j∑

i=1

EX
(1)
ni

∣∣∣ ≤ n−α

n∑

i=1

[E|Xi|I(|Xi| > nαq) + nαqP (|Xi| > nαq)]

≤ Cn−α

n∑

i=1

[E|X |I(|X | > nαq) + nαqP (|X | > nαq)]

≤ Cn−α+1+αq−αpqE|X |pI(|X | > nαq) + Cn−α+1+αq−αpqE|X |p

≤ Cn−α+1+αq−αpqE|X |p,

which together with E|X |p < ∞ and 1
αp

< q < 1 yields (3.7). Hence, by (3.7), we have that

I1 ≤ C

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

(X
(1)
ni − EX

(1)
ni )

∣∣∣ >
εnα

6

)
. (3.8)

For fixed n ≥ 1, we can see that {X
(1)
ni − EX

(1)
ni , 1 ≤ i ≤ n} are still END random variables by

Lemma 2.1. It follows from (3.8), Markov’s inequality and Lemma 2.2, that for any δ ≥ 2,

I1 ≤ C

∞∑

n=1

nαp−2−αδE
(

max
1≤j≤n

∣∣∣
j∑

i=1

(
X

(1)
ni − EX

(1)
ni

)∣∣∣
)δ

≤ C

∞∑

n=1

nαp−2−αδ logδ n
[ n∑

i=1

E|X
(1)
ni |

δ +
( n∑

i=1

E|X
(1)
ni |

2
) δ

2
]

.
= CI11 + CI12. (3.9)

Taking δ > max
{

αp−1
α− 1

2

, 2, p
}
, we have

αp− 1− αδ + αqδ − αpq = α(p− δ)(1− q)− 1 < −1

and

αp− 2− αδ +
δ

2
< −1.

It follows from Cr inequality, Markov’s inequality and Lemma 2.4, that

I11 ≤ C

∞∑

n=1

nαp−2−αδ logδ n

n∑

i=1

[E|Xi|
δI(|Xi| ≤ nαq) + nαqδP (|Xi| > nαq)]
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≤ C

∞∑

n=1

nαp−1−αδ logδ n[E|X |δI(|X | ≤ nαq) + nαqδP (|X | > nαq)]

≤ C

∞∑

n=1

nαp−1−αδ+αqδ−αpqE|X |p logδ n

< ∞ (3.10)

and

I12 ≤ C

∞∑

n=1

nαp−2−αδ logδ n
{ n∑

i=1

[EX2
i I(|Xi| ≤ nαq) + n2αqP (|Xi| > nαq)]

} δ
2

≤ C

∞∑

n=1

nαp−2−αδ+ δ
2 logδ n[EX2I(|X | ≤ nαq) + n2αqP (|X | > nαq)]

δ
2

≤





C

∞∑

n=1

nαp−2−αδ+ δ
2 (EX2)

δ
2 logδ n, if p ≥ 2,

C

∞∑

n=1

nαp−2−αδ+ δ
2
+α(2−p) δ

2 (E|X |p)
δ
2 logδ n, if 1 ≤ p < 2

=





C

∞∑

n=1

nαp−2−αδ+ δ
2 (EX2)

δ
2 logδ n, if p ≥ 2,

C

∞∑

n=1

n(αp−1)(1− δ
2
)−1(E|X |p)

δ
2 logδ n, if 1 ≤ p < 2

< ∞. (3.11)

Hence, I1 < ∞ follows from (3.9)–(3.11) immediately.

In the following, we will show that I2 < ∞. For fixed n ≥ 1, denote, for 1 ≤ i ≤ n, that

X
(4)
ni = (Xi − nαq)I(nαq < Xi ≤ nα + nαq) + nαI(Xi > nα + nαq).

It is easily checked that

(
max
1≤j≤n

∣∣∣
j∑

i=1

X
(2)
ni

∣∣∣ >
εnα

3

)
⊂

(
max
1≤i≤n

Xi > nα
)
∪
(

max
1≤j≤n

∣∣∣
j∑

i=1

X
(4)
ni

∣∣∣ >
εnα

3

)
,

which implies that

I2 ≤
∞∑

n=1

nαp−2
n∑

i=1

P (|Xi| > nα) +
∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

X
(4)
ni

∣∣∣ >
εnα

3

)

.
= I21 + I22. (3.12)

It follows from (3.1) and E|X |p < ∞, that

I21 ≤ C

∞∑

n=1

nαp−1P (|X | > nα) ≤ CE|X |p < ∞. (3.13)

Noting that 1
αp

< q < 1, we have from the definition of X
(4)
ni and Lemma 2.4, that

n−α max
1≤j≤n

∣∣∣
j∑

i=1

EX
(4)
ni

∣∣∣ ≤ Cn1−αE|X |I(|X | > nαq)
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≤ Cn1−α+αq−αpqE|X |p → 0, as n → ∞. (3.14)

Since X
(4)
ni > 0, by (3.12)–(3.14), we have that

I2 ≤ C

∞∑

n=1

nαp−2P
(∣∣∣

n∑

i=1

(
X

(4)
ni − EX

(4)
ni

)∣∣∣ >
εnα

6

)
. (3.15)

For fixed n ≥ 1, we can see that {X
(4)
ni − EX

(4)
ni , 1 ≤ i ≤ n} are still END random variables by

Lemma 2.1. It follows from Markov’s inequality, Cr inequality and Lemma 2.2, that

I2 ≤ C

∞∑

n=1

nαp−2−αδE
∣∣∣

n∑

i=1

(
X

(4)
ni − EX

(4)
ni

)∣∣∣
δ

≤ C

∞∑

n=1

nαp−2−αδ
[ n∑

i=1

E|X
(4)
ni |

δ +
( n∑

i=1

E(X
(4)
ni )

2
) δ

2
]

.
= J1 + J2. (3.16)

By Cr inequality and Lemma 2.4, we can get that

J1 ≤ C

∞∑

n=1

nαp−2−αδ

n∑

i=1

[E|Xi − nαq|δI(nαq < Xi ≤ nα + nαq) + nαδP (Xi > nα + nαq)]

≤ C

∞∑

n=1

nαp−2−αδ

n∑

i=1

[E|Xi|
δI(|Xi| ≤ 2nα) + nαδP (Xi > nα)]

≤ C

∞∑

n=1

nαp−2−αδ

n∑

i=1

[E|X |δI(|X | ≤ 2nα) + nαδP (|X | > nα)]

≤ C

∞∑

n=1

nαp−1−αδE|X |δI(|X | ≤ 2nα) + CE|X |p

= C

∞∑

n=1

nαp−1−αδ

n∑

i=1

E|X |δI(2(i− 1)α < |X | ≤ 2iα) + CE|X |p

≤ C

∞∑

i=1

iαδP (2(i− 1)α < |X | ≤ 2iα)

∞∑

n=i

nαp−1−αδ + CE|X |p

≤ C

∞∑

i=1

iαpP (2(i− 1)α < |X | ≤ 2iα) + CE|X |p

≤ CE|X |p < ∞. (3.17)

Similarly to the proof of (3.11) and (3.17), we can obtain that J2 < ∞, which, together with

(3.16) and (3.17), yields that I2 < ∞.

Similarly to the proof of I2 < ∞, one can get that I3 < ∞. Hence, (3.2) follows from (3.6),

I1 < ∞, I2 < ∞ and I3 < ∞ immediately. This completes the proof of the theorem.

With Theorem 3.1 accounted for, we can get the Marcinkiewicz-Zygmund-type strong law

of large numbers for END random variables without identical distribution as follows.

Corollary 3.1 Let α > 1
2 and αp > 1. Let {Xn, n ≥ 1} be a sequence of END random

variables with EXn = 0 if p ≥ 1. Assume that there exists a random variable X and two
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positive constants C1 and C2 such that (3.1) holds for all x ≥ 0 and n ≥ 1. If E|X |p < ∞, then

1

nα

n∑

i=1

Xi → 0 a.s. (3.18)

Proof Since E|X |p < ∞, by Theorem 3.1, we have that for all ε > 0,

∞∑

n=1

nαp−2P
(

max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > εnα
)
< ∞. (3.19)

It follows from (3.19) that, for all ε > 0,

∞ >

∞∑

n=1

nαp−2P
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > εnα
)

=

∞∑

k=0

2k+1−1∑

n=2k

nαp−2P
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > εnα
)

≥






∞∑

k=0

(2k)αp−22kP
(

max
1≤j≤2k

∣∣∣
j∑

i=1

Xi

∣∣∣ > ε2(k+1)α
)
, if αp ≥ 2,

∞∑

k=0

(2k+1)αp−22kP
(

max
1≤j≤2k

∣∣∣
j∑

i=1

Xi

∣∣∣ > ε2(k+1)α
)
, if 1 ≤ αp < 2

≥





∞∑

k=0

P
(

max
1≤j≤2k

∣∣∣
j∑

i=1

Xi

∣∣∣ > ε2(k+1)α
)
, if αp ≥ 2,

1

2

∞∑

k=0

P
(

max
1≤j≤2k

∣∣∣
j∑

i=1

Xi

∣∣∣ > ε2(k+1)α
)
, if 1 ≤ αp < 2,

which, together with the Borel-Cantelli lemma, yields that

max
1≤j≤2k

∣∣∣
j∑

i=1

Xi

∣∣∣

2(k+1)α
→ 0 a.s. (3.20)

For all positive integers n, there exists a positive integer k such that 2k−1 ≤ n ≤ 2k. We have,

by (3.20), that

n−α
∣∣∣

n∑

i=1

Xi

∣∣∣ ≤ max
2k−1≤n≤2kn−α

∣∣∣
n∑

i=1

Xi

∣∣∣ ≤
22α max

1≤j≤2k

∣∣∣
j∑

i=1

Xi

∣∣∣

2(k+1)α
→ 0 a.s.

which implies (3.18). This completes the proof of the corollary.

If {Xn, n ≥ 1} is a sequence of END random variables with identical distribution, then (3.1)

is obvious. By using Theorem 3.1, we can get the Baum-Katz-type result for END random

variables as follows.

Corollary 3.2 Let α > 1
2 and αp > 1. Let {Xn, n ≥ 1} be a sequence of END random

variables with identical distribution. Assume further that EX1 = 0 if p ≥ 1. Then (i) and (ii)

in Theorem 3.1 are equivalent.
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3.2 Sufficient and necessary conditions for complete moment convergence

In this subsection, we will establish the sufficient and necessary conditions for complete mo-

ment convergence. First we present the necessary condition for complete moment convergence.

Theorem 3.2 Suppose that the conditions of Theorem 3.1 hold. If for all ε > 0,

∞∑

n=1

nαp−2−αE
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣− εnα
)+

< ∞, (3.21)

then E|X |p < ∞.

Proof Note that

∞∑

n=1

nαp−2−αE
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣− εnα
)+

=
∞∑

n=1

nαp−2−α

∫ ∞

0

P
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣− εnα > t
)
dt

≥
∞∑

n=1

nαp−2−α

∫ εnα

0

P
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣− εnα > t
)
dt

≥ ε

∞∑

n=1

nαp−2P
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣ > 2εnα
)
. (3.22)

Combining (3.21) and (3.22), we can get that (3.2) holds for all ε > 0. Hence, E|X |p < ∞

follows from Theorem 3.1 immediately. This completes the proof of the theorem.

Next we present the sufficient condition for complete moment convergence. Noting that the

factor logn is added to the right of the maximal moment inequality for END random variables

(see Lemma 2.2), in order to establish the sufficient condition for complete moment convergence,

the moment condition should be changed.

Theorem 3.3 Suppose that the conditions of Theorem 3.1 hold for p ≥ 1. If E|X |p logθ |X |

< ∞ for some θ > max{αp−1
α− 1

2

, p}, then for all ε > 0,

∞∑

n=1

nαp−2−αE
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣− εnα
)+

< ∞. (3.23)

Proof For fixed n ≥ 1, denote, for 1 ≤ i ≤ n, that

Yni = −nαI(Xi < −nα) +XiI(|Xi| ≤ nα) + nαI(Xi > nα),

Zni = Xi − Yni = (Xi − nα)I(Xi > nα) + (Xi + nα)I(Xi < −nα).

It follows from Lemma 2.5, that for any δ > 1,

∞∑

n=1

nαp−2−αE
(
max
1≤j≤n

∣∣∣
j∑

i=1

Xi

∣∣∣− εnα
)+

≤ C

∞∑

n=1

nαp−2−αδE
(
max
1≤j≤n

∣∣∣
j∑

i=1

(Yni − EYni)
∣∣∣
)δ
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+

∞∑

n=1

nαp−2−αE
(
max
1≤j≤n

∣∣∣
j∑

i=1

(Zni − EZni)
∣∣∣
)

.
= P1 + P2. (3.24)

Noting that |Zni| = (|Xi| − nα)I(|Xi| > nα) ≤ |Xi|I(|Xi| > nα), we have, by Lemma 2.4, that

P2 =

∞∑

n=1

nαp−2−α
(
max
1≤j≤n

∣∣∣
j∑

i=1

(Zni − EZni)
∣∣∣
)

≤ C

∞∑

n=1

nαp−2−α

n∑

i=1

E|Zni|

≤ C

∞∑

n=1

nαp−2−α

n∑

i=1

E|Xi|I(|Xi| > nα)

≤ C

∞∑

n=1

nαp−1−αE|X |I(|X | > nα)

= C

∞∑

i=1

E|X |I(iα < |X | ≤ (i + 1)α)

i∑

n=1

nαp−1−α

≤





C

∞∑

i=1

E|X |I(iα < |X | ≤ (i+ 1)α) log i, if p = 1,

C

∞∑

i=1

E|X |I(iα < |X | ≤ (i + 1)α)iαp−α, if p > 1

≤

{
CE|X | log |X |, if p = 1,
CE|X |p, if p > 1

< ∞. (3.25)

Next, we will show that P1 < ∞. Noting that θ > p ≥ 1, we can take δ = θ. We consider

the following two cases.

Case 1 1 < θ ≤ 2.

It follows from (2.2) of Lemma 2.2 and Lemma 2.4, that

P1 = C

∞∑

n=1

nαp−2−αθE
(
max
1≤j≤n

∣∣∣
j∑

i=1

(
Yni − EYni

)∣∣∣
)θ

≤ C

∞∑

n=1

nαp−2−αθ logθ n

n∑

i=1

E|Yni|
θ

≤ C

∞∑

n=1

nαp−2−αθ logθ n
n∑

i=1

[E|Xi|
θI(|Xi| ≤ nα) + nαθP (|Xi| > nα)]

≤ C

∞∑

n=1

nαp−1−αθ logθ n[E|X |θI(|X | ≤ nα) + nαθP (|X | > nα)]

= C

∞∑

i=1

E|X |θI((i− 1)α < |X | ≤ iα)

∞∑

n=i

nαp−1−αθ logθ n

+ C

∞∑

i=1

P (iα < |X | ≤ (i + 1)α)

i∑

n=1

nαp−1 logθ n
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≤ C

∞∑

i=1

E|X |θI((i− 1)α < |X | ≤ iα)iαp−αθ logθ i

+ C

∞∑

i=1

P (iα < |X | ≤ (i + 1)α)iαp logθ i

≤ CE|X |p logθ |X | < ∞. (3.26)

Case 2 θ > 2.

Since θ > αp−1
α− 1

2

, we can see that αp− 2− αθ + θ
2 < −1. Similarly to the proof of (3.26), we

have, by (2.4) of Lemma 2.2, Cr inequality and Lemma 2.4, that

P1 = C

∞∑

n=1

nαp−2−αθE
(
max
1≤j≤n

∣∣∣
j∑

i=1

(
Yni − EYni

)∣∣∣
)θ

≤ C

∞∑

n=1

nαp−2−αθ logθ n
[ n∑

i=1

E|Yni|
θ +

( n∑

i=1

E|Yni|
2
) θ

2
]

≤ C + C

∞∑

n=1

nαp−2−αθ logθ n
( n∑

i=1

E|Yni|
2
) θ

2

≤ C

∞∑

n=1

nαp−2−αθ logθ n
{ n∑

i=1

[EX2
i I(|Xi| ≤ nα) + n2αP (|Xi| > nα)]

} θ
2

≤ C

∞∑

n=1

nαp−2−αθ+ θ
2 logθ n[EX2I(|X | ≤ nα) + n2αP (|X | > nα)]

θ
2

≤





C

∞∑

n=1

nαp−2−αθ+ θ
2 (EX2)

θ
2 logθ n < ∞, if p ≥ 2,

C

∞∑

n=1

nαp−2−αθ+ θ
2
+α(2−p) θ

2 (E|X |p)
θ
2 logθ n, if 1 ≤ p < 2

=





C

∞∑

n=1

nαp−2−αδ+ θ
2 (EX2)

θ
2 logθ n, if p ≥ 2,

C

∞∑

n=1

n(αp−1)(1− θ
2
)−1(E|X |p)

θ
2 logθ n, if 1 ≤ p < 2

< ∞. (3.27)

Hence, the desired result (3.23) follows from (3.24)–(3.27) immediately. This completes the

proof of the theorem.
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