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Quenching Phenomenon for a Parabolic MEMS Equation

Qi WANG1

Abstract This paper deals with the electrostatic MEMS-device parabolic equation

ut −∆u =
λf(x)

(1− u)p

in a bounded domain Ω of R
N , with Dirichlet boundary condition, an initial condition

u0(x) ∈ [0, 1) and a nonnegative profile f , where λ > 0, p > 1. The study is motivated by
a simplified micro-electromechanical system (MEMS for short) device model. In this paper,
the author first gives an asymptotic behavior of the quenching time T ∗ for the solution
u to the parabolic problem with zero initial data. Secondly, the author investigates when
the solution u will quench, with general λ, u0(x). Finally, a global existence in the MEMS
modeling is shown.
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1 Introduction

We consider the parabolic problem















ut −∆u =
λf(x)

(1− u)p
, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where p > 1, λ > 0, Ω is a smooth bounded domain in R
N , f is a nonnegative bounded smooth

function, u0(x) ∈ [0, 1) is a smooth function and u0(x) = 0 on ∂Ω. The associated stationary

equation is as follows:







−∆w =
λf(x)

(1− w)p
, x ∈ Ω,

w = 0, x ∈ ∂Ω.
(1.2)

The problem (1.1) arises in the study of micro-electromechanical system devices. The parameter

λ > 0 is a constant which is increasing with respect to the applied voltage (see [13, 19] for

more details). These systems are microsize integrated devices or tiny systems that combine

mechanical and electrical components. They are used in systems ranging across automotive,

medical, electronic, chemistry, biology, communication and defence applications. Recently, a
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mathematical modeling proposed by Pelesko and Bernstein [18] in 2002 leads to elliptic and

parabolic PDEs of second or fourth order. In these lectures, some interesting problems, results

and open questions have been presented on the MEMS modeling. We can refer to [7–8, 13, 16,

18–19] and the references therein for detailed discussions on MEMS devices modeling.

We say that the solution w to (1.2) is regular or classical, if ‖w‖∞ < 1; the solution w to

(1.2) is singular, if ‖w‖∞ = 1. It is well known (see [3, 10–11, 22] and the references therein)

that for any given f , there exists a critical value λ∗ > 0 such that if λ ∈ (0, λ∗), the problem

(1.2) has a unique stable classical solution wλ and the solution to (1.1) is global with u0 = 0.

Moreover, wλ is the minimal solution and λ → wλ is increasing. Here the minimal solution

means that wλ ≤ v for any solution v to (1.2). For λ = λ∗, the problem (1.2) admits a unique

weak solution w∗ := lim
λ→λ∗

wλ, called the extremal solution, in the sense that

−
∫

Ω

w∗∆φdx = λ

∫

Ω

fφ

(1− w∗)p
dx

for any φ ∈ C2(Ω) ∩ H1
0 (Ω), where w

∗ ∈ L1(Ω) and
f(x)d(x, ∂Ω)

(1− w∗)p
∈ L1(Ω). Moreover, w∗ is

stable, which means the first eigenvalue µ1,λ∗ of the linearized operator

Lw,λ∗ := −∆− pλ∗f

(1− w)p+1

is nonnegative. While for λ > λ∗, no solution to (1.2) exists, and with any u0 satisfying

‖u0‖∞ < 1 the solution u to (1.1) reaches the value 1 at a finite time T ∗, called quenching time;

i.e., the so called quenching or touchdown phenomenon occurs. More precisely, ‖u(·, t)‖∞ < 1

for t ∈ [0, T ∗) and lim
t→(T∗)−

‖u(·, t)‖∞ = 1. We say that the solution u to (1.1) quenches if it

reaches 1 at a finite time. The more precise definition of the quenching time T ∗ is

T ∗ = sup{t > 0 | ‖u(·, s)‖∞ < 1, ∀s ∈ [0, t]}.

The corresponding quenching set is defined as

Σ = {x ∈ Ω | ∃(xn, tn) ∈ Ω× (0, T ∗), s.t. xn → x, tn → T ∗, u(xn, tn) → 1}. (1.3)

From [22], it can be deduced that

pp

(p+ 1)p+1‖ξ‖∞
≤ λ∗ ≤ 1

(p+ 1)‖ξ‖∞
,

where ξ ∈ H1
0 (Ω) is the unique solution to −∆ξ = f , and if u0 = 0,

1

λ(p+ 1)‖f‖∞
≤ T ∗ ≤ ‖φ‖L1(Ω)

λ(p+ 1)‖fφ‖L1(Ω) − ‖∆φ‖L1(Ω)

for large λ, where φ is any nonnegative C2 function such that fφ 6≡ 0 and φ = 0 on ∂Ω.

In general, we know that w∗ could be regular or singular. Usually, w∗ is a regular solution

in lower dimension and becomes singular in higher dimension (see [7, 10]).

For general u0 6≡ 0, it is known in [3, 20] that if λ < λ∗, ‖u0‖∞ < 1, then there exists a

unique solution u(x, t) to (1.1) which converges pointwise to its unique minimal steady-state w
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as t → +∞, provided that u0 ≥ 0 is a subsolution of (1.2). Furthermore, u(x, t) is monotone

nondecreasing for t > 0. It is essential to understand the quenching phenomenon, such as the

quenching set, the rate or asymptotic behavior of the quenching time T ∗. Some interesting

results have been obtained in several recent works (see for instance [9, 11–12, 21] and the

references therein). In [9, 21], we know that if w∗ is regular, there exists an eigenfunction φ∗

of Lw∗,λ∗ , satisfying



























−∆φ∗ =
pλ∗fφ∗

(1− w∗)p+1
, x ∈ Ω,

φ∗ > 0, x ∈ Ω,
φ∗ = 0, x ∈ ∂Ω,
∫

Ω

(φ∗)2dx = 1,

(1.4)

and there is an estimate for the quenching time T ∗ if u0(x) = 0, that is

C1(λ− λ∗)−
1
2 ≤ T ∗ ≤ C2(λ− λ∗)−

1
2 , (1.5)

as λ > λ∗ and close to λ∗, where C1 and C2 are independent of λ. This tells us that

lim
λ→(λ∗)+

T ∗ = +∞.

Our purpose is to deal with the problem (1.1), and this paper will be organized as follows.

In Section 2, motivated by the bounds (1.5) on the quenching time T ∗, we find an asymptotic

approximation for T ∗ in the limiting case when w∗ is regular, u0(x) = 0, λ > λ∗ and λ→ λ∗. In

Section 3, we consider what conditions λ and initial data u0(x) satisfy can lead to the quenching

of u. In Section 4, we find conditions on the initial data u0 which are sufficient to lead to the

nonexistence of u after a finite time, for λ < λ∗. The case of that w∗ is singular is considered

in Section 5. In Section 6, we discuss the global existence of the solution to (1.1). In Section 7,

we will give some comments of our results.

2 Asymptotic Estimate for T ∗ for Small λ − λ∗ > 0 if w∗ is Regular

In this section, assume that u0 = 0, and w∗ is a regular solution to (1.2) with λ = λ∗.

Motivated by (1.5), we shall consider the limit of λ− λ∗ → 0+ to estimate the quenching time

T ∗, as an asymptotic expression for λ − λ∗ ≪ 1. We shall adapt and improve some of the

arguments in [15] to get the following theorem.

Theorem 2.1 Suppose u0 = 0. Assume the unique extremal solution w∗ of (1.2) is regular,

Ω = BR(0), f(x) = f(|x|), f ′ ≤ 0. Let φ∗ be the L2-normalized eigenfunction satisfying (1.4).

Let I1 =

∫

BR(0)

fφ∗

(1− w∗)p
dx, I2 =

∫

BR(0)

(φ∗)3f

(1− w∗)p+2
dx. Then for λ > λ∗, the finite quenching

time T ∗ of the solution u to (1.1) satisfies

lim
λ→λ∗

∣

∣

∣
T ∗ −

π + 2 arctan
((

p(p+1)λ∗I2
2I1(λ−λ∗)

)
1
2 1−w∗(0)

φ∗(0)

)

√
2(p(p+ 1)I1I2)

1
2 (λ− λ∗)

1
2

∣

∣

∣
= 0.

Proof First recall from [22] that since Ω = BR(0), f(x) = f(|x|), f ′ ≤ 0, we have that the

quenching set is just {0}.
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Let u∗(x, t) be a solution to (1.1) with λ = λ∗. Since u0 = 0, by the standard parabolic

comparison principle, we have u∗(x, t) ≤ w∗(x). Since w∗(x) is a solution to (1.2) with λ = λ∗,

then u∗(x, t) converges to a regular solution to (1.2) with λ = λ∗. By the uniqueness of solution

to (1.2), we get that lim
t→+∞

u∗(x, t) = w∗(x).

By (1.1)–(1.2), we obtain that u∗(x, t) and w∗(x) satisfy















u∗t −∆u∗ =
λ∗f(x)

(1− u∗)p
, (x, t) ∈ BR(0)× (0, T ),

u∗(x, t) = 0, (x, t) ∈ ∂BR(0)× (0, T ),
u∗(x, 0) = 0, x ∈ BR(0),







−∆w∗ =
λ∗f(x)

(1− w∗)p
, x ∈ BR(0),

w∗ = 0, x ∈ ∂BR(0),

respectively. Hence similarly to (43) in [15], we can find that

u∗ ∼ w∗ − 2φ∗

λ∗p(p+ 1)t

∫

BR(0)

(φ∗)3f

(1− w∗)p+2
dx

as t→ +∞.

Now denote λ− λ∗ by η. We first use the formal Taylor expansion on u, which means

u(x, t) = u∗(x, t) +

+∞
∑

n=1

ηnun(x, t), (2.1)

where u∗ is a solution to (1.1) with λ = λ∗. According to the equation with u∗ and u, we get

that

+∞
∑

n=1

ηn(un)t =

+∞
∑

n=1

ηn∆(un) +

+∞
∑

k=1

λ∗p(p+ 1) · · · (p+ k − 1)f

k!(1− u∗)p+k

(

+∞
∑

n=1

ηnun

)k

+
f

(1− u∗)p
η + η

(

+∞
∑

k=1

p(p+ 1) · · · (p+ k − 1)f

k!(1− u∗)p+k

(

+∞
∑

n=1

ηnun

)k)

and

un(x, 0) = 0.

From the (η1), (η2), (η3), (η4), · · · terms, we arrive at

Lu1 =
f

(1− u∗)p
,

Lu2 =
λ∗p(p+ 1)f

2(1− u∗)p+2
u21 +

pf

(1− u∗)p+1
u1,

Lu3 =
λ∗p(p+ 1)(p+ 2)f

6(1− u∗)p+3
u31 +

p(p+ 1)f

2(1− u∗)p+2
u21

+
λ∗p(p+ 1)f

(1− u∗)p+2
u1u2 +

pf

(1− u∗)p+1
u2,

Lu4 =
λ∗p(p+ 1)(p+ 2)(p+ 3)f

4!(1− u∗)p+4
u41 +

p(p+ 1)(p+ 2)f

6(1− u∗)p+3
u31
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+
λ∗p(p+ 1)(p+ 2)f

2(1− u∗)p+3
u21u2 +

p(p+ 1)f

(1− u∗)p+2
u1u2

λ∗p(p+ 1)f

2(1− u∗)p+2
u22 +

pf

(1− u∗)p+1
u3,

· · ·

where the operator L is defined as ∂
∂t

− ∆ − λ∗pf
(1−u∗)p+1 . By the standard parabolic regularity

theory (see [14]), as ‖u∗‖∞ ≤ ‖w∗‖∞, we obtain that for any T0 < T ∗,

‖u1‖C2+α,1+α
2 (BR(0)×(0,T0))

≤ C1‖f‖∞ApT
1
q

0 |BR(0)|
1
q =: D1,

where A = 1
(1−‖w∗‖∞) , C1 depends only on N, q, BR(0),

λ∗p‖f‖∞

(1−‖w∗‖∞)p+1 and q > N + 2.

Similarly, we are also able to obtain that

‖u2‖C2+α,1+α
2 (BR(0)×(0,T0))

≤ C3
1λ

∗p(p+ 1)‖f‖∞A3p+2(T0|BR(0)|
3
q )

2

+ C2
1p‖f‖2∞A2p+1(T0|BR(0)|

2
q ) =: D2

and

‖un‖C2+α,1+α
2 (BR(0)×(0,T0))

≤ Dn, n = 3, 4, · · · .

In fact by iteration we can get that the highest exponent of A in Dn is p + 2(n − 1)(p + 1),

the highest exponent of p in Dn is 2n, the highest exponent of (T0|BR(0)|) in Dn is 2n− 1, the

highest exponent of C1 in Dn is 2n− 1, the highest exponent of ‖f‖∞ in Dn is 2n− 1.

So we can obtain that

lim sup
n→+∞

n

√

‖un‖C2+α,1+α
2 (BR(0)×(0,T0))

< +∞,

which means the convergence domain of series (2.1) has a positive measure. Therefore, series

(2.1) is convergent uniformly, provided that η is small enough. For the same reason, we get

ut = u∗t +

+∞
∑

n=1

ηn(un)t

and

∆u = ∆u∗ +

+∞
∑

n=1

ηn∆un

are also convergent uniformly for small η.

It is known in [9, 21] that there exist constants C1, C2 > 0 such that (1.5) holds, which

tells us that lim
η→0

T ∗η
1
2 ∈ [C1, C2], and lim

η→0
T ∗ = +∞. Therefore for any t ∈

[

T∗

2 , T
∗
]

, we

have η
1
2

C2
≤ 1

t
≤ 2η

1
2

C1
, which is near 0, when η → 0. With (2.1) and similarly to [15], when

t ∈
[

C1

2η
1
2

, C2

η
1
2

]

, we expand

u(x, t) ∼ w∗(x) + η
1
2 z(x, t) +

+∞
∑

n=2

η
n
2 vn(x, t) as η → 0,
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where z(x, t) is to be determined. On making a change in timescale t = τ

η
1
2

, the equation (1.1)

gives

η(z)τ +
+∞
∑

n=2

η
n
2
+ 1

2 (vn)τ = ut = ∆u +
λf(x)

(1− u)p

= ∆w∗ + η
1
2∆z +

+∞
∑

n=2

η
n
2 ∆vn + (λ∗ + η)

f(x)

(1 − w∗)p

+ (λ∗ + η)f(x)

+∞
∑

k=1

p(p+ 1) · · · (p+ k − 1)

k!(1 − w∗)p+k

(

η
1
2 z +

+∞
∑

n=2

η
n
2 vn

)k

, (2.2)

where we have used Taylor expansion.

From the (η
1
2 ) terms in (2.2), we have

0 = ∆z +
pλ∗f(x)

(1− w∗)p+1
z.

Since the problem above has the form of problem (1.4), for some continuous function a1(τ), we

can write

z(x, τ) = a1(τ)φ
∗(x), (2.3)

where φ∗ satisfies the condition of this theorem.

From the (η1) terms in (2.2), by (2.3) we arrive at

(a1)τφ
∗ =

d

dτ
z

= ∆v2 +
f(x)

(1− w∗)p
+

λ∗pf

(1− w∗)p+1
v2 +

λ∗p(p+ 1)f

2(1− w∗)p+2
(a1)

2(φ∗)2.

By multiplying φ∗ on both side and integrating over BR(0), we get

(a1)τ =

∫

BR(0)

fφ∗

(1− w∗)p
dx+

1

2
p(p+ 1)λ∗a21

∫

BR(0)

(φ∗)3f

(1− w∗)p+2
dx

:= I1 +
1

2
p(p+ 1)λ∗a21I2

by the condition

∫

BR(0)

(φ∗)2dx = 1. Therefore

a1(t) =
( 2I1
p(p+ 1)λ∗I2

)
1
2

tan
(

t
(1

2
p(p+ 1)I1I2η

)
1
2 − π

2

)

and the quenching set being just {0} indicates that

lim
λ→λ∗

∣

∣

∣
T ∗ −

π + 2 arctan
((p(p+ 1)λ∗I2

2I1(λ− λ∗)

)
1
2
1− w∗(0)

φ∗(0)

)

√
2(p(p+ 1)I1I2)

1
2 (λ− λ∗)

1
2

∣

∣

∣
= 0.

This completes the proof.
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3 Quenching Phenomenon of u for General λ and Initial Data u0(x)

In this section, we do not need to assume u0(x) ≡ 0 any more. We are going to consider for

which λ and u0(x) the solution to (1.1) will hit 1. We have the following theorem.

Theorem 3.1 If λ and initial data u0(x) satisfy

λ
(

1−
∫

Ω

u0φdx
)p

> λ1

(

∫

Ω

u0φdx
)(

∫

Ω

φ

f
dx

)

(3.1)

and

λp
(

1−
∫

Ω

u0φdx
)p+1 > λ1

(

∫

Ω

φ

f
dx

)

, (3.2)

then the unique solution u to (1.1) will reach 1 at a finite time. Here λ1 is the principal

eigenvalue of −∆ on H1
0 (Ω), and φ is the corresponding eigenfunction with

∫

Ω

φdx = 1.

Proof Set

G(t) =

∫

Ω

u(x, t)φ(x)dx < 1,

so

G(0) =

∫

Ω

u0φdx ≤
∫

Ω

φdx = 1.

It is clear that G(t) is well defined on the existence interval of the solution u.

Differentiating G(t) yields that

G′(t) =

∫

Ω

utφdx

=

∫

Ω

φ
(

∆u+
λf

(1− u)p

)

dx

= −λ1
∫

Ω

uφdx+ λ

∫

Ω

fφ

(1 − u)p
dx

≥ −λ1
∫

Ω

uφdx+

λ
(

∫

Ω

φ

(1− u)
p
2

dx
)2

∫

Ω

φ

f
dx

, (3.3)

where Hölder inequality is used in the last inequality. By Jensen’s inequality, if p > 1,

(

∫

Ω

φ

(1 − u)
p
2

dx
)2

≥ 1
(

1−
∫

Ω uφdx
)p .

Substituting it into (3.3), we obtain

G′(t) ≥ −λ1
∫

Ω

uφdx+
λ

(

1−
∫

Ω

uφdx
)p(

∫

Ω

φ

f
dx

)
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= −λ1G(t) +
λ

(1−G(t))p
(

∫

Ω

φ

f
dx

)

. (3.4)

If u remains smaller than 1 for all t, then G(t) is defined and smaller than 1 for all t. However,

from the ODE theory, G(t) will blow up (reach 1) at a finite time, provided that λ and the

initial data u0 satisfy (3.1) and (3.2), because −λ1G(t) + λ

(1−G(t))p
( ∫

Ω

φ
f
dx
) is increasing with

respect to G(t) and G′(0) ≥ −λ1G(0)+ λ

(1−G(0))p
( ∫

Ω

φ
f
dx
) under the conditions (3.1) and (3.2).

Then the proof of this theorem is complete.

4 Quenching Phenomenon of u for General 0 < λ < λ∗

In this section, we are going to check when the solution u to (1.1) will quench even for

λ < λ∗. We will compare u0 with some suitable function.

4.1 (1.2) has a second nonminimal solution w > 0

If w is a nonminimal solution to (1.2), from [10], we deduce that the principal eigenvalue

µ1,λ(w) associated with the eigenfunction φ1, for the problem



























−∆φ1 −
pλf(x)

(1 − w)p+1
φ1 = µ1,λ(w)φ1, x ∈ Ω,

φ1 > 0, x ∈ Ω,
φ1 = 0, x ∈ ∂Ω,
∫

Ω

φ1dx = 1

(4.1)

is negative. Then we have the following theorem.

Theorem 4.1 Assume that (1.2) has a nonminimal solution w for λ < λ∗, and assume

‖w‖∞ < 1. Then for λ < λ∗, the solution u to (1.1) will quench at a finite time T ∗, provided

that u0(x) ≥ w(x) and u0(x) 6≡ w(x).

Proof Setting v(x, t) = u(x, t)− w(x), we have

vt = ut = ∆u+
λf(x)

(1 − u)p

= ∆v +∆w +
λf(x)

(1− u)p

= ∆v + λf
( 1

(1− (v + w))p
− 1

(1 − w)p
− p

(1 − w)p+1
v
)

+
λfp

(1 − w)p+1
v + µ1,λv − µ1,λv.

Choose now a(t) =

∫

Ω

vφ1dx ≤ sup
x∈Ω

u

∫

Ω

φ1dx ≤ 1, where φ1 is defined in (4.1). Differentiating

a(t) leads to

at =

∫

Ω

vtφ1dx
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=

∫

Ω

φ1

(

∆v + λf(x)
( 1

(1− (v + w))p
− 1

(1− w)p
− p

(1− w)p+1
v
))

dx

+

∫

Ω

φ1

( λfp

(1− w)p+1
v + µ1,λv − µ1,λv

)

dx

=

∫

Ω

∆φ1vdx+

∫

Ω

( λfp

(1− w)p+1
φ1 + µ1,λφ1

)

vdx

+ λ

∫

Ω

fφ1

( 1

(1− (v + w))p
− 1

(1− w)p
− p

(1− w)p+1
v
)

dx− µ1,λ

∫

Ω

vφ1dx

= −µ1,λa+ λ

∫

Ω

fφ1

( 1

(1 − (v + w))p
− 1

(1− w)p
− p

(1− w)p+1
v
)

dx.

The inequalities

1

(1− (v + w))p
− 1

(1− w)p
− p

(1− w)p+1
v ≥















p(p+ 1)v2

2(1− w)p+2
, v ≥ 0,

p(p+ 1)v2

2(1− u)p+2
, v < 0,

(4.2)

and Hölder inequality yield that

at ≥ −µ1,λa+
p(p+ 1)

2
λ

∫

Ω

v2fφ1dx

≥ −µ1,λa+
p(p+ 1)λ

2

∫

Ω

φ1

f
dx

a2.

Since a(0) =
∫

Ω
(u0(x) − w(x))φ1dx, we have that if u0(x) ≥ w(x) and u0(x) 6≡ w(x), the

quenching time T ∗ verifies

T ∗ ≤
∫ 1

a(0)

1

−µ1,λy +
p(p+1)λ

2
∫
Ω

φ1
f

dx
y2

dy < +∞,

and the proof is complete.

Remark 4.1 It can be deduced from [6] that when λ→ (λ∗)−, there exists a nonminimal

solution w to (1.2); and if µk,λ(w) ≥ 0, then ‖w‖∞ < 1, where µk,λ(w) is the k-th eigenvalue

of problem (1.4), k ≥ 2.

This remark says that the assumption in Theorem 4.1 is reasonable, provided that λ→ (λ∗)−

and there exists a k ≥ 2 such that µk,λ(w) ≥ 0.

4.2 (1.2) may admit a unique solution w for λ ∈ (0, λ∗) small enough

In [5, 10], we know that when λ is small enough, (1.2) has only a unique minimal solution.

Therefore, we need to choose another suitable function to compare with the initial data u0(x).

In this part, let Ω = B1(0), f(x) ≡ 1. And we need assume N = 3, p = 2 for simplicity. For

general N , p, the idea is similar. Now we establish the theorem below.

Theorem 4.2 Let N = 3, p = 2, f(x) ≡ 1, Ω = B1(0). Then the solution u to (1.1) will
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quench at a finite time T ∗, if u0(x) ≥ z(x) and u0(x) 6≡ z(x), where















z(x) = C +
λ

6(1− C)2
(R2

1 − r2), 0 < r = |x| < R1,

z(x) =
R3

1

3

( λ

(1− C)2
− a

)(1

r
− 1

)

+
a

6
(1− r2), R1 < r = |x| < 1,

(4.3)

C =
(

1− 2λ

π2

)
1
3

, R1 =
(π2 − 3C(1− C)π2 − C3π2

2λ

)
1
2

(4.4)

and

a =
2λR2

1(1 −R1)− 6(1− C)2C

(1− C)2(1−R1)(1 +R1 + 2R2
1)
. (4.5)

Proof Let z(x) satisfy (4.3)–(4.5). Then we have

0 < (1− C)3 ≤ 2λR2
1

π2
(4.6)

and z ∈ C1,α(B1(0)).

Consider now the following eigenvalue problem:























−∆ϕ1 −
pλ

(1− z)3
ϕ1 = µ1ϕ1, x ∈ B1(0),

ϕ1 = 0, x ∈ ∂B1(0),
∫

B1(0)

ϕ1dx = 1.

(4.7)

From (4.6) we reach that µ1 < 0. Moreover ‖z‖L∞(B1(0)) = z(0) < 1, a ≤ λ.

Next, we set v(x, t) = u(x, t) − z(x), then v(x, 0) = u0(x) − z(x) in B1(0). Let a2(t) =
∫

B1(0)
v(x, t)ϕ1(x)dx, then we arrive at

d

dt
a2(t) =

∫

B1(0)

(

∆u+
λ

(1 − u)2

)

ϕ1dx

= −
∫

B1(0)

∇u∇ϕ1dx+

∫

B1(0)

λϕ1

(1 − u)2
dx

= −
∫

B1(0)

∇v∇ϕ1dx−
∫

B1(0)

∇z∇ϕ1dx+

∫

B1(0)

λϕ1

(1− u)2
dx

≥
∫

B1(0)

v∆ϕ1dx−
∫

B1(0)

λϕ1

(1 − z)2
dx+

∫

B1(0)

λϕ1

(1− u)2
dx

= (−µ1)

∫

B1(0)

vϕ1dx+

∫

B1(0)

v∆ϕ1dx

+ µ1

∫

B1(0)

vϕ1dx+

∫

B1(0)

2λ

(1− z)3
ϕ1vdx

+ λ

∫

B1(0)

ϕ1

( 1

(1− (z + v))2
− 1

(1− z)2
− 2

(1− z)3
v
)

dx

≥ −µ1a2 + 3λ

∫

B1(0)

ϕ1v
2dx

≥ −µ1a2 + 3λa22.
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The last inequality is due to Hölder inequality. As

a2(0) =

∫

B1(0)

(u0(x)− z(x))ϕ1(x)dx ≤ 1 + max{−z(x), 0}, µ1 < 0,

we conclude that if u0(x) ≥ z(x) and u0(x) 6≡ z(x), the quenching time T ∗ for the solution u

verifies

T ∗ ≤
∫ 1+max{−z(x),0}

a2(0)

1

−µ1y + 3λy2
dy < +∞,

where z(x) is as stated in (4.3). This finishes the proof of the theorem.

5 Quenching Phenomenon of u for λ > λ∗, if w∗ is Singular

Now we discuss the case where w∗ is singular. For any minimal stable solution wΛ to (1.2)

with λ being replaced by Λ, 0 ≤ Λ < λ∗, we consider the problem



























−∆ψ = µ1(Λ)
pf(x)

(1− wΛ)p+1
ψ, x ∈ Ω,

ψ = 0, x ∈ ∂Ω,
ψ > 0, x ∈ Ω,
∫

Ω

ψdx = 1.

(5.1)

From [1] we know that µ1(Λ) exists and is decreasing with respect to Λ. Therefore lim
Λ→λ∗

µ1(Λ)

exists and moreover µ1(Λ) depends continuously on pf
(1−wΛ)p+1 in L

N
2 (Ω) topology.

Now we claim that lim
Λ→λ∗

µ1(Λ) := µ0 ≥ λ∗. If not, then µ0 < λ∗. By the continuity, there

exists a δ > 0, such that for any Λ ∈ (λ∗ − δ, λ∗), µ1(Λ) < Λ < λ∗. So there exists a function

ψ satisfying



























−∆ψ − Λpf

(1 − wΛ)p+1
ψ = −(Λ− µ1(Λ))

pf

(1 − wΛ)p+1
ψ, x ∈ Ω,

ψ = 0, x ∈ ∂Ω,
ψ > 0, x ∈ Ω,
∫

Ω

ψdx = 1,

which is impossible, because wΛ is stable. Hence our claim is concluded.

Take λ1 ∈ (µ0, µ1(0)), then there exists a unique λ2 ∈ (0, λ∗), such that µ1(λ2) = λ1, and

λ2 < λ∗ ≤ µ0 < λ1. Now we give our theorem.

Theorem 5.1 Assume Ω = BR(0), f(x) ≡ 1. Suppose that the extremal solution w∗

to (1.2) is singular. Let ψ be the eigenfunction satisfying (5.1). Then for any λ > λ∗, if

N ≥ Np := 2 + 4p
p+1 + 4

√

p

p+ 1
, the quenching time T ∗ of the solution u to (1.1) is finite.

Moreover, T ∗ satisfies

T ∗ ≤
√
2π

√

λ∗p(p+ 1)
(λ− λ∗)−

1
2
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for any λ > λ∗, and

T ∗ ≤ 2
√
2π

λ
√

p(p+ 1)

for λ larger than and close to λ∗.

Proof Let w be the minimal solution to






−∆w =
λ2

(1− w)p
, x ∈ BR(0),

w = 0, x ∈ ∂BR(0),

where µ1(0) > µ0 ≥ λ∗ > λ2. Let v(x, t) = u(x, t)− w(x) and λ ∈ [µ0, µ1(0)], then λ2 < λ and

for any λ > λ, we have

vt = ut = ∆u +
λ

(1− u)p

= ∆v +∆w +
λ

(1− u)p

= ∆v − λ2

(1− w)p
+

λ

(1− u)p

≥ ∆v − λ

(1− w)p
+

λ

(1− (v + w))p

=
(λ− λ)

(1− u)p
+∆v +

λp

(1− w)p+1

+ λ
( 1

(1− (v + w))p
− 1

(1− w)p
− p

(1− w)p+1
v
)

. (5.2)

Multiplying (5.2) by ψ, where ψ satisfies (5.1) with λ2 := µ−1
1 (λ), and integrating over BR(0)

yield that

d

dt

∫

BR(0)

vψdx ≥ (λ− λ) + λ

∫

BR(0)

( 1

(1− (v + w))p
− 1

(1− w)p
− p

(1− w)p+1
v
)

dx.

Hölder inequality and (4.2) enable us that

d

dt

∫

BR(0)

vψdx ≥ (λ− λ) +
λp(p+ 1)

2

∫

BR(0)

ψv2dx

≥ (λ− λ) +

λp(p+ 1)
(

∫

BR(0)

vψdx
)2

2
.

Since
∫

BR(0)

v(x, 0)ψ(x)dx =

∫

BR(0)

(u0(x) − w(x))ψ(x)dx ≥ −‖w‖∞ ≥ −1,

then we get

T ∗ ≤
∫ 1

−1

1

(λ− λ) + λp(p+1)
2 y2

dy
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<
π
√
2

√

λp(p+ 1)
(λ− λ)−

1
2 ,

where λ∗ ≤ µ0 ≤ λ < λ.

Next we claim that µ0 = λ∗. Hence λ can be equal to λ∗, so T ∗ satisfies

T ∗ ≤
√
2π

√

λ∗p(p+ 1)
(λ− λ∗)−

1
2

for any λ > λ∗, and

T ∗ ≤ inf
λ<λ

π
√
2

√

λp(p+ 1)
(λ− λ)−

1
2

≤ 2
√
2π

λ
√

p(p+ 1)

for λ larger than and close to λ∗.

Now we begin to prove the claim. Firstly, we know that when N ≥ Np, w
∗(x) = 1−

( |x|
R

)
2

p+1

is the extremal solution to (1.2) with f ≡ 1 and λ∗ = 2
(p+1)R2

(

N − 2 + 2
p+1

)

. So

µ0 = inf
ψ∈H1

0 (BR(0))

∫

BR(0)

|∇ψ|2dx

p

∫

BR(0)

ψ2

(1 − w∗)p+1
dx

= inf
ψ∈H1

0 (BR(0))

∫

BR(0)

|∇ψ|2dx

p

∫

BR(0)

ψ2R2

|x|2 dx

.

If ψ(x) = 1−
( |x|
R

)a
, then we get that

∫

BR(0)

|∇ψ|2dx

p

∫

BR(0)

ψ2R2

|x|2 dx

=
(N − 2)(N − 2 + a)

2pR2
.

Moreover when N > Np, we can choose a suitable a, such that

µ0 ≤ (N − 2)(N − 2 + a)

2pR2
≤ λ∗.

Therefore µ0 = λ∗. Hence our claim is correct and the theorem is proved.

6 Global Existence for the Solution to (1.1)

In this section, we will check the global existence of the solution. In fact, under some

circumstances the solution of (1.1) should exist globally. That means that we have the following

theorem.
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Theorem 6.1 Suppose that Ω = BR(0) and f(x) ≡ f is a constant. Assume that the initial

datum u0 is a subsolution to (1.2), and let

h(M) :=
1

MR2

(

1−
( f

2MN

)
1
p
)

.

Then for any λ ∈
[

0, 2Npp

(p+1)p+1R2f

]

, if u0 satisfies u0(x) ≤ λM0(R
2 − |x|2), then the solution u

to (1.1) exists globally, where M0 verifies h(M0) = λ, h′(M0) ≤ 0.

Proof Consider the equation of ut, by the standard maximum principle, we get ut > 0. Thus

we just need to construct a suitable supersolution z(x) < 1 to (1.1), such that u0(x) ≤ z(x).

Let z(x) = λM(R2 − |x|2) < 1. So we should have λMR2 < 1. In order to ensure z(x) is a

supersolution to (1.1), we need −∆z = 2λMN ≥ λf
(1−z)p . That is, z(x) ≤ 1 −

(

f
2MN

)
1
p . So we

only need to let

λ ≤ 1

MR2

(

1−
( f

2MN

)
1
p
)

=: h(M). (6.1)

By direct calculation, we arrive at

h(M1) = max
M>

f
2N

h(M) =
2Npp

(p+ 1)p+1R2f
,

where M1 = (p+1)pf
2Npp . From [22], we get that

1

M1R2

(

1−
( f

2M1N

)
1
p
)

≤ λ∗.

Therefore for any λ ∈
[

0, 2Npp

(p+1)p+1R2f

]

, we choose M0 >
f
2N such that h(M0) = λ, h′(M0) ≤ 0,

which means that z(x) can be chosen as

z(x) = λM0(R
2 − |x|2).

Then if u0(x) ≤ z(x), applying the maximum principle, we reach that u(x) ≤ z(x) < 1,

which means that u(x) exists globally. This completes the proof of this theorem.

7 Discussion of Results

We have found in Sections 2–5 the circumstances under which the solution to problem (1.1)

exhibits the phenomenon of quenching.

In order to apply these results, we first need to decide the value of λ∗. Although there is

not exact expression of λ∗, some people have given some estimates of λ∗. For example, from

[22] we can easily deduce that

λ∗ ∈
[ pp−1

(p+ 1)p‖φ‖∞
,

1

(p+ 1)‖φ‖∞

]

,

where φ ∈ H1
0 (Ω) is the unique solution to −∆φ = f in Ω. The second thing we need to consider

is the regularity of the extremal solution w∗. In fact, there is a well known result about the

regularity of the extremal solution in the negative exponent situation (see [2, 17]). That is, for

N < Np = 2 +
4p

p+ 1
+ 4

√

p

p+ 1
,
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the extremal solution w∗ to (1.2) is regular.

Hence, if w∗ is regular, we apply the results of Section 2 to give

T ∗ ∼ O(λ − λ∗)−
1
2

as λ → (λ∗)+. For general λ and initial data u0(x), Section 3 tells us the condition under

which the solution u to (1.1) will quench. For λ < λ∗, we consider two situations: (1.2) has a

nonminimal solution; (1.2) may only admit a unique minimal solution. In both situations, we

need u0(x) satisfy suitable condition, then in Section 4 we obtain T ∗ < +∞. The rationality of

these two situations is as follows: From [6], it follows that when N < Np = 2 + 4p
p+1 + 4

√

p
p+1 ,

there exists δ > 0 such that for any λ ∈ (λ∗ − δ, λ∗), problem (1.2) has a nonminimal second

solution w ≥ wλ. Meanwhile, it is well known that if Ω ⊂ R
N (N ≥ 3) is star-shaped, or Ω is

strictly convex in R
2, then (1.2) admits a unique solution for λ > 0 small enough (see [5]).

If w∗ is singular, in Section 5, we show that the quenching time T ∗ < +∞, for λ > λ∗.

In Section 6, we make a short discussion about the situation of the global existence for the

solution to (1.1). We can get that if the initial data is suitable small, then for λ < λ∗, the

quenching phenomenon will not occur.
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