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Approximate Solution of the Kuramoto-Shivashinsky
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Abstract The main goal of this paper is to approximate the Kuramoto-Shivashinsky (K-S
for short) equation on an unbounded domain near a change of bifurcation, where a band of
dominant pattern is changing stability. This leads to a slow modulation of the dominant
pattern. Here we consider PDEs with quadratic nonlinearities and derive rigorously the
modulation equation, which is called the Ginzburg-Landau (G-L for short) equation, for
the amplitudes of the dominating modes.
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1 Introduction

In this paper, we are interested in the long time behaviour of nonlinear parabolic partial
differential equations (PDEs for short) defined on unbounded domain near its change of stability.

First aim here is to derive rigorously the modulation equation of
Opp(t, ) = Lap(t, x) + 2v(t, ) + yab(t, 2)Dpab(t, x) (1.1)
in the following type
~2
OrA =40%A+vA — §|A|2A, (1.2)

where £ in (1.1) is the linear differential operator —(1 + 92)? which has eigenvalues —\; =
—(1 — k2)2 for k € R and corresponding to eigenfunctions e**.

Second aim of this paper is to approximate the solution ¢ of (1.1) by
Y(t,x) ~ eA(e®t,ex)e™ + eA(e*t, ex)e ™, (1.3)

where A(T, X) is the solution of the G-L equation (1.2) with 7' = 2t and X = ex.
The Kuramoto-Sivashinsky (K-S for short) equation (1.1) was proposed in the year 1977

by Kuramoto [11] as a model for phase turbulence in reaction diffusion systems. The equation
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was also developed by Sivashinsky [22] in higher space dimensions in modelling small thermal

diffusive instabilities in Laminar flame fronts.

The K-S equation arises in many physical problems including flame front instabilities and
reaction-diffusion combustion dynamics (see [22-23]), propagation of concentration waves in

chemical physics applications (see [11-13]), and falling film flows (see [7, 10, 24]).

Different approaches have been proposed in literature to investigate and seek the solutions of
the K-S equation. Some of these methods are variational iteration methods (see [19]), the lattice
Boltzmann technique (see [14]), the tanh function method (see [5]), the method of radial basis
functions (see [9]), the local discontinuous Galerkin method (see [25]), Perturbation methods
(see [20, 26]), the Chebyshev spectral collocation scheme (see [3]). Recently, there are other
various methods that have also been developed to construct exact solutions of the K-S equation
(see [4, 6, 27-28]).

Ma and Fuchssteiner [15] used the perturbation method and considered approximate so-
lutions to obtain a complete integrable system. On the other hand, Schneider [20] used the
perturbation method and approximated the solution of the K-S equation (1.1) on an unbound-
ed domain via the solution of the G-L equation (1.2). But Schneider’s method relies on the
high regularity of the modulation equation, as he needed A € C’; 4([0,T] x R).

Mielke and Schneider [16] compared the long-time behaviour of all solutions of equation
(1.1) with the long-time behaviour of the solution A of (1.2), and they discussed the question
of how the attractor can be described by the attractor of the G-L equation (1.2). For this case,
similar results are well known (see for instance [8, 17, 21]).

In this paper, we use the perturbation method to approximate the solutions of the K-
S equation (1.1). This method depends on the low regularity of the modulation equation.
Unfortunately, some regularity for A is needed. So A must be in CP([0, 77, Hzt),

We will prove the following approximation result for the K-S equation (1.1) via the G-L
equation (1.2).

Theorem 1.1 Let (t,x) be a solution of the K-S equation (1.1), va(T, X) be the formal

approzimation defined as

1
€

. _ o1
vA(T, X) = AT, X)e* = + A(T, X)e ¥z, (1.4)

where A(T, X) is the solution of the G-L equation (1.2) such that A € Cp([0,Ty], H*) that
o > 3. Suppose that the initial condition ||¢(0) — e A(0)e” — cA(0)e™ |5 < de for some fized
d>0 and

1
~ Ea_%, lf§<0{§2,

5%, if a > 2.



Approxzimate Solution of the K-S Equation on an Unbounded Domain 147

Then, for each Ty > 0 there exists a constant C' > 0, depending on  sup ||A(T)||a, such that
T€[0,T)]

sup  ||v(t, ) — E’UA(EQt,ECL')”OO < Cag. (1.6)
t6[0,672To]

The rest of this paper is organized as follows. In next section, we give a formal derivation
of the modulation equation. In Section 3, we define H® and give the relation between the norm
in H* and the norm in CY(R). In Section 4, we define the Green’s function G¢(x) and give

estimates on it. Finally, Section 5 is devoted to the proof of the approximation theorem.

2 Formal Derivation of the Modulation Equation

This section is devoted to derive the modulation equation corresponding to equation (1.1).

Let us first rescale the equation (1.1). If
Y(t, ) = eu(e?t, ex),

then (1.1) becomes

Oru = Lou+ vu+ yudxu (2.1)
with differential operator £. = —e72(1 4 £20%)? on the slow space X = ez and the slow time
T = &2t

Now, let
wa(T, X) = [Ae'” + &[B + eM]e®™ + 2 He*] + e2J + c.c., (2.2)

where the amplitudes A, B, M, H, J are functions of 7" and X and c.c. denotes the complex
conjugation of the terms preceding it within the brackets. By plugging (2.2) into (2.1) and

using the relation

in

L(F(X)EX) = —[2(1 = n22f + die™tn(1 — 1) + (2 — 60)

+ dienf™ + 2 "Nl X, (2.3)
yields
OrAe™ + c.c. = 44V — [gB — 24iB" + OM |e¥* — G4He —
+ vAe™ + [yAOx A + igAQ]emr + 3iyABe*®
+iyABe'” 4 c.c. + y0x|A]* + O(e).
In order to remove all unwanted terms, let

: A2
B=0a M= _f_]AaXA, H= 22 A% J=q0x]AP (2.4)
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Hence,
. ’)/2 .
OrAe™ +cc. = |[4AY + VA — E|A|2A} e’ + c.e. + Ofe). (2.5)
By equating the coefficients terms of ' in (2.5), we obtain
A2
OrA =4A" +vA — §|A|2A + O(e).

By neglecting all small terms in &, we obtain (1.2).

3 The H*-Spaces

We start this section by giving the definition of the fractional Sobolev space H*. We rely in

this definition on weighted L?-norms of Fourier transforms.

Definition 3.1 For o € R. The space H® is defined as

oo

HY = {u R—=R: / (1 + 3| F(u)(y)Pdy < oo}

— 00

with norm

iz = [ 1+ 1 E ) P

— 00

where F(u) is the Fourier transform of u, defined by

F) = = [ utye g,

Note that functions still decay to 0 at oo in the space H*. So if A € H®, then the solutions
of (1.1) and the solutions of (1.2) still decay to 0 as |x| tends to oco.

Lemma 3.1 Let P(k) < 0 be the eigenvalues of the non-positive operator A, where F(Au) =
P(-)F(u). Then fort >0 and u € H*,

lle*ulle < Jlufa- (3.1)

It is well known that e, defined by F(e™Au) = e’ F(u), generates a contraction semigroup.

Proof From Definition 3.1, we note that (as e**7(F) < 1)
el = [ @+ g O F ) )y < ul?,

The following lemma gives the relation between the norm in H* and the norm in Cp(R).

For the proof see [2] or Theorem 5.4 in [1].

Lemma 3.2 For a > %, there is a constant C > 0, such that

lulloo < Cllulle  for all u € H™. (3.2)
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To estimate the nonlinearity, we need the following lemma which states that the space H®

is up to the constant a Banach algebra for o > % For the proof, see Theorem 4 in [18].
Lemma 3.3 For o > % and m € N, there exists a positive constant C, such that
[u™]|a < Cllu||Z for u e H™. (3.3)
In the proof we will need to following generalization of Gronwall’s lemma.

Lemma 3.4 Let a,b > 0, 0 < p,n < 1 and 0 < T < oo. Then, there exists a constant
M = M (a,b,n,T), such that for all integrable functions u : [0,T] — R satisfying

¢
0<u(t)<at™"+ b/ (t—s) "u(s)ds for0<t<T,
0
it follows that

u(t) <aMt™" for 0<t<T.

4 Semigroup and Green’s Function Estimation

In this section, we give the definition of the Green’s functions G¢(z) for the operator L.
Then, we give estimates on it, where we follow the ideas of Collet and Eckmann [8], but for a

different operator. Now, we define the Green’s functions G¢(z) as follows.

Definition 4.1 Define G¢(x) as

Gy(z) = /OO olb o —t(1=2k+k1) 4. (4.1)
fort > 0.

It is easy to verify that for the semigroup we have

ettu =Gy ru= / Gi(z — u(z)dz.
R
The next lemma states that G¢(x) is bounded regards to || - || 1.
Lemma 4.1 Lett > 0. Then there exists a positive constant C' such that
107Gy (2)|| 21 < Cmin{1,t73"}  forr=0,1. (4.2)
Before we complete the proof of this lemma, we state and prove the next two lemmas.

Lemma 4.2 Define g,(y) as

9-(y) = / e AT dm,

where Q1(m,7) = 772 — 2m? + 72m?*, then for 0 < 7 < 1, there exists a constant C > 0, such

that

11+ 4%)859-(Y)lloo <CT™" forr=0,1.
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Proof By using integration by parts, we obtain
(14929 0) = (7 [ Prlm e
o ) . O .
= / Py (m, 7)™ e~ Q1M T) gy +/ Pi(m, 7)e™e= Q1M dm
0 —00
=1 + I,
where
Pi(m,7) = m"[1+ Q) — Q2] + rm ~2[2m@} — (r — 1)].
We note, for m > 0 and 0 < 7 < 1, that

Q1(m, 1) = (m7 —1)*(m + 7'_1)2 > (m—7171)?

—_——
>
and
Py(m,7) =m"[-3 + 127%m? — 16m>7%(m — 77 1) (1 + mm)?]
—8rm"(m — 7)1 +7m) — (r— 1)m" 2
Thus

|Prm+1 L) <Cr (1 +m"*%) forr=0,1.
Now we bound I; and I separately. For the first integral I;, we obtain
I = / Py (m, T)eimye_Ql(mT)dm
0

= /OO Pi(m 4771, T)ei(m+771)ye_Q1(m+771’7)dr

—r—1

< / Py(m+ 1 T)ezi("”rfl)yez_mz dr,

—r—1

where we used the substitution m = m — 77—, thus

oo

L] < / 1Py (m+ 7 1) e ™ dm < T_T/ (c+em™%)e ™ dm
1

—r— -1

<7 / (c+ cmT+6)e_m2dm =Cr " forr=0,1.

For the second integral Is. By replacing m by —m, we obtain
I, = / (=1)"Py(m, 7)e”™e= @™ dm,  for r = 0,1.
0
Analogously for the first integral, we derive

L] <Cr=" forr=0,1.
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Hence for 0 < 7 < 1, we obtain
11+ 4*)859- (1) llso = sup (4 + y*)Dsg-(y)] < CT~" for r =0, 1.
Yy
Lemma 4.3 Define hy(y) as

ha(y) = / et @2 g,

— 00

where Qo(k,n) = n* — 2n2k% + k*, then for 0 < n < 1, there exists a constant C > 0, such that
11+ )0y hy(W)]|oe < C forr=0,1.

Proof By using integration by parts, we obtain

oo

(1 +5%)0yhy(y) = (i)r/ Py(k,n)elkve= @2k g

o0 -1
= (i)r/ PQ(k,n)eikye_Qz(k’")dk+ (i)T P2(k’n)eikye—Q2(k,n)dk
1 — 00
1 .
+ ()" / Py(k,n)ettve=Q2(km g
—1
=11 + Iy + 13,

where

Py(k,n) = K"[1+ Q3 — QF] + rk" 2[2kQy — (r — 1)]
= k"[1 + 12k* — 4n* — 16k5 + 32k9* — 16k
—8rk"(k* —n?) — (r — 1)k 2

for r =0,1. We note for 0 <n <1 and k > 1 that

Qa(k,n) = (k —n)*(k +n)* > (k —n)?
>1

and
|Py(k,7)| < c(1+ k"% forr=0,1.

Now, We will bound the terms II;, II; and II3 separately. To bound II; and IIy, we follow the

same steps as in the case of Lemma 4.2. To bound the third term:

1 1
Ml < [ (PaGhonlle @ ak < [ [PaGknak

1
Sc/ (1+ k"% dk=C forr=0,1.

-1

Hence for 0 < n < 1, we obtain, for r =0, 1,

11+ 4200k (1)l oo = sup [(1 + 53O hy (y)] < C.
Y
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Proof of Lemma 4.1 We consider two cases in order to prove (4.2).

Case 1 t > 1: We note for 7 = +=% that
Gi(z) = 179, (7x)
and
0L Gy(x) = 7700 g, (T2).

Hence

165G ()| 1 = / 107Gy () dz = / (ror g, (rz)|dz

— 00

r b T r - 1 2\ qr
-7 /_Oolaygf(yﬂdyzr /_OO 1er2|(1+y )7 g- (3)|dy

' > 1
S T

< CTTH(l + yQ)g'r(y)”oo for r =0,1,

5dy

where y = 7x. By using Lemma 4.2, we obtain for ¢t > 1,
102G (z)||pr < C for r=0,1. (4.3)
Case 2 t € (0,1): We note for = ti that
Gi(w) =0~ hy(n™" @)
and
OLGy(x) =t Orhy(n ™ x) forr=0,1.

Hence,

165G () 11 = / Iy 0r by ()

— 00

— [l )y
<Nl [
< O+ y*) g (9) oo
where y = nx. By using Lemma 4.3, we have for ¢t € (0, 1),
10rGy ()| < Ct™ 3" for r =0, 1. (4.4)

Combining (4.3) and (4.4), yields (4.2) for ¢ > 0.
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Lemma 4.4 Fort > 0, there is a constant C > 0, such that
e “rullo < C(1+ 75_%’”)||u||OO forr=0,1 and u € C} (R). (4.5)
Proof Let F; ' denote the inverse Fourier transform. Then,
EOLu(r) = A C0u(x)) = F (e MO F (u(x)
— / / (ik) P @) o=t ey (y)dydk
= —/ y)0nGi(z — y)dy. (4.6)
Thus
e dru(@)llo < Cllu(@)lol|0;Gr(x = y)llLa-
Using Lemma 4.1, yields (4.5).
Corollary 4.1 For T > 0, there is a positive constant C, such that
leT%e 0% u 0 < Cmin{a_r,a_%TT_%r}HuHOO forr=0,1 and u € C} (R).
Proof

eTﬁfag(u(X) —e 2T(l-i—(‘sax ar ( )

_ E—re—ssz(l—i-@i) a;u(gx)
= "¢ TLEY u(ex) = e "e LT u(X).

By using Lemma 4.4, we get for r =0, 1,

™5 Ol = e [l F D0 ue [l oo < Ce™" min{1, t73" H|ul|
= Cmin{e ", e 2" T 7" }|u| oo
The next lemma allows us to replace the semigroup e7%¢ by the semigroup e479% , when
they are applied to Aeis X

Lemma 4.5 ForT >0 and A € H* with a > %, there is a positive constant C, such that

;H%IGT'CEA(X)@{ T (TR A (X K| < O Ao,
€

where ¢, is defined as
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Proof We can write e'“ A(ex)e!® as a convolution with the Green’s function of £, as in
(4.6),

. L[> [, i
e Aex)e™ = 2_/ / W)=tk A (cy)e dydk
T J o J—0
L[> [~ '
_ = / / el(k=1)(z—y) o=tk A(ey)dydke™
T J—oJ—c0
_ 2i /oo /oo eik(aw—y)e—t)\ak+1 A(y)dydkew,
T J 0 J—00

where we used the substitution £ = e~1(k — 1) and y = ey. Hence,

tﬁA ECL‘ _ _/ / 1k(€m y —T(ek®+2k)? A(y)dydkew

_ ]_—(A)(k)eiskme—T(sk2+2k)2dkeim
V 27T [oo

1 2,4 2
< k e—T(E k™ +4k )dk'
N \/271'/0 )
10 240 g2
+—— [ F(A) (k) TEF DL
= L IFaw

1 2e 2 2
+—= F(A)(k)|e~TER+207 qp 4.8
= [ 17 (48)

where we used [e=4T**| < 1 for all k > 0 for the first integral and —2k2(2ek + 1) < 0 for the

second integral. Analogously, we can write (e4tai A)(ex)e'® as

(e4t82A — _/ / 1k(sz y)e—4Tk A( )dydkelz
Thus,
(WMW“RTJ-WMXW
- o= ATk —oTk?
Sr/ A2 [ e

/ =ATE | £ A) ()| dk. (4.9)

Define I; as the difference between the first two integral of (4.8) and (4.9)

|[e—T(52k4+4k2) . e—4Tk2]dk'

1
I, = —
! \/27r/0

Using Cauchy-Schwarz inequality

° 1
L* < C||A||<21/0 me_mz e TH — 1)2dk.

Using the following inequality

[e® — 1] < |z|max{1,e"}, (4.10)
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which follows directly from the intermediate value theorem, in order to obtain

e k4 2
L|? < Ce*|A 2/ e 8T Tk dk.
L < el | e T
Now, we can use the fact
supz™e * < oo for all m >0, (4.11)
2>0
to get
2 414112 > Kt
L|* < Ce ————dk
L < Celal | e

A ) 1 k4 o] k4
= 2e*C||A ———dk ————dk
“Clal] || et |
< 2g40||A||§[1+/ k4-2adk}
1
< Cel A2 foroz>g. (4.12)

Analogously, we define Iy as the difference between the second two integral of (4.8) and (4.9)

in order to obtain
5
Io|? < Ce*||A|]2  for a > 3 (4.13)

Now, define I3 as the difference between the second two integral of (4.8) and (4.9)

1 %51 2 2 2
o = —— F(A)(k e—T(Ek +2k) _e—4Tk dk.
o= o= [ IFamI |

Using Cauchy-Schwarz inequality
dk

-1
L <Al [T g
where we used |e=T(EF* +2k)° _ o=4Th*|2 < 9|o=T(ch*+2k)* |2 4 9]=4TF|2 < 4 Thus
132 < Ce** A2 for a > % (4.14)
Now
'L A(ex)e™ — (e*TO% A)(X)els X <1 +1, + 1. (4.15)
We finish the proof by taking | - | on both sides of (4.15) and using (4.12)—(4.14).

Lemma 4.6 Letn € R~ {£1} andr € {0,1}. If T > 0 and M € H®, Ya > %, then there

exists a positive constant C, such that

sup [T 9% M(X)e™ X[ < CO_(e)|M|a, (4.16)
XeR
where

9 1
O,(e) = (e72") exp ( - EE_ZT) +evm2
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Proof Writing e’ M (sx)e™® as

e M (ex)elm™® = 5 @tk M (ey)e ™ dydk
T J—ooJ—co
1 oo oo . .
= %/ e‘(k_")(m_y)e_t’\"M(Ey)dydke"””

5 | et gk,
where we used the substitution y = ey and k = ¢~ " (k —n). Hence, using the definition of A,
o1 M (ez)eln® — % /_Z /_Z eik(ez—y) o=t~k +m) ) 11 () dy dhein®
Thus, using X = ez,
eTﬁeM(X)eina’lX — % /Oo /Oo eik(X—y)e—t[l—(ak+n)2]2M(y)dydkeinE*X.

Taking | - | on both sides and using Cauchy-Schwarz inequality, to obtain

- o0 1
|€T£5 (]\4()()6”’“E 1X)|2 S CHMHZ/ me_%[l_(ak-’_n)z]zdk}. (417)

Now, we want to bound this integral

0o % 0 0o 1
II= P(k)dk < d(k)dk ®(k)dk + 2 ——dk
| owars [ ow +/1()*'égu+ww

— 00 e

with

1
ae_%‘J(k) and q(k) = [1 — (ek +n)?]>.

*0) = Ty

Now, let us bound ¢(k) on [0, £5-]. There are multiple cases depending on n and k.

Case 1 n=0and k€ [— 5, 5-|. Since |k| < 5=, we obtain

9

k)=[1-¢e%k%? > —.

q(k) =[1 -7 2 ¢

Case 2 n>2and k € [O, 2_15] (or n<-2andk € [5—1,0}) Since ek > 0, we obtain

qk) =n+ek+1Pn+ek—12>[n+1]*n—-1]*>9.

Case 3 n>2and k€ [52,0] (orn < —2and k € [0, =]). Since k < -, then

2
(k) = [k +m — 12[1 4 n + k]2 > %

Combining all cases, yields

q(k) > 19_6 for k € [0, ZLE]
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Thus, for o > % we obtain

1
o 2e 1 9 e 1
O(k)dk <2 7e_§tdk+2/ ——dk
[ ewanse [T s L A+ Pr
< Cle 8! + Ce2* 1],
Plugging (4.18) into (4.17), yields
ine— 9
e M (X)X g < CYM o (exp (= 155 7°T) +277F).
Now, consider (4.16) with = 1. From Corollary 4.1, we obtain
HeTLSBXM(X)ein671X|‘OO _ ||G%T£58X (e%TﬁsM(X)eins’lX)Hoo
SO e T7)[er ™ M (X)) ¥ .
Using (4.19), yields

HeTLSaXM(X)ein671XHOO S 061(5)||M||a

We finish the proof by collecting (4.19) and (4.20).

5 Proof of the Approximation Theorem

We present in this section the proof of the approximation theorem.

Definition 5.1 Define the residual p(T') as

T T

1

p(T) = wa(T) — eT’CE’LUA(O) _ V/ eT=5)Leyy  ds — 5,}// o(T—5)Le 8Xw124d57
0 0

where wa is defined in (2.2).

Lemma 5.1 If sup ||Allo < C, for o> 1, then
[0,7]

(T oo < Ce™40,
where ¢ is defined in (1.5).

Proof We obtain from (1.4)

T
p(T) = A(T)e™ — &7« A(0)e™™ — v / T-TIEe it s 4 e
0

I : :
— 57/ eT=DLefy (Ael® + Bel?® + c.c.)?dr + Ofe)
0

T
= A(T)e' — T4 A(0)el® — I// eT=7Le A dr 4 c.c.
0

1 (T . T
_ 5’7/ e(T_T)’Csax(AQeQ”C)dT _ ’Y/ e(T—r)L53X(|A|2)dT
0 0

157

(4.18)

(4.19)

(4.20)

(5.1)

(5.2)
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T J— .
— fyi/ T=TELABdr 4 O(e).
0
Using Lemma 4.5 for o > %, we obtain

T
p(T) = A(T) — A% A(0) — / HT-7)0% [VAds — iyAB]dr - ¢™®
0

I :
— 57/ oT=TLe gy (A%?)dr + c.c.
0

T
- / oT=9)L- 9y | A%ds + O(6,),
0

where ¢, is defined in (4.7) from (1.2), we have

I ,
p(T) = —57/ eT=1E 95 (A%e%%)dr + c.c.
0

T
—'y/ e(T_T)£58X|A|2dT+O(¢5).
0

Taking || - ||« on both sides and using Lemma 4.6 to get

T T
16(T) oo < C / e(T=%e 9y (A%62%) | odr + C / [T O | A]2 [ sodr + O
0 0

<C sup [Allale? +e27 2] + O,
T€[0,T]

< 05_155.
In the end, we use the results previously obtained to prove the approximation Theorem 1.1
for the solution of the Kuramoto-Shivashinsky equation (1.1).

Proof of the Approximation Theorem 1.1 Using multiplier theorem to separate the
critical and non critical modes in Fourier space by so called the mode filters. Fix 0 < o < %.
Let x be a C§° cut off function with

(k) = 1, itkel.=[-0c—-1,0—-1]U[l —0,1+ 0],
X =90, ifkeR\([~20—1,20 — 1JU[1 — 20,1 + 20]).

Then, we define the mode filter for the critical modes by
Eou= F 'xFu,

and for the stable modes by

Since E. and Ej are not projections, we define auxiliary mode filters P, and P; satisfying
P.E.=E. and P;E, = E; by

P.u= F_lxc]:u,
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where x. is a C§° cut off function defined as

(k) = 1, ifke[-20—-1,20 —1JU[l - 20,1+ 20],
XelP) =20, ifkeR\([-30— 1,30 — 1] U[l — 30,1 + 30]),

and by
Pou = F 11 — xs)Fu,

where y; is a Cg° cut off function defined as
. 1, ifke [—%—1,%—1} U [1—%,1+% ,
0, ifkeR\([-o—1,0—-1JU[l—0,1+0]).
Hence, due to disjoint supports in Fourier space, we can use that
Ee((Ecu) - (Eev)) = 0. (5-3)
Now define
P(t) = ewa + R = ecwa, + *wa, +*R. + 3Ry, (5.4)

where wa, = Ecwa, wa, = Eswa, R, = E.R and Ry = EsR, for short.
Substituting (5.4) into (1.1), we obtain

OR. + €0 Ry = LRy + €?VRe + 2ROy Re + LR, + €*vRs + e R,OR,
+e0p(wa,wa,) + 0z (wa, Re) + 20, (wa, Rs) + €20, (wa, Re)
+ &30, (wa, Rs) + €20, (R.Rs) — e 10spe(®t) — Orps(et),

where p(T) is defined in (5.1) and p. = E.p, ps = Esp.
Applying the operators P, and Ps, we obtain the following system

OtR. = LR. + VR, + 0, B.(R.) + 20, N.(R..)

+ &30,(Rs) + €0uWe(wa,) — e 1 0;pe(e?t) (5.5)
and
OtRs = LRy + e*VRy + 0, B(R.) + 0. Ns(R.)
+ 82005 (Rs) 4+ 0:Ws(wa,) — e 0ips (£2t), (5.6)
where
B(R.) = %st +wa,Re, N(R.) = wa,Rs +wa_Re,

1 1
(Rs) =wa,Rs + R.Rs + §£R§, W(wa,) = 5(5 — Dwh, +wa,wa,.
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Applying E. into both sides of (5.5) and using (5.3), yields

OtRe. = LR, + e°VR, + 20, N, (R.) + €30,c(Rs)
+ 0, We(wa,) — e 0ipe(e2t). (5.7)

Integrating from 0 to ¢, we obtain

t
Re(t) = e'*R.(0) + / e"E2UR, + 20, No(Re) + €302(Rs)] (1)dr
0

+e /0 L9, W (wa )] (T)dT — e~ po(T).

Taking || - ||s on both sides and using Lemma 3.1, yields
IR0 < IRl + o0 + O [ Rl
+Ce? / (Lt (= ) NG R
+Ce’ /Ot{l +(t=7) " He(Ry) | odr

t
+ 05/ (14 (t = 1) F}[Welwa, ) scdr.
0
It is easy to bound N.(R.), ¢(Rs) and W.(wa,) as follows

IN(Re)lloo < CllRslloc + Cll Reloo,

[We(wa,)lleo < C,

le(Rs)llss < CllRslloo + Cll Relloo | Rslloo + Cel| Rs .
Thus, by using Lemma 3.4 (Gronwall’s lemma) with || Re(0)]/ec < Ce~26., we obtain
IR (t)]loe < Ce™20.. (5.8)
Analogously, for (5.6) we obtain

~ t 1
[Rs(t)]lsc < Ce™%0: +/O {1+ —7) T} Rel[oodT

< Ce2¢. +C sup ||Re(7)]|oo

T€[0,t]
< 05_2567
where we used (5.8). Hence,
sup [|Rllc < sup [|Rslloc +€ sup [|Rslfoc < CE_2($5. (5.9)
[0,e—2T] [0,e—2T] [0,e—2T]

Since

P(t) = ewa + e*R,
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we have
2 2
sup  [[¢(t) —eva(et)[o <& sup |va(T) —wa(T)llec +e°  sup [[R(t)]l
te[0,e—2Tp) T€[0,To] te[0,e—2Tp)
<€ swp B |+ sup [[H(T)E o
TE[0,T)) TE[0,T))
3 2
+e” sup [[J(T)[[oc+e" sup [|R(t)]
T€[0,To] te[0,e=2Tp]
< C¢..
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