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1 Introduction

An important class of homogeneous manifolds is the orbits of the adjoint action of a semisim-

ple compact Lie group, called generalized flag manifolds. Such manifolds can be described by

a quotient M = G/C(T ), where C(T ) is the centralizer of a torus T of the Lie group G. If

C(T ) = T , then M = G/T is called a full flag manifold.

Invariant Einstein metrics on full flag manifolds corresponding to classical Lie groups were

studied by several authors (see [1–3]). Nevertheless when the isotropy summands of the full

flag manifolds increase, it is very difficult to find all the G-invariant Einstein metrics. Since

the system of the Einstein equations is very complex, it is a non-trivial problem to get all

the positive real solutions of the system of the Einstein equations. In this paper, we give the

classification problem of homogeneous Einstein metrics on the full flag manifold SO(7)/T , which

admits precisely five Einstein metrics (up to isometry), where one is Kähler Einstein metric and

four are non-Kähler Einstein metrics.

This paper is organized as follows. In Section 2 we recall the Lie theoretic description of a

generalized flag manifold G/K of a compact and connected semisimple Lie group G. In Section

3 we compute the non-zero structure constants of the full flag manifold SO(7)/T and consider
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the isometric problem, then prove that SO(7)/T admits five (up to isometry) SO(7)-invariant

Einstein metrics.

2 Generalized Flag Manifold

In this section we recall the Lie-theoretic description of M = G/K.

Let k and g be the Lie algebras of K and G respectively, and (·, ·) be the Cartan Killing

form on the Lie algebra g. Let gC and kC be the complexifications of g and k respectively. The

complexification ηC is a Cartan subalgebra of gC, where η is the Cartan subalgebra of g.

We denote by (ηC)∗ the dual space of ηC, and let R ⊂ (ηC)
∗
be the root system of gC relative

to ηC. We consider the root space decomposition gC = ηC ⊕ ∑

α∈R

gα
C.

Set

RK = R ∩ 〈ΠK〉, R+
K = R+ ∩ 〈ΠK〉, (2.1)

where 〈ΠK〉 denotes the set of roots generated by ΠK . Let RM be a set such that R = RK∪RM ,

which is called the set of complementary roots of M . Then one can get R+
M = R+\R+

K .

We choose a Weyl basis {Eα, Hα : α ∈ R} of gC with (Eα, E−α) = 1, [Eα, E−α] = Hα and

[Eα, Eβ ] =

{

0, if α+ β 6∈ R,

Nα,βEα+β , if α+ β ∈ R,
(2.2)

where the constants Nα,β satisfy Nα,β = −N−α,−β and Nβ,α = −Nα,β. Then we obtain that

g = η ⊕
∑

α∈R+

(RAα + RBα), (2.3)

where Aα = Eα −E−α, Bα =
√
−1(Eα +E−α). Assume that p is a parabolic Lie subalgebra of

gC such that k = p∩ g ⊂ g which is given by k = η ⊕ ∑

α∈R
+
K

(RAα +RBα). According to (2.3), it

follows that the direct decomposition p = kC ⊕ n, where kC = ηC ⊕ ∑

α∈RK

gCα and n =
∑

α∈R
+
M

gCα.

Then, we obtain that

m =
∑

α∈R+
M

(RAα + RBα). (2.4)

For convenience, we fix a system of simple roots Π = {α1, · · · , αr, φ1, · · · , φk} of R, so that

ΠK = {φ1, · · · , φk} is a basis of the root system RK and ΠM = Π\ΠK = {α1, · · · , αr} (r+k =

l). We consider the decomposition R = RK ∪RM , and define the set

t = z(kC) ∩ iη = {X ∈ η : φ(X) = 0 for all φ ∈ RK}, (2.5)

where η is the real ad-diagonal subalgebra η = ηC ∩ ik, z presents the center of kC. Consider

the linear restriction map κ : η∗ → t∗ defined by κ(α) = α|t, and set Rt = κ(R) = κ(RM ). The

elements of Rt are called t-roots. Note that κ(RK) = 0 and κ(0) = 0.
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For an invariant ordering R+
M = R+ \ R+

K in RM , we set R+
t = κ(R+

M ) and R−
t = −R+

t =

{−ξ : ξ ∈ R+
t }. It is obvious that R−

t = κ(R−
M ), thus the splitting Rt = R−

t ∪ R+
t defines an

ordering in Rt. The t-roots ξ ∈ R+
t (resp. ξ ∈ R−

t ) will be called positive (resp. negative).

Proposition 2.1 (see [4–5]) There is a one-to-one correspondence between t-roots and

complex irreducible ad(kC)-submodules mξ of mC. This correspondence is given by

Rt ∋ ξ ↔ mξ =
∑

α∈RM :κ(α)=ξ

CEα.

Thus mC =
∑

ξ∈Rt

mξ. Moreover, these submodules are inequivalent as ad(kC)-modules.

Since the complex conjugation τ : gC → gC, X+ iY 7→ X− iY (X,Y ∈ g) of gC with respect

to the compact real form g interchanges the root spaces, i.e., τ(Eα) = −E−α and τ(E−α) = Eα,

a decomposition of the real ad(k)-module m = (mC)τ into real irreducible ad(k)-submodule is

given by

m =
∑

ξ∈R+=κ(R+
M

)

(mξ ⊕m−ξ)
τ , (2.6)

where nτ denotes the set of fixed points of the complex conjugation τ in a vector subspace

n ⊂ gC. If, for simplicity, we set R+
t = {ξ1, · · · , ξs}, then according to (2.6) each real irreducible

ad(k)-submodule mi = (mξi ⊕ m−ξi)
τ (1 ≤ i ≤ s) corresponding to the positive t-roots ξi is

given by

mi =
∑

α∈R
+
M

:κ(α)=ξi

RAα + RBα. (2.7)

A t-root is called simple if it is not a sum of two positive t-root. Let ΠM = Π \ ΠK =

{α1, · · · , αr}. Then the set {αi = αi|t : αi ∈ ΠM} is a t-base of t∗.

A G-invariant Riemannian metric g on M is identified with an Ad(K)-invariant inner prod-

uct 〈·, ·〉 on m, which can be written as 〈X,Y 〉 = −(ΛX,Y ) (X,Y ∈ m), where Λ : m → m is an

Ad(K)-invariant positive definite symmetric endomorphism on m. Due to the decomposition

(2.6), we can express Λ as Λ =
∑

ξ∈R
+
t

xξ · Id|(mξ⊕m−ξ)τ , where each element in {xξ : ξ ∈ R+
t } is

an eigenvalue of Λ. Due to decomposition (2.7), Λ is given by

Λ =
∑

ξi∈R
+
t

xξi · Id|mi
=

s
∑

i=1

xξi · Id|mi
, (2.8)

where xi ≡ xξi for any ξi ∈ R+
t = {ξ1, · · · , ξs}.

It is obvious that the vectors {Aα, Bα : α ∈ R+
M} are eigenvectors of Λ corresponding to the

eigenvalue xi ≡ xξi . We also denote this eigenvalue by xα ∈ R+, where α ∈ R+
M is such that

κ(α) = ξi for any 1 ≤ i ≤ s.We extend Λ to mC without any change in notation. Hence the inner

product g = 〈·, ·〉 admits a natural extension to an ad(kC)-invariant bilinear symmetric form on
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mC. Then the root vectors {Eα : α ∈ RM} are eigenvectors of Λ : mC → mC corresponding to

the eigenvalues xα = x−α > 0. If we denote by {ωα} the basis of the dual space (mC)∗, which

is dual to the basis {Eβ, β ∈ RM}, i.e., ωα(Eβ) = δαβ , then we obtain the proposition below.

Proposition 2.2 (see [4, 6]) Every real ad(kC)-invariant inner product g = 〈·, ·〉 on mC

has the form

g = 〈·, ·〉 =
∑

α∈R
+
M

xαω
α ∨ ωβ =

∑

ξ∈R
+
t

xξ

∑

α∈κ−(ξ)

ωα ∨ ωβ, (2.9)

where ωα ∨ ωβ = 1
2 (ω

α ⊗ ωβ + ωβ ⊗ ωα) and the positive real numbers xα satisfy xα = xβ if

α|t = β|t for any α, β ∈ R+
M .

The space of G-invariant Riemannian metric g = 〈·, ·〉 = −(Λ·, ·) on M is given by

{x1 · (−(·, ·))|m1 + · · ·+ xs · (−(·, ·))|ms
: x1, · · · , xs > 0}, (2.10)

where x1 ≡ xξ1 > 0, · · · , xs ≡ xξs > 0.

Then the Ricci tensor Ricg of G/K (as a G-invariant symmetric covariant 2-tensor on G/K)

is identified with an Ad(K)-invariant symmetric bilinear form on m given by

Ricg = γ1x1(−(·, ·))|m1 + · · ·+ γsxs(−(·, ·))|ms
. (2.11)

Here γ1, · · · , γs are the components of the Ricci tensor on each mi.

Proposition 2.3 (see [7]) Let g = 〈·, ·〉 be a G-invariant metric given by (2.10), and J be

a G-invariant complex structure induced by an invariant ordering R+
M . Then, g is a Kählerian

metric with respect to the complex structure J , if and only if the positive real numbers xξ satisfy

xξ+ζ = xξ + xζ for any ξ, ζ, ξ + ζ ∈ R+
t = κ(R+

M ). Equivalently, g is Kähler, if and only if

xα+β = xα + xβ , where α, β, α + β ∈ R+
M satisfy κ(α) = ξ and κ(β) = ζ.

Let {eα} be an orthogonal basis with respect to −(·, ·) adapted to the decomposition of

m: eα ∈ mi and eβ ∈ mj with i < j then α < β. Following [8], Aγ
α,β := −([eα, eβ], eγ), thus

[eα, eβ]m =
∑

γ

Aγ
α,βeγ . Consider

ckij :=
∑

(Aγ
α,β)

2, (2.12)

where the sum is taken over all indices α, β, γ with eα ∈ mi, eβ ∈ mj , eγ ∈ mk and i, j, k ∈
{1, · · · , s}.

Hence ckij is nonnegative, symmetric in all the three entries, and is independent of the

orthogonal basis chosen for mi,mj and mk (but it depends on the choice of the decomposition

of m).

Now we introduce the notion of symmetric t-triples of t-roots.

Definition 2.1 A symmetric t-triple in t∗ is a triple Ω = (ξi, ξj , ξk) of t-roots ξi, ξj , ξk ∈ Rt

such that ξi + ξj + ξk = 0.
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Lemma 2.1 (see [9]) Let (ξi, ξj , ξk) be symmetric t-triples. Then there exist roots α, β, γ ∈
RM with κ(α) = ξi, κ(β) = ξj , κ(γ) = ξk such that α+ β + γ = 0.

The calculus of the coefficients ckij can be laborious. However the next result shows exactly

which of them are non-zero.

Lemma 2.2 (see [7, Corollary 1.9]) Let G/K be a generalized flag manifold of a compact

simple Lie group G and Rt be the associated t-root system. Assume that m = m1 ⊕ · · · ⊕ms is

a −(·, ·)-orthogonal decomposition of m into pairwise inequivalent irreducible ad(k)-module, and

let ξi, ξj , ξk ∈ Rt be the t-roots associated to the components mi,mj and mk respectively. Then,

ckij 6= 0, if and only if (ξi, ξj , ξk) is a symmetric t-triples, i.e., ξi + ξj + ξk = 0.

3 Invariant Einstein Metrics on SO(7)/T

Let M = G/T be a full flag manifold, and m = m1 ⊕ · · · ⊕ ms be a −(·, ·)-orthogonal
decomposition of m. Then the set

{

Xα =
Aα√
2
=

Eα − E−α√
2

, Yα =
Bα√
2
=

√
−1

Eα + E−α√
2

: α ∈ R+, κ(α) = ξi ∈ R+
t

}

(3.1)

is a −(·, ·)-orthogonal basis of mi.

Lemma 3.1 (see [10, Proposition 1.3]) The non-zero structure constant ckij for a full flag

manifold G/T is given by

ckij = (Aα+β
α,β )2 = 2N2

α,β,

where α, β ∈ R+ with κ(α) = ξi, κ(β) = ξj , κ(α+ β) = ξk.

Lemma 3.2 (see [11]) Let M = G/K be a reductive homogeneous space of a compact

semisimple Lie group G and let m = m1 ⊕ · · · ⊕ ms be a decomposition of m into mutually

inequivalent irreducible ad(k)-submodules. Then the components γ1, · · · , γs of the Ricci tensor

of a G-invariant metric (2.10) on M are given by

γk =
1

2xk

+
1

4dk

∑

i,j

xk

xixj

ckij −
1

2dk

∑

i,j

xj

xkxi

cjki, k = 1, · · · , s. (3.2)

Next, we consider invariant Einstein metrics on the full flag manifold of SO(7)/T with

painted Dynkin diagraph

s

α1
s

α2
=⇒ s

α3

Here ΠM = {α1, α2, α3}. Letting α1 = κ(α1), α2 = κ(α2) and α3 = κ(α3), it follows that

R+
t = κ(R+

M ) = {α1, α2, α3, α1 +α2, α2 +α3, α2 +2α3, α1 +α2 +α3, α1 +α2 +2α3, α1 +

2α2 +2α3}, thus we conclude the isotropy representation m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5 ⊕m6 ⊕
m7 ⊕m8 ⊕m9.

By Lemma 2.2, it follows that non-zero structure constants are c412, c
7
15, c

8
16, c

5
23, c

9
28, c

7
34,

c635, c
8
37, c

9
46, c

9
57.
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Lemma 3.3 The non-zero structure constants of the full flag manifold SO(7)/T are given

by c412 = c715 = c816 = c523 = c928 = c734 = c635 = c837 = c946 = c957 = 1
5 .

Proof From the theory of Lie algebra, we can getN2
α,β = q(p+1)

2 (α, α), (α, β) = − q−p
2 (α, α),

where p, q are the largest nonnegative integers such that β+kα ∈ R with −p ≤ k ≤ q (see [12]).

By Lemma 3.1, we can calculate the non-zero structure constants of M as follows:

c412 = 2N2
α1,α2

= (α1, α1),

c715 = 2N2
α1,α2+α3

= (α1, α1),

c816 = 2N2
α1,α2+2α3

= (α1, α1),

c523 = 2N2
α2,α3

= (α1, α1),

c928 = 2N2
α2,α1+α2+2α3

= (α1, α1),

c734 = 2N2
α3,α1+α2

= (α1, α1),

c635 = 2N2
α3,α2+α3

= (α1, α1),

c837 = 2N2
α3,α1+α2+α3

= (α1, α1),

c946 = 2N2
α1+α2,α2+2α3

= (α1, α1),

c957 = 2N2
α2+α3,α1+α2+α3

= (α1, α1).

As (α1, α1) =
1
5 (see [13]), we obtain c412 = c715 = c816 = c523 = c928 = c734 = c635 = c837 = c946 =

c957 = 1
5 .

Lemma 3.4 The components γi (i = 1, · · · , 9) of Ricci tensor associated to the SO(7)-

invariant Riemmanian metric g on SO(7)/T are the following:















































































































































γ1 =
1

2x1
+

x2
1 − x2

2 − x2
4

20x1x2x4
+

x2
1 − x2

5 − x2
7

20x1x5x7
+

x2
1 − x2

6 − x2
8

20x1x6x8
,

γ2 =
1

2x2
+

x2
2 − x2

1 − x2
4

20x1x2x4
+

x2
2 − x2

3 − x2
5

20x2x3x5
+

x2
2 − x2

8 − x2
9

20x2x8x9
,

γ3 =
1

2x3
+

x2
3 − x2

2 − x2
5

20x2x3x5
+

x2
3 − x2

4 − x2
7

20x3x4x7
+

x2
3 − x2

5 − x2
6

20x3x5x6
+

x2
3 − x2

7 − x2
8

20x3x7x8
,

γ4 =
1

2x4
+

x2
4 − x2

3 − x2
7

20x3x4x7
+

x2
4 − x2

1 − x2
2

20x1x2x4
+

x2
4 − x2

6 − x2
9

20x4x6x9
,

γ5 =
1

2x5
+

x2
5 − x2

2 − x2
3

20x2x3x5
+

x2
5 − x2

1 − x2
7

20x1x5x7
+

x2
5 − x2

3 − x2
6

20x3x5x6
+

x2
5 − x2

7 − x2
9

20x5x7x9
,

γ6 =
1

2x6
+

x2
6 − x2

1 − x2
8

20x1x6x8
+

x2
6 − x2

3 − x2
5

20x3x5x6
+

x2
6 − x2

4 − x2
9

20x4x6x9
,

γ7 =
1

2x7
+

x2
7 − x2

1 − x2
5

20x1x5x7
+

x2
7 − x2

3 − x2
4

20x3x4x7
+

x2
7 − x2

3 − x2
8

20x3x7x8
+

x2
7 − x2

5 − x2
9

20x5x7x9
,

γ8 =
1

2x8
+

x2
8 − x2

1 − x2
6

20x1x6x8
+

x2
8 − x2

2 − x2
9

20x2x8x9
+

x2
8 − x2

3 − x2
7

20x3x7x8
,

γ9 =
1

2x9
+

x2
9 − x2

2 − x2
8

20x2x8x9
+

x2
9 − x2

4 − x2
6

20x4x6x9
+

x2
9 − x2

5 − x2
7

20x5x7x9
.
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Proof By substituting the dimension di = dim(mi) = 2 and the non-zero structure con-

stants ckij into (3.2), we can get the results.

A G-invariant Riemmanian metric g on M = SO(7)/T is Einstein, if and only if, there is a

positive constant e such that γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = γ7 = γ8 = γ9 = e, or equivalently,

γ1 − γ2 = γ2 − γ3 = γ3 − γ4 = γ4 − γ5 = γ5 − γ6 = γ6 − γ7 = γ7 − γ8 = γ8 − γ9 = 0. (3.3)

By Lemma 3.4 and system (3.3), one can obtain the following polynomial system (we apply the

normalization x1 = 1):














































































































































































































































x2x3x4x5x7x9 + x2x3x4x6x8x9 + 2x3x5x6x7x8x9 − x2
2x3x4x5x6x7 + x3x4x5x6x7x

2
8

+x3x4x5x6x7x
2
9 − x2

2x4x6x7x8x9 + x2
3x4x6x7x8x9 + x4x

2
5x6x7x8x9 − x2x3x4x5x

2
6x7x9

−x2x3x4x
2
5x6x8x9 − x2x3x4x5x7x

2
8x9 − x2x3x4x6x

2
7x8x9 − 2x2

2x3x5x6x7x8x9

−10x3x4x5x6x7x8x9 + 10x2x3x4x5x6x7x8x9 = 0;
x2
2x3x4x5x6x7 + x2

2x3x5x6x7x8x9 + 2x2
2x4x6x7x8x9 − x2x

2
3x4x5x6x9 − x2x

2
3x4x7x8x9

−x2x
2
3x5x6x8x9 + x2x

2
4x5x6x8x9 + x2x4x

2
5x7x8x9 + x2x4x5x6x

2
7x9 − 10x2x4x5x6x7x8x9

+x2x4x5x6x
2
8x9 + x2x4x

2
6x7x8x9 + x2x5x6x

2
7x8x9 − 2x2

3x4x6x7x8x9 − x3x4x5x6x7x
2
8

+10x3x4x5x6x7x8x9 − x3x4x5x6x7x
2
9 − x3x5x6x7x8x9 = 0;

x2
2x3x5x6x7x8x9 − x2

2x4x6x7x8x9 + x2x
2
3x4x5x6x9 + x2x

2
3x4x7x8x9 + 2x2x

2
3x5x6x8x9

−x2x3x
2
4x5x7x8 + x2x3x5x

2
6x7x8 − 10x2x3x5x6x7x8x9 + x2x3x5x7x8x

2
9 − 2x2x

2
4x5x6x8x9

−x2x4x
2
5x7x8x9 − x2x4x5x6x

2
7x9 + 10x2x4x5x6x7x8x9 − x2x4x5x6x

2
8x9 − x2x4x

2
6x7x8x9

+x2
3x4x6x7x8x9 − x3x

2
4x5x6x7x8x9 + x3x5x6x7x8x9 − x4x

2
5x6x7x8x9 = 0;

−x2
2x3x5x6x7x9 − x2

2x4x6x7x9 + x2x
2
3x4x7x9 − x2x

2
3x5x6x9 + x2x3x

2
4x5x7 − x2x3x4x

2
5x6x9

−x2x3x4x
2
5x6 + x2x3x4x6x

2
7x9 + x2x3x4x6x

2
7 − 10x2x3x4x6x7x9 + x2x3x4x6x

2
9 + x2x3x4x6x9

−x2x3x5x
2
6x7 + 10x2x3x5x6x7x9 − x2x3x5x7x

2
9 + x2x

2
4x5x6x9 − x2x4x

2
5x7x9 − x2x5x6x

2
7x9

+x2
3x4x6x7x9 + x3x

2
4x5x6x7x9 − x3x5x6x7x9 − x4x

2
5x6x7x9 = 0;

−x2
2x4x6x7x8x9 + x2x3x

2
4x5x7x8 + x2x3x4x

2
5x6x8x9 + x2x3x4x

2
5x6x8 − x2x3x4x5x

2
6x7x9

+x2x3x4x5x7x
2
8x9 − 10x2x3x4x5x7x8x9 + x2x3x4x5x7x9 − x2x3x4x6x

2
7x8x9 − x2x3x4x6x

2
7x8

+10x2x3x4x6x7x8x9 − x2x3x4x6x8x
2
9 − x2x3x4x6x8x9 − x2x3x5x

2
6x7x8 + x2x3x5x7x8x

2
9

+2x2x4x
2
5x7x8x9 − 2x2x4x

2
6x7x8x9 − x2

3x4x6x7x8x9 + x4x
2
5x6x7x8x9 = 0;

x2
3x4x5x6x9 − x2

3x4x7x8x9 + x2
3x5x6x8x9 − x3x

2
4x5x7x8 + x3x4x

2
5x6x8x9 + x3x4x

2
5x6x8

+x3x4x5x
2
6x7x9 − 10x3x4x5x6x8x9 − x3x4x5x7x

2
8x9 + 10x3x4x5x7x8x9 − x3x4x5x7x9

−x3x4x6x
2
7x8x9 − x3x4x6x

2
7x8 + x3x4x6x8x

2
9 + x3x4x6x8x9 + x3x5x

2
6x7x8 − x3x5x7x8x

2
9

+x2
4x5x6x8x9 − x4x

2
5x7x8x9 − x4x5x6x

2
7x9 + x4x5x6x

2
8x9 + x4x

2
6x7x8x9 − x5x6x

2
7x8x9 = 0;

x2
2x3x4x5x6x7 − x2x

2
3x5x6x8x9 − x2x3x4x

2
5x6x8x9 − x2x3x4x

2
5x6x8 + x2x3x4x5x

2
6x7x9

+10x2x3x4x5x6x8x9 − 10x2x3x4x5x6x7x9 − x2x3x4x5x7x
2
8x9 + x2x3x4x5x7x9

+x2x3x4x6x
2
7x8x9 + x2x3x4x6x

2
7x8 − x2x3x4x6x8x

2
9 − x2x3x4x6x8x9 − x2x

2
4x5x6x8x9

+2x2x4x5x6x
2
7x9 − 2x2x4x5x6x

2
8x9 + x2x5x6x

2
7x8x9 − x3x4x5x6x7x

2
8 + x3x4x5x6x7x

2
9 = 0;

−x2x
2
3x4x5x6x9 + x2x3x

2
4x5x7x8 + x2x3x4x

2
5x6x8 − x2x3x4x5x

2
6x7x9 + 2x3x4x5x6x7x

2
8

−10x2x3x4x5x6x7x8 + 10x2x3x4x5x6x7x9 − 2x3x4x5x6x7x
2
9 + x2x3x4x5x7x

2
8x9

−x2x3x4x5x7x9 + x2x3x4x6x
2
7x8 − x2x3x4x6x8x

2
9 + x2x3x5x

2
6x7x8 − x2x3x5x7x8x

2
9

−x2x4x5x6x
2
7x9 + x2x4x5x6x

2
8x9 = 0;

Every positive real solution x2 > 0, x3 > 0, x4 > 0, x5 > 0, x6 > 0, x7 > 0, x8 > 0, x9 > 0

of the system above determines a SO(7)-invariant Einstein metric (1, x2, x3, x4, x5, x6, x7, x8, x9) ∈
R9

+ on M = SO(7)/T . With the help of computer we get all the forty-eight positive solutions

(up to a scale) for above system, i.e., there are forty-eight G-invariant Einstein metrics (up to

a scale) on the full flag manifold SO(7)/T .

Next we talk about the isometric problem about the metrics, in general, this is a non-trivial

problem.
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Let G/K be a generalized flag manifold with isotropy decomposition m = m1+ · · ·+ms, and

d =
s
∑

i=1

di = dimM . For any G-invariant Einstein metric g = (x1, · · · , xs) on M , we determine

a scale invariant given by Hg = V
1
dSg, where Sg is the scalar curvature of g, V = Vg/VB is the

quotient of the volumes Vg =
s
∏

i=1

xdi

i of the given metric g, and VB is the volume of the normal

metric induced by the negative of the Killing form of G. We normalize VB = 1, so

Hg = V
1
d
g Sg.

The scalar curvature Sg of a G-invariant metric g on M is given by the following well-known

formula (see [8]):

Sg =

s
∑

i=1

diγi =
1

2

s
∑

i=1

di
xi

− 1

4

∑

1≤i,j,k≤s

ckij
xk

xixj

, (3.4)

where the components γi of the Ricci tensor are given by (3.2). The scalar curvature is a

homogeneous polynomial of degree− 1 on the variables xi (i = 1, · · · , s). The volume Vg is a

monomial of degree d, so Hg = V
1
d
g Sg is a homogeneous polynomial of degree 0. Therefore, Hg

is invariant under a common scaling of the variables xi. As

Hg = V
1
d
g Sg,

according to (3.4) we obtain

Hg =

9
∏

i=1

x
1
9
i

(

9
∑

i=1

2γi

)

. (3.5)

If two metrics are isometric, then they have the same scale invariant, so if the scale invariant

Hg and Hg′ are different, then the metrics g and g′ can not be isometric. However, if Hg = Hg′ ,

we can not immediately conclude if the metrics g and g′ are isometric or not. For such a case

we have to look at the group of automorphisms of G and check if there is an automorphism

which permutes the isotopy summands and takes one metric to another.

Theorem 3.1 The full flag manifold M = SO(7)/T admits (up to a scale) forty-eight

SO(7)-invariant Einstein metrics, which approximately are given as follows:

(1)
(

1,
1

4
,
1

8
,
3

4
,
3

8
,
1

2
,
5

8
,
1

2
,
1

4

)

, (2)
(

1,
1

3
,
1

2
,
4

3
,
1

6
,
2

3
,
5

6
,
1

3
,
2

3

)

,

(3)
(

1,
1

2
,
3

4
,
1

2
,
5

4
, 2,

1

4
, 1,

3

2

)

, (4)
(

1,
3

4
,
1

8
,
1

4
,
5

8
,
1

2
,
3

8
,
1

2
,
1

4

)

,

(5)
(

1, 1,
5

2
, 2,

3

2
, 4,

1

2
, 3, 2

)

, (6)
(

1, 1,
1

2
, 2,

3

2
, 2,

5

2
, 3, 4

)

,

(7)
(

1, 2,
1

2
, 1,

5

2
, 3,

3

2
, 2, 4

)

, (8)
(

1, 3,
1

2
, 2,

5

2
, 2,

3

2
, 1, 4

)

,

(9)
(

1, 4,
5

2
, 3,

3

2
, 1,

1

2
, 2, 2

)

, (10)
(

1, 3,
5

2
, 4,

1

2
, 2,

3

2
, 1, 2

)

,

(11)
(

1,
4

3
,
1

2
,
1

3
,
5

6
,
1

3
,
1

6
,
2

3
,
2

3

)

, (12)
(

1,
1

2
,
3

4
,
1

2
,
1

4
, 1,

5

4
, 2,

3

2

)

,
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(13)
(

1, 2,
5

2
, 1,

1

2
, 3,

3

2
, 4, 2

)

, (14)
(

1, 2,
1

2
, 3,

3

2
, 1,

5

2
, 2, 4

)

,

(15)
(

1,
1

2
,
5

4
,
3

2
,
3

4
, 2,

1

4
, 1,

1

2

)

, (16)
(

1,
3

2
,
5

4
,
1

2
,
1

4
, 1,

3

4
, 2,

1

2

)

,

(17)
(

1,
1

3
,
1

2
,
2

3
,
5

6
,
4

3
,
1

6
,
1

3
,
2

3

)

, (18)
(

1,
2

3
,
1

2
,
1

3
,
1

6
,
1

3
,
5

6
,
4

3
,
2

3

)

,

(19)
(

1,
1

2
,
1

8
,
1

2
,
3

8
,
1

4
,
5

8
,
3

4
,
1

4

)

, (20)
(

1, 2,
3

4
, 1,

5

4
,
1

2
,
1

4
,
1

2
,
3

2

)

,

(21)
(

1,
1

2
,
1

8
,
1

2
,
5

8
,
3

4
,
3

8
,
1

4
,
1

4

)

, (22)
(

1, 1,
3

4
, 2,

1

4
,
1

2
,
5

4
,
1

2
,
3

2

)

,

(23)
(

1, 2,
5

4
, 1,

3

4
,
1

2
,
1

4
,
3

2
,
1

2

)

, (24)
(

1, 1,
5

4
, 2,

1

4
,
3

2
,
3

4
,
1

2
,
1

2

)

,

(25) (1, 0.4215, 0.1854, 0.6820, 0.4421, 0.4215, 0.6955, 0.6820, 0.3251),

(26) (1, 0.4766, 0.6482, 0.6180, 1.0197, 1.4662, 0.2719, 0.6180, 1),

(27) (1, 0.7712, 1.6501, 1.6182, 1.0489, 2.3726, 0.4400, 1.6182, 1),

(28) (1, 1.6182, 1.6501, 0.7712, 0.4400, 1.6182, 1.0489, 2.3726, 1),

(29) (1, 2.0982, 0.5705, 1.2966, 2.1395, 2.0982, 1.3600, 1.2966, 3.0764),

(30) (1, 2.3726, 1.6501, 1.6182, 1.0489, 0.7712, 0.4400, 1.6182, 1),

(31) (1, 0.6820, 0.1854, 0.4215, 0.6955, 0.6820, 0.4421, 0.4215, 0.3251),

(32) (1, 0.6180, 0.6482, 0.4766, 0.2719, 0.6180, 1.0197, 1.4662, 1),

(33) (1, 1.2966, 0.5705, 2.0982, 1.3600, 1.2966, 2.1395, 2.0982, 3.0764),

(34) (1, 1.6182, 1.6501, 2.3726, 0.4400, 1.6182, 1.0489, 0.7712, 1),

(35) (1, 1.4662, 0.6482, 0.6180, 1.0197, 0.4766, 0.2719, 0.6180, 1),

(36) (1, 0.6180, 0.6482, 1.4662, 0.2719, 0.6180, 1.0197, 0.4766, 1),

(37) (1, 0.6083, 1.0188, 1, 1.0188, 0.6083, 0.2736, 1, 1),

(38) (1, 1.6440, 0.4498, 1.6440, 1.6750, 1.6440, 1.6750, 1.6440, 1),

(39) (1, 1, 1.0188, 0.6083, 0.2736, 1, 1.0188, 0.6083, 1),

(40) (1, 0.6638, 0.2309, 0.6638, 0.6826, 0.6638, 0.6826, 0.6638, 0.5983),

(41) (1, 1.1094, 0.3860, 1.1094, 1.1409, 1.1094, 1.1409, 1.1094, 1.6713),

(42) (1, 1.5066, 1.0284, 1, 1.0284, 0.9014, 0.3479, 1, 1),

(43) (1, 0.9014, 1.0284, 1, 1.0284, 1.5066, 0.3479, 1, 1),

(44) (1, 1, 1.0284, 1.5066, 0.3479, 1, 1.0284, 0.9014, 1),

(45) (1, 1, 1.0284, 0.9014, 0.3479, 1, 1.0284, 1.5066, 1),

(46) (1, 0.7739, 0.2818, 0.7739, 0.7978, 0.7739, 0.7978, 0.7739, 1),

(47) (1, 1.2921, 1.0308, 1, 1.0308, 1.2921, 0.3641, 1, 1),

(48) (1, 1, 1.0308, 1.2921, 0.3641, 1, 1.0308, 1.2921, 1),
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where (1), · · · , (24) are Kähler Einstein metrics. Then, the approximate Hg corresponding to

every metric g from (1) to (48) are as follows:

Hg(1) = · · · = Hg(24)
≈ 5.935271057,

Hg(25)
= · · · = Hg(36)

≈ 5.925652920,

Hg(37)
= Hg(38)

= Hg(39)
≈ 5.870792469,

Hg(40)
= · · · = Hg(45)

≈ 5.9098080970,

Hg(46)
= Hg(47)

= Hg(48)
≈ 5.9121091966.

As it is known that there is a one-to-one correspondence between non-equivalent G-invariant

complex structures and the non-isometric Kähler Einstein metrics on a flag manifold. Since

there is only one G-invariant complex structure on any full flag manifold, so there is only one

non-isometric Kähler Einstein metric on full flag manifold SO(7)/T, thus the Kähler Einstein

metrics from (1) to (24) in Theorem 3.1 are all isometric.

By Theorem 3.1 we obtain that there are four non-equal values of Hg corresponding to

non-Kähler-Einstein metrics from (25) to (48). Thus there are at least four non-isometric

non-Kähler Einstein metrics. Next, we prove there are exactly four non-isometric non-Kähler

Einstein metrics.

Let

Π = {α1, α2, α3}

be the simple root system of the Lie algebra of SO(7). then the Weyl group W of SO(7) is

generated by rα1 , rα2 , rα3 , where

rα(β) = β − 2(α, β)

(α, α)
α, (α, β) = −q − p

2
(α, α)

and p, q are the largest nonnegative integers such that β + kα ∈ R with

−p ≤ k ≤ q.

Let

R+ = {α1, α2, α3, α1 + α2, α2 + α3, α2 + 2α3,

α1 + α2 + α3, α1 + α2 + 2α3, α1 + 2α2 + 2α3}

be the positive roots of the Lie algebra of SO(7). Then we obtain

rα1(α1) = −α1,

rα1(α2) = α1 + α2,

rα1(α3) = α3,

rα1(α1 + α2) = α2,

rα1(α2 + α3) = α1 + α2 + α3,
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rα1(α2 + 2α3) = α1 + α2 + 2α3,

rα1(α1 + α2 + α3) = α2 + α3,

rα1(α1 + α2 + 2α3) = α2 + 2α3,

rα1(α1 + 2α2 + 2α3) = α1 + 2α2 + 2α3;

rα2(α1) = α1 + α2,

rα2(α2) = −α2,

rα2(α3) = α3 + α2,

rα2(α1 + α2) = α1,

rα2(α2 + α3) = α3,

rα2(α2 + 2α3) = α2 + 2α3,

rα2(α1 + α2 + α3) = α1 + α2 + α3,

rα2(α1 + α2 + 2α3) = α1 + 2α2 + 2α3,

rα2(α1 + 2α2 + 2α3) = α1 + α2 + 2α3;

rα3(α1) = α1,

rα3(α2) = α2 + 2α3,

rα3(α3) = −α3,

rα3(α1 + α2) = α1 + α2 + 2α3,

rα3(α2 + α3) = α2 + α3,

rα3(α2 + 2α3) = α2,

rα3(α1 + α2 + α3) = α1 + α2 + α3,

rα3(α1 + α2 + 2α3) = α1 + α2,

rα3(α1 + 2α2 + 2α3) = α1 + 2α2 + 2α3.

Since the action of the Weyl group of SO(7) on the root system of the Lie algebra SO(7)

induces an action on the components of the SO(7)-invaraint metric

g = x1 · (−(·, ·))|m1 + · · ·+ xs · (−(·, ·))|ms
.

In particular, if

g = (x1, x2, x3, x4, x5, x6, x7, x8, x9) = (a1, a2, a3, a4, a5, a6, a7, a8, a9) (3.6)

is a positive solution of the system of the Einstein equations of SO(7)/T , then

rα1 (g) = (a1, a4, a3, a2, a7, a8, a5, a6, a9),

rα2 (g) = (a4, a2, a5, a1, a3, a6, a7, a9, a8),

rα3 (g) = (a1, a6, a3, a8, a5, a2, a7, a4, a9),

rα1 ◦ rα2(g) = (a2, a4, a7, a1, a3, a8, a5, a9, a6),

rα1 ◦ rα3(g) = (a1, a8, a3, a6, a7, a4, a5, a2, a9),
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rα2 ◦ rα3 (g) = (a4, a6, a5, a9, a3, a2, a7, a1, a8),

rα2 ◦ rα1 (g) = (a4, a1, a5, a2, a7, a9, a3, a6, a8),

rα3 ◦ rα2 (g) = (a8, a6, a5, a1, a3, a2, a7, a9, a4),

rα1 ◦ rα2 ◦ rα1(g) = (a2, a1, a7, a4, a5, a9, a3, a8, a6),

rα3 ◦ rα2 ◦ rα3(g) = (a8, a2, a5, a9, a3, a6, a7, a1, a4),

rα2 ◦ rα3 ◦ rα2(g) = (a9, a6, a3, a4, a5, a2, a7, a8, a1),

rα1 ◦ rα2 ◦ rα3(g) = (a2, a8, a7, a9, a3, a4, a5, a1, a6),

rα1 ◦ rα3 ◦ rα2(g) = (a6, a8, a7, a1, a3, a4, a5, a9, a2),

rα2 ◦ rα1 ◦ rα3(g) = (a4, a9, a5, a6, a7, a1, a3, a2, a8),

rα3 ◦ rα2 ◦ rα1(g) = (a8, a1, a5, a6, a7, a9, a3, a2, a4),

rα1 ◦ rα2 ◦ rα1 ◦ rα3(g) = (a2, a9, a7, a8, a5, a1, a3, a4, a6),

rα1 ◦ rα2 ◦ rα3 ◦ rα2(g) = (a9, a8, a3, a2, a7, a4, a5, a6, a1),

rα1 ◦ rα3 ◦ rα2 ◦ rα1(g) = (a6, a1, a7, a8, a5, a9, a3, a4, a2),

rα1 ◦ rα3 ◦ rα2 ◦ rα3(g) = (a6, a4, a7, a9, a3, a8, a5, a1, a2),

rα2 ◦ rα1 ◦ rα3 ◦ rα2(g) = (a6, a9, a7, a4, a5, a1, a3, a8, a2),

rα2 ◦ rα3 ◦ rα2 ◦ rα3(g) = (a9, a2, a3, a8, a5, a6, a7, a4, a1),

rα2 ◦ rα3 ◦ rα2 ◦ rα1(g) = (a9, a4, a3, a6, a7, a8, a5, a2, a1),

rα3 ◦ rα2 ◦ rα1 ◦ rα3(g) = (a8, a9, a5, a2, a7, a1, a3, a6, a4)

(3.7)

are also positive solutions of the system of the Einstein equations of the full flag manifold

SO(7)/T . These metrics in system (3.7) are all isometric, and they are all isometric to the

metric g = (x1, x2, x3, x4, x5, x6, x7, x8, x9).

As for any G-invariant Einstein metric g, we have

rα1 ◦ rα3(g) = rα3 ◦ rα1 (g),

rα1 ◦ rα2 ◦ rα1 (g) = rα2 ◦ rα1 ◦ rα2(g),

rα2 ◦ rα3 ◦ rα2 ◦ rα3(g) = rα3 ◦ rα2 ◦ rα3 ◦ rα2(g).

Thus, if g = (x1, x2, x3, x4, x5, x6, x7, x8, x9) is a G-invariant Einstein metric, w(g) is one of in

system (3.7) for any w ∈ W (except the identity element Id).

As Hg(25) = Hg(26) = · · · = Hg(36) = 5.925652920, we prove that the metrics from (25) to

(36) are isometric.

Because

g(25) = (1, 0.4215, 0.1854, 0.6820, 0.4421, 0.4215, 0.6955, 0.6820, 0.3251)

is a G-invariant Einstein metric, by the action of the elements of the Weyl group of SO(7) on

g(25) (except the identity element Id), we can obtain 23 positive solutions in system (19). But

some of them are equal, except the equal solutions we can get the metrics from (26) to (36), and

they are all isometric to g(25) = (1, 0.4215, 0.1854, 0.6820, 0.4421, 0.4215, 0.6955, 0.6820, 0.3251).

As Hg(37) = Hg(38) = Hg(39) = 5.870792469, we prove that the metrics from (37) to (39) are

isometric.

Because g(37)=(1, 0.6083, 1.0188, 1, 1.0188, 0.6083, 0.2736, 1, 1) is a G-invariant Einstein

metric, by the action of the elements of the Weyl group of SO(7) on g(37) (except the identity
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map Id), we can obtain 23 positive solutions in system (3.7), but only two of them are not

equal to each other. Thus we obtain the metrics (38) and (39), and they are all isometric to

g(37) = (1, 0.6083, 1.0188, 1, 1.0188, 0.6083, 0.2736, 1, 1).

As Hg(40) = · · · = Hg(45) = 5.9098080970, we prove that the metrics from (40) to (45) are

isometric.

Because

g(40) = (1, 0.6638, 0.2309, 0.6638, 0.6826, 0.6638, 0.6826, 0.6638, 0.5983)

is a G-invariant Einstein metric, by the action of the elements of the Weyl group of SO(7) on

g(40) (except the identity map Id), we can obtain 23 positive solutions in system (3.7), but only

five of them are not equal to each other. Thus we obtain the metrics from (41) to (45), and they

are all isometric to g(40)=(1, 0.6638, 0.2309, 0.6638, 0.6826, 0.6638, 0.6826, 0.6638, 0.5983).

As Hg(46) = Hg(47) = Hg(48) = 5.9121091966, we prove that the metrics from (46) to (48) are

isometric.

Because g(46) = (1, 0.7739, 0.2818, 0.7739, 0.7978, 0.7739, 0.7978, 0.7739, 1) is a G-invariant

Einstein metric, by the action of the elements of the Weyl group of SO(7) on g(46) (except the

identity map Id), we can obtain 23 positive solutions in system (3.7), but only two of them are

not equal to each other. Thus we obtain the metrics (47) and (48), and they are all isometric

to g(46) = (1, 0.7739, 0.2818, 0.7739, 0.7978, 0.7739, 0.7978, 0.7739, 1).

By the analysis above it follows that there are exactly five non-isometric Einstein metrics on

the full flag manifold SO(7)/T , of which one is Kähler Einstein metric and four are non-Kähler

Einstein metrics.

Theorem 3.2 The full flag manifold SO(7)/T admits exactly five SO(7)-invariant Einstein

metrics (up to isometry). There is a unique Kähler Einstein metric (up to a scale) given by

g =
(

1, 1, 12 , 2,
3
2 , 2,

5
2 , 3, 4

)

and other four are non-Kähler Einstein metrics (up to a scale) given

by as follows:

(a) (1, 0.4215, 0.1854, 0.6820, 0.4421, 0.4215, 0.6955, 0.6820, 0.3251),

(b) (1, 0.6083, 1.0188, 1, 1.0188, 0.6083, 0.2736, 1, 1),

(c) (1, 0.6638, 0.2309, 0.6638, 0.6826, 0.6638, 0.6826, 0.6638, 0.5983),

(d) (1, 0.7739, 0.2818, 0.7739, 0.7978, 0.7739, 0.7978, 0.7739, 1).

References

[1] Arvanitoyeorgos, A., New invariant Einstein metrics on generalizd flag manifolds, Trans. Amer. Math.

Soc., 337(2), 1993, 981–995.

[2] Sakane, Y., Homogeneous Einstein metrics on flag manifold, Lobachevskii J. Math., 4, 1999, 71–87.

[3] Dos Santos, E. C. F. and Negreiros, C. J. C., Einstein metrics on flag manifolds, Revista Della, Unión
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