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Abstract In this paper bifurcations of heterodimensional cycles with highly degenerate
conditions are studied in three dimensional vector fields, where a nontransversal intersec-
tion between the two-dimensional manifolds of the saddle equilibria occurs. By setting up
local moving frame systems in some tubular neighborhood of unperturbed heterodimen-
sional cycles, the authors construct a Poincaré return map under the nongeneric conditions
and further obtain the bifurcation equations. By means of the bifurcation equations, the
authors show that different bifurcation surfaces exhibit variety and complexity of the bi-
furcation of degenerate heterodimensional cycles. Moreover, an example is given to show
the existence of a nontransversal heterodimensional cycle with one orbit flip in three di-
mensional system.
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1 Introduction and Hypotheses

In recent years, bifurcation theory has attracted lots of attention due to its important role in

applications (see [1–3]). Especially, different kinds of high co-dimensional homoclinic or hetero-

clinic bifurcations have been studied in detail. [4] studied the inclination-flip homoclinic orbit

together with two other codimension 2 homoclinic bifurcations, which are cases of resonant bi-

furcation and orbit-flip bifurcation. [5] investigated codimension-two bifurcations of homoclinic

orbits with an orbit flip. For other references, see [6–8] and the references cited therein.

[9] considered the bifurcation of heterodimensional cycles in dynamical systems. A hetero-

clinic cycle is said to be equidimensional if all the equilibrium points in the cycle have the same

index (dimension of the stable manifold). Otherwise, such a cycle is called heterodimensional.

Heterodimensional cycles, as a special kind of heteroclinic cycle, were found in many practical

problems (see [10–11]). Bykov made an essential contribution to the topic of the paper under

consideration (see [12], where the unfolding of codim-0/codim-2 cycles was studied). [13] an-

alyzed homoclinic orbits near heterodimensional cycles between an equilibrium and a periodic

orbit in three dimensions. For other references about heterodimensional cycles, see [14–19] and

the references cited therein.
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Usually, a generic heterodimensional cycle is composed by a codim-0/codim-2 heteroclinic

orbit between two real saddle equilibrium. However a heterodimensional cycle may exhibit

different degeneracies for some reasons (see [18–20]). The study in [20] revealed another degen-

eracy that the two heteroclinic orbits of the heterodimensional cycle are both nontransversal,

that was found in Chua’s equation. Notice that there are few papers on nontransversal het-

erodimensional cycle problems concerning orbit flips. Motivated by this fact, in this paper, we

confine ourselves to study the bifurcation of the nongeneric heterodimensional cycle with orbit

flip if the nontransversal intersection of the two-dimensional manifolds occurs at the same time.

We will present the bifurcation results on different parameter regions, and we will show that

under the stronger degeneracy conditions-nontransversality and orbit flip, the problem under

consideration in our paper has the richer dynamics than the problem discussed in the literature

[17], where they discussed the nontransversal heterodimensional cycle with no orbit flip. For

example, the heterodimensional cycle can coexist with periodic orbit, but this can not happen

in the case in [17]. In addition, we also give an example to demonstrate the existence of the

system which has a nontransversal heterodimensional with one orbit flip.

The difficulty for us is how to show the different degeneracy (including the nontransversality

and the orbit flip) in the return map. The technique we have used here is the Shilnikov

coordinates and the local moving frame, the latter is introduced in [21], and then improved

in [22–23] etc. By establishing the local coordinates and Poincaré maps in a sufficiently small

neighborhood of the primary cycle, we theoretically show that the different bifurcation surfaces

exhibits variety and complexity of the bifurcations of degenerate heterodimensional cycles.

Consider the following Cr system:

ż = f(z) + g(z, µ), (1.1)

and its unperturbed system

ż = f(z), (1.2)

where r > 4, z ∈ R
3, µ ∈ R

l, l ≥ 3, 0 6 |µ| ≪ 1, g(z, 0) = 0, f(z) is Cr with respect to the

phase variable z, g(z, µ) is Cr with respect to the phase variable z and the parameter µ. We

also assume that:

(H1) System (1.2) has two hyperbolic equilibria pi, i = 1, 2. W s
pi

and Wu
pi

are the Cr stable

and unstable manifolds of pi, respectively. In addition, the linearization matrix Df(p1) has

three simple real eigenvalues: −ρ11, λ1
1, λ2

1 satisfying

−ρ11 < 0 < λ1
1 < λ2

1, λ2
1 ≥ 3λ1

1, (1.3)

and Df(p2) has three simple real eigenvalues: −ρ12,−ρ22, λ
1
2 satisfying

−ρ22 < −ρ12 < 0 < λ1
2, ρ22 ≥ 3ρ12. (1.4)

(H2) There is a heteroclinic cycle Γ = Γ1 ∪ Γ2 connecting p1 and p2, where Γi = {z =

ri(t) : t ∈ R}, r1(+∞) = r2(−∞) = p2, r1(−∞) = r2(+∞) = p1.

(H3) Let e±i = lim
t→∓∞

ṙi(t)
|ṙi(t)|

, then e+1 ∈ Tp1W
u
p1
, e+2 ∈ Tp2W

u
p2
, e−1 ∈ Tp2W

ss
p2
, e−2 ∈

Tp1W
s
p1

be unit eigenvectors corresponding to λ1
1, λ

2
2,−ρ12,−ρ11, respectively, where W ss

p2
is the

strong stable manifold of p2. By TqM , we denote the tangent space of the manifold M at q.
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Remark 1.1 Under the assumption (H1), we know that Γ is a heterodimensional cycle. By

(H3), e
+
1 and e−1 are the eigenvalues corresponding to λ1

1 and −ρ22, respectively, which means

that Γ1 enters p1 along the leading unstable direction of Wu
p1
, and enters p2 along the strong

stable direction of W ss
p2
. From [24], we know that Γ1 takes orbit-flip when t → +∞ (see Figure

1).
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Figure 1 Heterodimensional cycle Γ = Γ1 ∪ Γ2.

(H4) (Nontransversal condition) There is a nontransversal intersection between the two-

dimensional manifolds of pi along the heteroclinic orbit Γ1, that is, W
u
p1

is coincident with W s
p2

along Γ1.

As we will see, the bifurcations under consideration heavily depend on the relations between

the eigenvalues of pi, i = 1, 2. Without loss of generality, we may assume

(H5)

λ1
2

ρ12
>

ρ11
λ1
1

> 1.

The rest of the paper is organized as follows. In Section 2, the Poincaré map and the

successor function are obtained by the establishment of a local moving frame system near

the unperturbed heterodimensional cycle. Then, bifurcation equations are derived by using

the implicit function theorem. Section 3 presents the bifurcation results on different parameter

regions and the sufficient conditions for the persistence of heterodimensional cycle, the existence

of homoclinic orbit and periodic orbit, the noncoexistence and coexistence of heterodimensional

cycle, periodic orbit and homoclinic orbit. An analytical example is demonstrated to illustrate

our main results in the last section.

2 Local Coordinates and Poincaré Maps

Following [25], as a direct application of the stable (unstable) manifold theorem and the

strong stable (unstable) manifold theorem, we take two successive Cr and Cr−1 transformations

to straighten the local stable manifold, unstable manifold, strong unstable manifold in the region
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of Ui such that the system (1.1) has the following form in the small neighborhood U1 of p1:





ẋ = [λ1
1(µ) + · · · ]x+O(u)O(y),

ẏ = [−ρ11(µ) + · · · ]y,
u̇ = [λ2

1(µ) + · · · ]u+O(x)O(y),

(2.1)

and has the following form in the neighborhood U2 of p2:




ẋ = [λ1
2(µ) + · · · ]x,

ẏ = [−ρ12(µ) + · · · ]y +O(v)O(x),

v̇ = [−ρ22(µ) + · · · ]v +O(y)[O(x) + O(y)].

(2.2)

Systems (2.1)–(2.2) are at least Ck, where k = min
{
r−3,

[λ2
1

λ1
1

]
−1,

[ρ2
2

ρ1
2

]
−1

}
≥ 2, which is owing

to that the weak unstable manifold of p1 and the weak stable manifold of P2 are approximately

C
[
λ2
1

λ1
1
]
, C

[
ρ22
ρ12

]
, respectively (see [24, p. 56]). Of course, the same kind of change of variable can be

achieved by using the theory of exponential dichotomies and weighted exponential dichotomies.

However, by [24], we know that the extra conditions λ2
1 ≥ 3λ1

1 and ρ22 ≥ 3ρ12 are needed to

ensure such change of coordinates are possible, so that the systems (2.1)–(2.2) are smooth

enough. For notational convenience, we use λi
1(µ), −ρ11(µ), i = 1, 2 and −ρj2(µ), j = 1, 2 λ1

2(µ)

as the corresponding eigenvalues of the linearization matrix of perturbed system (1.1), which

indicate dependence on µ, where λi
1(0) = λi

1, ρ11(0) = ρ11, i = 1, 2, ρj2(0) = ρj2, λ1
2(0) = λ1

2,

j = 1, 2.

Take the coordinate expression of ri(t) as ri(t) = (rxi (t), r
y
i (t), r

u
i (t))

∗ in the small neigh-

borhood U1, and ri(t) = (rxi (t), r
y
i (t), r

v
i (t))

∗, i = 1, 2, in the small neighborhood U2, i = 1, 2.

Take the time Ti large enough such that r1(−T1) = (δ, 0, 0)∗, r1(T1) = (0, 0, δ)∗, r2(−T2) =

(δ, 0, 0)∗, r2(T2) = (0, δ, 0)∗, where the sign “*” means the transposition, and δ > 0 is small

enough such that

{(x, y, u)∗ | |x|, |y|, |u| < 2δ} ⊂ U1, {(x, y, v)∗ | |x|, |y|, |v| < 2δ} ⊂ U2.

Consider the linear variational system of (1.2)

Ż = Df(ri(t))Z (2.3)

and its adjoint system

Φ̇ = −(Df(ri(t)))
∗Φ. (2.4)

Note that these two systems are adjoint in the sense that if Z(t) is the solution matrix of (2.3),

then (Z−1(t))∗ is the solution matrix of (2.4).

In the following, we will choose suitable solutions of the corresponding linear variational

equation as a local coordinate system along Γi.

Following the idea in [17], we know that there exists a fundamental solution matrix Z1(t) =

(z11(t), z
2
1(t), z

3
1(t)) for the system (2.3) satisfying

z11(t) ∈ (Tr1(t)W
u
p1
)c,

z21(t) =
ṙ1(t)

|ṙ1(−T1)|
∈ Tr1(t)W

u
p1

∩ Tr1(t)W
s
p2
,
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z31(t) ∈ Tr1(t)W
u
p1

∩ (Tr1(t)Γ1)
c,

such that

Z1(−T1) =




0 1 0
1 0 0

ω13
1 0 1



 , Z1(T1) =




ω11
1 0 0
0 0 ω32

1

ω13
1 ω23

1 ω33
1



 ,

where ω32
1 6= 0, ω11

1 6= 0, ω23
1 < 0, |ω13

1 · (ω11
1 )−1| ≪ 1, |ω33

1 · (ω32
1 )−1| ≪ 1. The notation (M)c

means subspace complementary to M .

Also, there exists a fundamental solution matrix Z2(t) = (z12(t), z
2
2(t), z

3
2(t)) for the system

(2.3) satisfying

z12(t), z
3
2(t) ∈ (Tr2(t)Γ2)

c,

z22(t) =
ṙ2(t)

|ṙ2(−T2)|
∈ Tr2(t)W

u
p2

∩ Tr2(t)W
s
p1
,

such that

Z2(−T2) =




0 1 0
0 0 1
1 0 0



 , Z2(T2) =




ω11
2 0 ω31

2

ω12
2 ω22

2 ω32
2

ω13
2 0 ω33

2



 ,

where ω22
2 6= 0, ω =

∣∣∣ ω
11
2 ω31

2

ω13
2 ω33

2

∣∣∣ 6= 0, |ωi2
2 · ω−1| ≪ 1, i = 1, 3.

In what follows, we choose (z1i (t), z
2
i (t), z

3
i (t)) as a new local coordinate system along Γi.

Let Φi(t) = (φ1
i (t), φ

2
i (t), φ

3
i (t)) = (Z−1

i (t))∗, then Φi(t) is a fundamental solution matrix of

(2.4), i = 1, 2. Take a coordinate transformation near the orbits Γi as

z = ri(t) + Zi(t)Ni(t) , hi(t), i = 1, 2,

where Ni(t) = (n1
i (t), 0, n

3
i (t))

∗, i = 1, 2 are the coordinate decomposition of system (1.1) in

the new local coordinate system corresponding to z1i (t), z
3
i (t).

Let

S0
1 = {z = h1(−T1) : |x|, |y|, |u| < 2δ}, S0

2 = {z = h2(−T2) : |x|, |y|, |v| < 2δ},
S1
1 = {z = h1(T1) : |x|, |y|, |v| < 2δ}, S1

2 = {z = h2(T2) : |x|, |y|, |u| < 2δ}

be cross-sections of Γi at t = −Ti and t = Ti, respectively, which intersect Γi transversally.

Now we start to construct the Poincaré map step by step. Consider the map F 0
i : q1i−1 ∈

S1
i−1 → q0i ∈ S0

i and F 1
i : q0i ∈ S0

i → q1i ∈ S1
i , where S1

0 = S1
2 , q10 = q12 (see Figure 2).
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Figure 2 The cross-sections and Poincaré map.
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In order to obtain the Poincaré map, first we should establish the relationship between the

old coordinates

q01(x
0
1, y

0
1 , u

0
1)

∗, q11(x
1
1, y

1
1 , v

1
1)

∗, q02(x
0
2, y

0
2 , v

0
2)

∗, q12(x
1
2, y

1
2 , u

1
2)

∗

and their new coordinates

q01(n
0,1
1 , 0, n0,3

1 )∗, q11(n
1,1
1 , 0, n1,3

1 )∗, q02(n
0,1
2 , 0, n0,3

2 )∗, q12(n
1,1
2 , 0, n1,3

2 )∗.

By the coordinate transformation hi(t) = ri(t) + Zi(t)Ni(t), we have

q01 = (x0
1, y

0
1 , u

0
1)

∗ = r1(−T1) + Z1(−T1)N1(−T1), N1(−T1) = (n0,1
1 , 0, n0,3

1 )∗,

q11 = (x1
1, y

1
1 , v

1
1)

∗ = r1(T1) + Z1(T1)N1(T1), N1(T1) = (n1,1
1 , 0, n1,3

1 )∗.

Then combining with the expressions of Zi(−Ti), Zi(Ti) (i = 1, 2), we obtain





n0,1
1 = y01 ,

n0,3
1 = u0

1 − ω13
1 y01 ,

x0
1 = δ

(2.5)

and




n1,1
1 = (ω11

1 )−1x1
1,

n1,3
1 = (ω32

1 )−1y11 ,

v11 = δ + ω13
1 (ω11

1 )−1x1
1 + ω33

1 (ω32
1 )−1y11 ≈ δ.

(2.6)

For

q02 = (x0
2, y

0
2 , v

0
2)

∗ = r2(−T2) + Z2(−T2)N2(−T2), N2(−T2) = (n0,1
2 , 0, n0,3

2 )∗,

q12 = (x1
2, y

1
2 , u

1
2)

∗ = r2(T2) + Z2(T2)N2(T2), N2(T2) = (n1,1
2 , 0, n1,3

2 ),

a similar calculation shows that




n0,1
2 = v02 ,

n0,3
2 = y02 ,

x0
2 = δ

(2.7)

and




n1,1
2 = ω−1(ω33

2 x1
2 − ω31

2 u1
2),

n1,3
2 = ω−1(ω11

2 u1
2 − ω13

2 x1
2),

y12 ≈ δ.

(2.8)

On the other hand, suppose that hi(t) = ri(t) + Zi(t)Ni(t) is the solution of (1.1) in the

small tube neighborhood of Γi. Then substitute it into (1.1), and we have

ṙi(t) + Żi(t)Ni(t) + Zi(t)Ṅi(t)

= f(ri(t) + Zi(t)Ni(t)) + g(ri(t) + Zi(t)Ni(t), µ)

= f(ri(t)) +Df(ri(t))Zi(t)Ni(t) + g(ri(t), 0)
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+ gz(ri(t), 0) · Zi(t)Ni(t) + gµ(ri(t), 0) · µ+ h.o.t.

By ṙi(t) = f(ri(t)), Żi(t) = Df(ri(t)) · Zi(t) and g(z, 0) = 0, we obtain

Ṅi(t) = Z−1
i (t) · gµ(ri(t), 0)µ+ h.o.t.

Integrating both sides of this equation from −Ti to Ti, we have

Ni(Ti)−Ni(−Ti) =

∫ Ti

−Ti

Z−1
i (t)gµ(ri(t), 0)µ dt+ h.o.t.,

which produce the global map F 1
1 : S0

1 −→ S1
1 and F 1

2 : S0
2 −→ S1

2 , as follows

F 1
1 (n

0,1
1 , 0, n0,3

1 )∗ = (ñ1,1
1 , 0, ñ1,3

1 )∗,

F 1
2 (n

0,1
2 , 0, n0,3

2 )∗ = (ñ1,1
2 , 0, ñ1,3

2 )∗

with the expression given by

ñ1,j
1 = n0,j

1 +M j
1µ+ h.o.t., j = 1, 3,

ñ1,k
2 = n0,k

2 +Mk
2 µ+ h.o.t., k = 1, 3, (2.9)

where

M j
1 =

∫ T1

−T1

φj∗
1 (t)gµ(r1(t), 0) dt, j = 1, 3,

Mk
2 =

∫ T2

−T2

φk∗
2 (t)gµ(r2(t), 0) dt, k = 1, 3.

Next we consider the local maps F 0
1 : q12 ∈ S1

2 −→ q01 ∈ S0
1 and F 0

2 : q11 ∈ S1
1 −→ q02 ∈

S0
2 induced by flows confined in the neighborhood Ui.

Let τi (i = 1, 2) be the time spent from q1i−1 to q0i , q
1
0 = q12 . Suppose ρ11 > λ1

1, λ
1
2 > ρ12, then

we select s1 = e−λ1
1(µ)τ1 , s2 = e−ρ1

2(µ)τ2 (if ρ11 < λ1
1, λ

1
2 < ρ12, then we select s1 = e−ρ1

1(µ)τ1 , s2 =

e−λ1
2(µ)τ2). Define β1(µ) =

ρ1
1(µ)

λ1
1(µ)

, β2(µ) =
ρ1
2(µ)

λ1
2(µ)

, then by (H5), 1 < β1(µ) < 1
β2(µ)

holds for

|µ| ≪ 1 on the basis of the continuity.

Then under the assumption (H5) of the non-resonance conditions among the eigenvalues,

by the normal forms (2.1)–(2.2), and the formula of variation of constants, we obtain the local

map F 0
1 : q12(x

1
2, y

1
2 , u

1
2) ∈ S1

2 → q01(x
0
1, y

0
1 , u

0
1) ∈ S0

1 as follows:

x1
2 = x(T2) ≈ δs1, y01 = y(T2 + τ1) ≈ δs

ρ11(µ)

λ1
1(µ)

1 , u1
2 = u(T2) ≈ s

λ2
1(µ)

λ1
1(µ)

1 u0
1, (2.10)

and the local map F 0
2 : q11(x

1
1, y

1
1 , v

1
1) ∈ S1

1 → q02(x
0
2, y

0
2 , v

0
2) ∈ S0

2 as follows:

x1
1 = x(T1) ≈ δs

λ1
2(µ)

ρ12(µ)

2 , y02 = y(T1 + τ2) ≈ s2y
1
1 , v02 = v(T1 + τ2) ≈ δs

ρ22(µ)

ρ12(µ)

2 , (2.11)

where (s1, s2, u
0
1, y

1
1) are called Shilnikov variables.

Remark 2.1 Shilnikov variables were introduced by Shilnikov in 1968 to compute the local

transition map near equilibria to leading order. Instead of solving an initial-value problem,

solutions near the equilibrium are found using an appropriate boundary-value problem. Further

information on Shilnikov variables can be found in [24, p. 62] and [26].
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In the following, for convenience, we may denote λi
1 = λi

1(µ), i = 1, 2; ρ11 = ρ11(µ), β1 =
ρ1
1(µ)

λ1
1(µ)

, β2 =
ρ1
2(µ)

λ1
2(µ)

; ρj2(µ) = ρj2, λj
2 = λj

2(µ), j = 1, 2.

Thus, by (2.5), (2.9)–(2.10), we obtain the Poincaré map F1 = F 1
1 ◦F 0

1 : S
1
2 → S1

1 as follows:

{
ñ1,1
1 = sβ1

1 δ +M1
1µ+ h.o.t.,

ñ1,3
1 = u0

1 − ω13
1 sβ1

1 δ +M3
1µ+ h.o.t.,

(2.12)

and by (2.7), (2.9), (2.11), we obtain the Poincaré map F2 = F 1
2 ◦ F 0

2 : 2S
1
1 → S1

2 as follows:





ñ1,1
2 = s

ρ22
ρ12
2 δ +M1

2µ+ h.o.t.,

ñ1,3
2 = s2y

1
1 +M3

2µ+ h.o.t.

(2.13)

Then, by (2.6), (2.8), (2.12)–(2.13), we obtain the successor functions

(G1, G2) , G(s1, s2, u
0
1, y

1
1) = (G1

1, G
3
1, G

1
2, G

3
2) = (F1(q

1
2)− q11 , F2(q

1
1)− q12)

as follows:

G1
1 = sβ1

1 δ − (ω11
1 )−1s

1
β2
2 δ +M1

1µ+ h.o.t.,

G3
1 = u0

1 − ω13
1 sβ1

1 δ − (ω32
1 )−1y11 +M3

1µ+ h.o.t.,

G1
2 = s

ρ22
ρ1
2

2 δ − ω−1ω33
2 s1δ + ω−1ω31

2 s

λ2
1

λ1
1

1 u0
1 +M1

2µ+ h.o.t.,

G3
2 = s2y

1
1 + ω−1ω13

2 s1δ − ω−1ω11
2 s

λ2
1

λ1
1

1 u0
1 +M3

2µ+ h.o.t.

By the implicit function theorem, solving the equation G3
1 = 0, we have

u0
1 = ω13

1 sβ1

1 δ + (ω32
1 )−1y11 −M3

1µ+ h.o.t.

Substituting it into (G1
1, G

1
2, G

3
2) = 0, we obtain the bifurcation equations, which have the

following three different expressions:

(I) ω13
2 6= 0, ω33

2 6= 0






s
β1
1 δ − (ω11

1 )−1
s

1
β2
2 δ +M

1
1µ+ h.o.t. = 0,

s

ρ22
ρ12
2 δ − ω

−1
ω

33
2 s1δ +M

1
2µ+ h.o.t. = 0,

s2y
1
1 + ω

−1
ω

13
2 s1δ +M

3
2µ+ h.o.t. = 0.

(2.14)

(II) ω13
2 = 0, ω33

2 6= 0






s
β1
1 δ − (ω11

1 )−1
s

1
β2
2 δ +M

1
1µ+ h.o.t. = 0,

s

ρ22
ρ1
2

2 δ − ω
−1

ω
33
2 s1δ +M

1
2µ+ h.o.t. = 0,

s2y
1
1 − ω−1ω11

2 ω13
1 s

λ2
1(µ)

λ1
1
(µ)

+β1

1 δ − (ωω32
1 )−1

ω
11
2 s

λ2
1

λ1
1

1 y
1
1

+ω−1ω11
2 s

λ2
1

λ1
1

1 M3
1µ+M3

2µ+ h.o.t. = 0.

(2.15)
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(III) ω13
2 6= 0, ω33

2 = 0






s
β1
1 δ − (ω11

1 )−1
s

1
β2
2 δ +M

1
1µ+ h.o.t. = 0,

s

ρ22
ρ12
2 δ + ω

−1
ω

31
2 ω

13
1 s

λ2
1

λ1
1

+β1

1 δ + (ωω32
1 )−1

ω
31
2 s

λ2
1

λ1
1

1 y
1
1

−ω−1ω31
2 s

λ2
1

λ1
1

1 M3
1µ+M1

2µ+ h.o.t. = 0,

s2y
1
1 + ω−1ω13

2 s1δ +M3
2µ+ h.o.t. = 0.

(2.16)

Remark 2.2 Note that the solutions of (2.14)–(2.16) lose the uniqueners, and the solutions

demonstrate different kinds of dynamical patterns corresponding to the different parameter

regions, then equations (2.14)–(2.16) are called the bifurcation equation.

Remark 2.3 For the first two cases, by some simple computation, we can obtain similar

bifurcation results to that given in [17]; so we omit it. While, in case (III), we will show that

there are different bifurcation phenomena from that discussed in [17]. Therefore, we will only

focus on the third case.

3 Bifurcation Results

In this section we will study the bifurcation problem of the loop Γ under all hypotheses

(H1)–(H5). The existence, coexistence and noncoexistence of periodic orbit, homoclinic loop

and heteroclinic loop are discussed by studying the corresponding bifurcation equation. By

establishing of local maps F 0
1 and F 0

2 , we know that if s1 = s2 = 0, then the heteroclinic loop

of system (1.1) is persistent; if s1 = 0, s2 > 0, then the system (1.1) has a loop homoclinic to

p1; if s1 > 0, s2 = 0, then the system (1.1) has a loop homoclinic to p2; if s1 > 0, s2 > 0, the

system (1.1) has a periodic orbit. Then, we need only to consider the nonnegative solution s1
and s2 of the bifurcation equation.

Now we consider the persistence of the heteroclinic loop under small perturbation.

Theorem 3.1 Suppose that hypotheses (H1)–(H5) are satisfied, and Rank(M1
1 ,M

1
2 ,M

3
2 ) =

3, ω13
2 6= 0, ω33

2 = 0, then there exists an (l − 3)-dimensional surface

L12(y
1
1) = {µ : M1

1µ+ h.o.t. = M1
2µ+ h.o.t. = M3

2µ+ h.o.t. = 0}

with a normal plane spanned by
∑
12

= span{M1
1 ,M

1
2 ,M

3
2 }, such that the system (1.1) has a

unique heteroclinic loop Γµ(y11) = Γµ
1 ∪ Γµ

2 connecting p1 and p2 as µ ∈ L12, 0 < |µ| ≪ 1 and

|y11 | ≪ 1. Furthermore, the persistent heteroclinic orbit Γµ
1 has no orbit-flip as t → +∞ if

y11 6= 0.

Proof If s1 = s2 = 0 is the solution of the bifurcation equations (2.16), then we have





M1
1µ+ h.o.t. = 0,

M1
2µ+ h.o.t. = 0,

M3
2µ+ h.o.t. = 0.

If Rank(M1
1 ,M

1
2 ,M

2
3 ) = 3, then

L12(v
1
1) = {µ : M1

1µ+ h.o.t. = M1
2µ+ h.o.t. = M2

3µ+ h.o.t. = 0}
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is a codimension 3 surface with normal plane spanned by {M1
1 ,M

1
2 ,M

2
3} at µ = 0 such that

the system (1.1) has a unique heterodimensional loop near Γ as µ ∈ L12(v
1
1), 0 < |µ| ≪ 1, and

|y11 | ≪ 1. In addition, because the y axis corresponds to the leading stable eigendirection, we

easily get to know that if y11 6= 0, then Γµ
1 enters p2 along y axis, that is, it can not exhibit orbit

flip near Γµ
1 as t → +∞.

A corresponding results about the existence of the homoclinic orbit connecting pi is con-

tained in the next theorems.

Theorem 3.2 Suppose that hypotheses (H1)–(H5) are valid, Rank(M1
1 ,M

1
2 ,M

3
2 ) = 3, and

ω13
2 6= 0, ω33

2 = 0, then the following results are true:

(1) If ρ22 > λ1
2, then in the region R2

1 = {µ | ω11
1 M1

1µ > 0,M1
2µ < 0}, there exists an

(l − 1)-dimensional surface

L2
1 = {µ | W1(µ) , (ω11

1 δ−1M1
1µ)

β2ρ22
ρ12 δ +M1

2µ+ h.o.t. = 0, |M3
2µ| ≪ |M1

1µ|β2}

with a normal vector M1
2 at µ = 0, which is tangent to the surface L12(v

1
1) at µ = 0, such that

the system (1.1) has a unique loop Γ2
1 homoclinic to p1 near Γ as µ ∈ L2

1 and 0 < |µ| ≪ 1.

(2) In the region R1
2 = {µ | M1

1µ < 0, ωω13
2 M3

2µ < 0}, there exists an (l − 2)-dimensional

bifurcation surface L1
2(y

1
1)∩H1

2 (y
1
1), such that the system (1.1) has a unique loop Γ1

2 homoclinic

to p2 near Γ as µ ∈ L1
2(y

1
1) ∩H1

2 (y
1
1) ⊂ R1

2, 0 < |µ| ≪ 1 and |y11 | ≪ 1, where

L1
2(y

1
1) = {µ | W2(µ) , [ω(ω13

2 )−1δ−1M3
2µ]

β1δ +M1
1µ+ h.o.t. = 0},

H1
2 (y

1
1) = {µ | (ωω32

1 )−1ω31
2 s

λ2
1

λ1
1

1 y11 − ω−1ω31
2 s

λ2
1

λ1
1

1 M3
1µ− ω−1ω31

2 ω13
1 s

λ2
1

λ1
1

+β1

1 δ

+M1
2µ+ h.o.t. = 0, s1 = −ω(ω13

2 )−1δ−1M3
2µ, |y11 | ≪ 1}.

Proof (1) Assume that (2.16) has a solution s1 = 0, s2 > 0, then it can be simplified into

the following form:




−(ω11
1 )−1s

1
β2
2 +M1

1µ+ h.o.t. = 0,

s

ρ22
ρ12
2 δ +M1

2µ+ h.o.t. = 0,

s2y
1
1 +M3

2µ+ h.o.t. = 0.

(3.1)

Obviously, in the region defined by R2
1 and |M3

2µ| ≪ |M1
1µ|β2 , the third equation has a unique

small solution

y11(s2, µ) =
M3

2µ

(ω11
1 M1

1µ)
β2

+ h.o.t., |y11 | ≪ 1.

Therefore, (3.1) determines an (l− 1) dimensional surface L2
1 which is perpendicular to M1

2 at

µ = 0. On the basis of Rank(M1
1 ,M

1
2 ,M

3
2 ) = 3, L2

1 is well defined. Now (2.16) has a solution

s1 = 0, s2 > 0 as µ ∈ L2
1, 0 < |µ| ≪ 1, |y11 | ≪ 1. That is, the system (1.1) has a unique

homoclinic orbit Γ2
1 connecting p1 near Γ.

(2) Assume that s1 > 0, s2 = 0 is a solution of (2.16), then (2.16) is reduced to





sβ1

1 δ +M1
1µ+ h.o.t. = 0,

(ωω32
1 )−1ω31

2 s

λ2
1

λ1
1

1 y11 − ω−1ω31
2 s

λ2
1

λ1
1

1 M3
1µ+ ω−1ω31

2 ω13
1 s

λ2
1

λ1
1
+β1

1 δ +M1
2µ+ h.o.t. = 0,

ω−1ω13
2 s1δ +M3

2µ+ h.o.t. = 0.

(3.2)
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In the region given by R1
2, the third equation has a unique solution s1, then substituting it

into the first two equations, we obtain that

[−ω(ω13
2 )−1δ−1M3

2µ]
β1δ +M1

1µ+ h.o.t. = 0,

(ωω32
1 )−1ω31

2 s

λ2
1

λ1
1

1 y11 − ω−1ω31
2 s

λ2
1

λ1
1

1 M3
1µ+ ω−1ω31

2 ω13
1 s

λ2
1

λ1
1
+β1

1 δ +M1
2µ+ h.o.t. = 0,

where s1 = −ω(ω13
2 )−1δ−1M3

2µ. Therefore, the system (3.2) determines an (l − 2) dimensional

surface L1
2(y

1
1) ∩ H1

2 (y
1
1) with the normal surface Σ = span{M1

1 ,M
1
2 } at µ = 0. We see that

L1
2(y

1
1) ∩ H1

2 (y
1
1) is tangent to L12(y

1
1) at µ = 0. Now the system (2.16) has a solution s1 >

0, s2 = 0 as µ ∈ L1
2(y

1
1) ∩ H1

2 (y
1
1) ⊂ R1

2, 0 < |µ| ≪ 1 and |y11 | ≪ 1. The system (1.1) then

possesses a homoclinic loop Γ1
2(y

1
1) connecting p2 near Γ.

Next, relying on the analysis for the bifurcation equations (2.16), we discuss the coexistence

of the heterodimensional cycle, homoclinic orbit and periodic orbit under small perturbation.

Theorem 3.3 Suppose that hypotheses (H1)–(H5) are valid, Rank(M
1
1 ,M

1
2 ,M

3
2 ) = 3, ω13

2 6=
0, ω33

2 = 0, then for 0 < |µ| ≪ 1, we have that

(1) the system (1.1) does not have any homoclinic orbit coexisting with the persistent het-

erodimensional cycle Γµ as µ ∈ L12(y
1
1);

(2) if ρ11(ρ
2
2 + ρ12) > λ1

2(λ
2
1 + λ1

1), ωω11
1 ω32

1 ω13
2 M3

1µ < 0, then the system (1.1) has a unique

periodic orbit coexisting with Γµ as µ ∈ L12(y
1
1).

Proof If ω13
2 6= 0, ω33

2 = 0 and µ ∈ L12(y
1
1), |µ| ≪ 1, then (2.16) gives





s
β1
1 δ − (ω11

1 )−1s
1
β2
2 δ + h.o.t. = 0,

s

ρ22
ρ1
2

2 δ + ω−1ω31
2 ω13

1 s

λ2
1

λ1
1

+β1

1 δ + (ωω32
1 )−1ω31

2 s

λ2
1

λ1
1

1 y1
1

−ω−1ω31
2 s

λ2
1

λ1
1

1 M3
1µ+ h.o.t. = 0,

s2y
1
1 + ω−1ω13

2 s1δ + h.o.t. = 0.

(3.3)

(1) By the first equation of (3.3), we have s2 = ω11
1 sβ1β2

1 +h.o.t. It is obvious that s2 ≥ 0 if

s1 ≥ 0 and ω11
1 > 0, and s1 = 0 if and only if s2 = 0, so we conclude that (1.1) does not have

any homoclinic loops for µ ∈ L12(y
1
1).

(2) On the other hand, by the third equation of (3.3), we have

y11 = −ω−1ω13
2 s1δ

s2
+ h.o.t. = −ω−1ω13

2 δ

ω11
1

s1−β1β2

1 + h.o.t.

By (H5), we have β1β2 < 1, then 0 < s1 ≪ 1 implies that |y11 | ≪ 1. Substituting the expressions

of s2, y
1
1 into the second equation, we obtain

(ω11
1 )

ρ22
ρ12

+1
s
β1β2(

ρ22
ρ1
2

+1)

1 δ − ω−2(ω32
1 )−1ω31

2 ω13
2 s

λ2
1

λ1
1

+1

1 δ − ω−1ω11
1 ω31

2 s

λ2
1

λ1
1

+β1β2

1 M3
1µ

+ ω−1ω11
1 ω31

2 ω13
1 s

λ2
1

λ1
1
+β1β2+β1

1 δ + h.o.t. = 0.
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Assume β1β2(
ρ2
2

ρ1
2
+ 1) >

λ2
1

λ1
1
+ 1, namely, ρ11(ρ

2
2 + ρ12) > λ1

2(λ
2
1 + λ1

1), the above equation is now

changed into the following form:

ω−1ω31
2 s

λ2
1

λ1
1
+β1β2

1 [(ωω32
1 )−1ω13

2 δs1−β1β2

1 + ω11
1 M3

1µ] + h.o.t. = 0,

which has exactly two nonnegative solutions

s1 = 0, s1 =
[
− ω11

1 M3
1µ

(ωω32
1 )−1ω13

2 δ

] 1
1−β1β2

+ h.o.t.

If ωω11
1 ω32

1 ω13
2 M3

1µ < 0, then combining with s2 = ω11
1 sβ1β2

1 + h.o.t., we know that the

system (1.1) has exactly one periodic orbit besides the persistent heterodimensional cycle

as µ ∈ L12(y
1
1).

Theorem 3.4 Suppose that hypotheses (H1)–(H5) are valid, Rank(M1
1 ,M

1
2 ,M

3
2 ) = 3, ρ12 +

ρ22 > 2λ1
2,

λ2
1

λ1
1
+ 1 < β1, ω13

2 6= 0, ω33
2 = 0, ω11

1 > 0 and |M1
1µ|1−β1β2 ≪ |M3

1µ|β1 , then for

µ ∈ L2
1 and 0 < |µ| ≪ 1, the following results hold:

(1) If ωω11
1 ω32

1 ω31
2 M3

1µ > 0, ω11
1 ω32

1 M3
1µ(ω

32
1 αβ2M3

1µ+M3
2µ) > 0, where α = ω11

1 δ−1M1
1µ,

then the system (1.1) has no periodic orbits coexisting with the homoclinic loop Γ2
1 for µ ∈ L2

1.

(2) If ωω11
1 ω32

1 ω31
2 M3

1µ > 0 or (ωω11
1 ω32

1 ω31
2 M3

1µ < 0), ω11
1 ω32

1 M3
1µ(M

3
2µ+ω32

1 αβ2M3
1µ) <

0, where α = ω11
1 δ−1M1

1µ, |M3
2µ| ≪ |M3

1µ||M1
1µ|β2 , then the system (1.1) has exactly one

periodic orbit coexisting with the homoclinic loop Γ2
1 near Γ for µ ∈ L2

1.

(3) If ωω11
1 ω32

1 ω31
2 M3

1µ < 0, ω11
1 ω32

1 M3
1µ(ω

32
1 αβ2M3

1µ+M3
2µ) > 0, take

∆ = −ω−1ω13
2 δ(β−1

1 − 1)
(
− ω−1ω13

2 δ

β1β2ω11
1 ω32

1 αβ2−1M3
1µ

) 1
β1−1

+ ω32
1 αβ2M3

1µ+M3
2µ+ h.o.t.,

then we have the following results:

(a) When ωω13
2 ∆ < 0, the system (1.1) has no periodic orbits for µ ∈ L2

1.

(b) When ∆ = 0, the system (1.1) has a double periodic orbit for µ ∈ L2
1.

(c) When ωω13
2 ∆ > 0, the system (1.1) has exactly two periodic orbits for µ ∈ L2

1.

Proof Under the hypotheses, the third equation of (2.16) shows that

s2y
1
1 = −ω−1ω13

2 s1δ −M3
2µ+ h.o.t. (3.4)

Substituting it into the second equation of (2.16), we have

H(s1, s2, µ) , s

ρ22
ρ12

+1

2 δ − ω−2(ω32
1 )−1ω13

2 ω31
2 s

λ2
1

λ1
1
+1

1 δ − (ωω32
1 )−1ω31

2 s

λ2
1

λ1
1

1 M3
2µ

− ω−1ω31
2 s

λ2
1

λ1
1

1 s2M
3
1µ+ s2M

1
2µ+ h.o.t. = 0.

On the other hand, if 0 ≤ s1 ≪ 1, µ ∈ L2
1 and 0 < |µ| ≪ 1, by the first equation of (2.16),

we have

s2 = (ω11
1 sβ1

1 + ω11
1 δ−1M1

1µ)
β2 + h.o.t. (3.5)
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Let sβ1

1 = t, ω11
1 δ−1M1

1µ = α, then we obtain the following form:





s2 ≈ αβ2 + β2ω
11
1 αβ2−1t+ h.o.t.

s

ρ22
ρ12
2 ≈ α

β2ρ22
ρ1
2 +

β2ρ
2
2

ρ12
ω11
1 α

β2ρ22
ρ1
2

−1
t+ h.o.t.

(3.6)

Substitute the expressions of s2, s

ρ22
ρ12
2 into H(s1, s2, µ). Due to α

β2ρ22
ρ12 δ +M1

2µ+ h.o.t. = 0

as L2
1, then we obtain that

H(s1, µ) = δ
β2ρ

2
2

ρ12
ω11
1 α

β2ρ22
ρ1
2

+β2−1
sβ1

1 +
β2
2ρ

2
2

ρ12
(ω11

1 )2α
β2ρ22
ρ1
2

+β2−2
s2β1

1 δ

− δω−2(ω32
1 )−1ω13

2 ω31
2 s

λ2
1

λ1
1
+1

1 − (ωω32
1 )−1ω31

2 s

λ2
1

λ1
1

1 M3
2µ

− ω−1ω31
2 αβ2s

λ2
1

λ1
1

1 M3
1µ− β2ω

−1ω31
2 ω11

1 αβ2−1s

λ2
1

λ1
1
+β1

1 M3
1µ+ h.o.t.

By ρ12 + ρ22 > 2λ1
2,

λ2
1

λ1
1
+ 1 < β1, the above function can be simplified into

H̃(s1, µ) = β2ω
11
1 ω32

1 αβ2−1M3
1µs

β1

1 + ω−1ω13
2 δs1 + ω32

1 αβ2M3
1µ+M3

2µ+ h.o.t.

, N(s1, µ)− L(s1, µ) = 0, (3.7)

where

N(s1, µ) = β2ω
11
1 ω32

1 αβ2−1M3
1µs

β1

1 + h.o.t.,

L(s1, µ) = −ω−1ω13
2 δs1 − ω32

1 αβ2M3
1µ−M3

2µ+ h.o.t.

Then we have

H̃(0, µ) = ω32
1 αβ2M3

1µ+M3
2µ+ h.o.t.,

H̃ ′
s1
(s1, µ) = β1β2ω

11
1 ω32

1 αβ2−1M3
1µs

β1−1
1 + ω−1ω13

2 δ + h.o.t.

If ωω11
1 ω13

2 ω32
1 M3

1µ < 0, by |M1
1µ|1−β2 ≪ |M1

1µ|1−β1β2 ≪ |M3
1µ|β1 ≪ |M3

1µ|, we know that

H̃ ‘
s1
(s1, µ) has a unique small positive solution

s1 , s =
(
− ω13

2 δα1−β2

β1β2ωω11
1 ω32

1 M3
1µ

) 1
β1−1

+ h.o.t.

If ωω11
1 ω13

2 ω32
1 M3

1µ > 0, then H̃ ′
s1
(s1, µ) 6= 0.

(1) When ωω11
1 ω13

2 ω32
1 M3

1µ > 0, ω11
1 ω32

1 M3
1µ(ω

32
1 αβ2M3

1µ + M3
2µ) > 0, then the straight

line L, and the curve N can not intersect in the half plane for s1 > 0, that is H(s1, µ) = 0 has

no positive solution. Therefore, the system (1.1) has no periodic orbit as µ ∈ L2
1.

(2) When ωω11
1 ω13

2 ω32
1 M3

1µ > 0 (or ωω11
1 ω13

2 ω32
1 M3

1µ < 0 ), ω11
1 ω32

1 M3
1µ(M

3
2µ+ω32

1 αβ2M3
1µ)

< 0, then the straight line L and the curve N intersect one positive point, that is, H(s1, µ) =

0 has one positive root. Next we will show this positive root is small enough.

Without loss of generality, we assume ω11
1 ω32

1 M3
1µ > 0, ωω13

2 > 0, ω32
1 αβ2M3

1µ+M3
2µ < 0,

then we have

H̃(0, µ) < 0, H̃ ′
s1
(s1, µ) > 0, H̃(s̃1, µ) = ω−1ω13

2 δs̃1 > 0,
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where

0 < s̃1 =
(
− ω32

1 αβ2M3
1µ+M3

2µ

β2ω11
1 ω32

1 αβ2−1M3
1µ

) 1
β1

=
(
− ω32

1 αM3
1µ+ α1−β2M3

2µ

β2ω11
1 ω32

1 M3
1µ

) 1
β1
.

By |M3
2µ| ≪ |M3

1µ||M1
1µ|β2 , we have

|M1
1µ|1−β2 |M3

2µ| ≪ |M3
1µ||M1

1µ|β2 |M1
1µ|1−β2 = |M1

1µ||M3
1µ| ≪ |M3

1µ|,

which guarantees that s̃1 ≪ 1. Then, we know that H(s1, µ) has a unique small positive solution

s1 satisfying 0 < s1 < s̃1 ≪ 1. Also, by (H5) and ρ12 + ρ22 > 2λ1
2, we know that the expansion

of s

ρ22
ρ1
2

2 in (3.6) is meaningful, while by |M3
2µ| ≪ |M3

1µ||M1
1µ|β2 and the expression of s̃1, we

have s1 = o(|M1
1µ|

1
β1 ), which guarantees that the expansion of s2 in (3.6) is meaningful.

Therefore, the system (1.1) has one unique periodic orbit coexisting with the homoclinic

loop Γ2
1 near Γ for µ ∈ L2

1 and |y11 | ≪ 1.

(3) When ωω11
1 ω13

2 ω32
1 M3

1µ < 0, ω11
1 ω32

1 M3
1µ(ω

32
1 αβ2M3

1µ+M3
2µ) > 0, without loss of gen-

erality, we assume ω11
1 ω32

1 M3
1µ > 0, ωω13

2 < 0, ω32
1 αβ2M3

1µ+M3
2µ > 0, then we have H̃(0, µ) >

0, H̃ ′′
s1s1

(s1, µ) > 0 and H̃(s, µ) = ∆, where

∆ , −ω−1ω13
2 δ(β−1

1 − 1)
(
− ω−1ω13

2 δ

β1β2ω11
1 ω32

1 αβ2−1M3
1µ

) 1
β1−1

+ ω32
1 αβ2M3

1µ+M3
2µ+ h.o.t.

If H̃(s, µ) = ∆ > 0, the straight line L and the curve N can not insect in the half plane; if

H̃(s, µ) = ∆ = 0, the straight line L is tangent to the curve N at point s1 = s, that is, s1 = s

is a double positive zero point of H̃(s, µ) = 0; if H̃(s, µ) = ∆ < 0, the straight line L intersects

the curve N at exact two points 0 < s′ < s < s′′, which means H̃(s, µ) = 0 has two positive

solutions.

With the analysis above, we know that each positive zero point s1 of H̃(s, µ) = 0 corresponds

to a unique pair of positive solutions (s1, s2) of the bifurcation equation (2.16). Then we obtain

the conclusions.

4 Example

In this section, an example of vector field is given to show the existence of the system which

has a nontransversal heterodimensional cycle with one orbit flip, and demonstrate how to use

the method given in this paper to discuss the bifurcation problem.

Consider the following three-dimensional system

ż = f(z) + g(z, µ), (4.1)

and its unperturbed system

ż = f(z), (4.2)

where z = (z1, z2, z3)
∗ ∈ R

3, µ = (µ1, µ2, µ3)
∗ ∈ R

3, g(z, 0) = 0, 0 < |µ| ≪ 1, and

f(z) =




−(z1 − 1)(z1 + 1) + 3(z21 + z22 − 1)
−z1z2

1

3
(7 − 8z1)z3


,
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g(z, µ) =




µ1(z
2
1 − 1)

µ2(z
2
1 + z22 − 1)

µ3(z1 − 1)(z1 + 1)2


.

When µ = 0, the system (4.2) has equilibria

p1 = (−1, 0, 0), p2 = (1, 0, 0),

and a heteroclinic cycle Γ = Γ1 ∪ Γ2 connecting p1 and p2, where

Γ1 ⊂ Wu
1 ∩W s

2 : {z = r1(t) | z21 + z22 = 1, z3 = 0, z2 > 0, t ∈ R}

and

Γ2 ⊂ W s
1 ∩Wu

2 : {z = r2(t) | z2 = z3 = 0, z1 ∈ (−1, 1), t ∈ R},
which is expressed by Γi = {z = ri(t), t ∈ R}, i = 1, 2. Here

r1(t) = (z11, z12, z13)(t) =
(1− e−2t

1 + e−2t
, 2(2 + e2t + e−2t)−

1
2 , 0

)
,

r2(t) = (z21, z22, z23)(t) =
(1− e4t

1 + e4t
, 0, 0

)
,

which satisfies r1(−∞) = r2(+∞) = P1, r1(+∞) = r2(−∞) = P2 (see Figure 3).

Figure 3 Γ1 with orbit flip in positive direction.

Since

Df(z) =




4z1 6z2 0
−z2 −z1 0

−8

3
z3 0

1

3
(7− 8z1)


,

then we have

Df(p1) = diag(−4, 1, 5), Df(p2) = diag
(
4,−1,−1

3

)
,

which means Γ = Γ1∪Γ2 is a heterodimensional cycle and Γ1 has orbit flip in positive direction;

in other words, heteroclinic orbit Γ1 enters the equilibrium p2 along the strong stable direc-

tion z2 as t → +∞. Notice that Tr1(t)W
s
p2

→ span{(0, 1, 0)∗, (0, 0, 1)∗}, as t → −∞, where

(0, 1, 0, )∗, (0, 0, 1)∗ are the unit eigenvectors of p1 corresponding to the positive eigenvalue 1, 5,

respectively. Then the 2-dimensional unstable manifolds of p1 coincide with the 2-dimensional

stable manifolds of p2, that is, Γ1 is a nontransversal orbit.

Let 0 < δ ≪ 1 and Ti (i = 1, 2) be large enough such that

r1(−T1) = (−
√
1− δ2, δ, 0)∗, r1(T1) = (

√
1− δ2, δ, 0)∗,

r2(−T2) = (1− δ, 0, 0)∗, r2(T2) = (−1 + δ, 0, 0)∗,



126 X. B. Liu, X. F. Wang and T. Wang

then we have

T1 = ln
δ

1−
√
1− δ2

= ln
2

δ(1 +O(δ2))
, T2 =

1

4
(ln(2 − δ)− ln δ).

Now we consider the linear variational system of unperturbed system (4.2) along Γi (i = 1, 2):

ż = Df(ri(t))z, (4.3)

and its adjoint system

ż = −(Df(ri(t)))
∗z, (4.4)

where

Df(r1(t)) =




4z11(t) 6z12(t) 0
−z12(t) −z11(t) 0

0 0
1

3
(7− 8z11(t))


,

Df(r2(t)) =




4z21(t) 0 0
0 −z21(t) 0

0 0
1

3
(7− 8z21(t))


.

Next we discuss the persistent of the heterodimensional cycle of (4.2), by a similar compu-

tation given in Section 2, we know that the persistent of the heterodimensional cycle is related

with elements in Zi(Ti), Zi(−Ti) (i = 1, 2) as well as M1
1 , M

1
2 , M

3
2 . Firstly, we consider the

fundamental solution matrix Z1(t) and Φ1(t).

One fundamental solution matrix for (4.3) is

Z1(t) =




u11(t) u21(t) 0
u12(t) u22(t) 0

0 0 u33


,

take Φi(t) = (Z−1
i (t))∗ = (ϕ1

i , ϕ
2
i , ϕ

3
i ). By Liouville formula, we have

D = det

∣∣∣∣
u11(t) u21(t)
u12(t) u22(t)

∣∣∣∣ = det

∣∣∣∣
u11(−T1) u21(−T1)
u12(−T1) u22(−T1)

∣∣∣∣ · e
∫

t

−T1

3(1−e−2s)

1+e−2s ds
.

By Φ∗
i (t)Zi(t) = Id, we have

ϕ1∗
1 (t) = (u22(t),−u21(t), 0)/D,

where D = u11(t)u22(t)− u12(t)u21(t) =
[
δ(et+e−t)

2

]3
. Notice that

gµ(r1(t), 0) =




z211(t)− 1 0 0
0 0 0
0 0 (z11(t)− 1)(z11(t) + 1)2


,

then with the expression of u22(t) = ż12(t), we have

M1
1 =

∫ T1

−T1

ϕ1∗
1 gµ(r1(t), 0) dt =

(64
δ3

∫ +∞

0

x7(1− x2)

(x2 + 1)7
dx, 0, 0

)
.
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Next we consider Z2(t) and Φ2(t). ByDf(r2(t)), we obtain one fundamental solution matrix

for (4.3) as follows:

Z2(t) = diag(C1e
4t(1 + e4t)−2, C2e

−t(1 + e4t)
1
2 , C3e

− t
3 (1 + e4t)

4
3 ).

Thus, we obtain

Z2(t) =




0 C1e

4t(1 + e4t)−2 0

0 0 C3e
− t

3 (1 + e4t)
4
3

C2e
−t(1 + e4t)

1
2 0 0





for t 6 −T2, and

Z2(t) =




C2e
−t(1 + e4t)

1
2 0 0

0 C1e
4t(1 + e4t)−2 0

0 0 C3e
− t

3 (1 + e4t)
4
3




for t > T2. By the initial values Z2(−T2) given in Section 2, we have

C1 =
( δ

2− δ

)−4[
1 +

( δ

2− δ

)4]2
,

C2 =
( δ

2− δ

)[
1 +

( δ

2− δ

)4]− 1
2

,

C3 =
( δ

2− δ

) 1
3
[
1 +

( δ

2− δ

)4]− 4
3

.

Correspondingly, by performing the coordinates transformation in the small neighborhood of

Pi, we have

Φ2(t) =




0 C−1
1 e−4t(1 + e4t)2 0

C−1
2 et(1 + e4t)−

1
2 0 0

0 0 C−1
3 e

t
3 (1 + e4t)−

4
3




for t ∈ R. Note that

gµ(r2(t), 0) =




z221(t)− 1 0 0

0 z221(t)− 1 0
0 0 (z21(t)− 1)(z21(t) + 1)2



 .

Hence, we can calculate

M1
2 =

∫ T2

−T2

ϕ1∗
2 gµ(r2(t), 0) dt =

(
0,− 1

C2

∫ +∞

0

x
1
4

(1 + x)
5
2

dx, 0
)
,

M3
2 =

∫ T2

−T2

ϕ3∗
2 gµ(r2(t), 0) dt =

(
0, 0,− 1

C3

∫ +∞

0

x
1
12

(1 + x)
13
3

dx
)
.

With M1
1 , M1

2 , M3
2 being specifically given above, then by Theorem 3.1, the system (4.1)

has a unique heterodimensional loop Γµ = Γµ
1 ∪ Γµ

2 as µ ∈ L12 and 0 < |µ| ≪ 1. To illustrate

other results concerning homoclinic bifurcation, periodic bifurcation, we need more information,

which will cause much more complicated computation. However, the idea and procedure are

more or less the same as this one.
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