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Abstract The Bingham fluid model has been successfully used in modeling a large class of
non-Newtonian fluids. In this paper, the authors extend to the case of Bingham fluids the
results previously obtained by Chipot and Mardare, who studied the asymptotics of the
Stokes flow in a cylindrical domain that becomes unbounded in one direction, and prove
the convergence of the solution to the Bingham problem in a finite periodic domain, to the
solution of the Bingham problem in the infinite periodic domain, as the length of the finite
domain goes to infinity. As a consequence of this convergence, the existence of a solution
to a Bingham problem in the infinite periodic domain is obtained, and the uniqueness
of the velocity field for this problem is also shown. Finally, they show that the error
in approximating the velocity field in the infinite domain with the velocity in a periodic
domain of length 2ℓ has a polynomial decay in ℓ, unlike in the Stokes case (see [Chipot,
M. and Mardare, S., Asymptotic behaviour of the Stokes problem in cylinders becoming
unbounded in one direction, Journal de Mathématiques Pures et Appliquées, 90(2), 2008,
133–159]) where it has an exponential decay. This is in itself an important result for the
numerical simulations of non-Newtonian flows in long tubes.
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1 Introduction

The Bingham fluid model has been proposed by Bingham [2] in 1916 to model plastic flows.

Bingham fluids behave at high stresses like a Newtonian fluid, however at low stresses they do

not deform. In other words, the shear rate depends linearly on the shear stress only past a

certain value of the shear stress, called yield stress; below the yield stress there is no shear.

More precisely, the stress tensor σ is given by σ = −pI + τ , with

τ = 2µD(u) +
√
2g

D(u)

|D(u)| , if |D(u)| 6= 0,

|τ | ≤
√
2g, if |D(u)| = 0,

where u is the velocity, g is the yield stress and the shear rate tensor D is defined by Dij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. Thus the flow region of a Bingham fluid can have zones under stress but with no
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deformation, where the fluid behaves like a rigid body. Thus the actual flow region is unknown

and in some sense the problem is a “free boundary” problem that leads to a variational inequality

formulation (see [5, 10]).

The Bingham model has been successfully used for describing non-Newtonian flows like

the flow of drilling mud, lava and paint, flow of avalanches and landslides (see [8, 11]), blood

flow in arteries (see [16]), metal deformation for various metal processing techniques like wire

drawing (see [6–7, 12]), magneto-rheological or electro-rheological fluids (see [13–14, 17]). More

complicated models for such non-Newtonian flows account for shear-thinning or shear-thickening

phenomena. For a mechanical and mathematical presentation of non-Newtonian fluids we refer

to the recent comprehensive book [5].

In this paper we extend, to the case of Bingham fluids, the results previously obtained by

Chipot and Mardare [3] who studied the asymptotics of the Stokes flow in a cylindrical domain

that becomes unbounded in one direction.

In Section 2 we introduce the main notations and the variational inequality for the flow of

a Bingham fluid in a pipe of finite length 2ℓ, that admits (see [5, 10]) a solution (uℓ, pℓ), the

velocity uℓ being unique. What we are interested in is the behavior of uℓ as ℓ goes to infinity.

The main results are stated in Section 3. Theorem 3.1 states the convergence of the solution

uℓ in a periodic domain of length 2ℓ, to the solution u∞ in the infinite periodic domain, in

the strong H
1-norm; here we also state that the error has a polynomial decay. We should

note that the same type of error in the Stokes case (see [3]) was shown to have an exponential

decay. In addition, we also formulate Theorem 3.2 that states that any weak-L2/R limit point

of the family (pℓ)ℓ>0 is a pressure p∞ corresponding to the Bingham problem in the infinite

pipe. We note that the polynomial decay is an important result in itself: For computational

purposes in large arrays of cylindrical pipes (as in models of blood flow in arteries and small

vessels), one can assume a Poiseuille type of flow away from the bifurcations; thus one needs

to be able to estimate the error made by approximating with the Poiseuille flow away from the

bifurcations. For the sake of simplicity, we consider homogeneous Dirichlet boundary conditions

on the whole boundary of the periodic domain. However, the results remain valid if we consider

non-homogeneous Dirichlet boundary conditions (see Remark 2.1 in Section 2 for more details).

This allows to consider cases of flows with non-zero flux, which is important from the point of

view of fluid mechanics. In fact, what is important here is that we have Dirichlet boundary

conditions on the lateral boundary of the domain, hence we can even consider other types of

boundary conditions on the two ends of the pipe.

Section 4 is dedicated to some useful lemmas. In particular, in Lemma 4.1, we prove an

arithmetic inequality necessarily satisfied by the first term of a finite increasing sequence of

positive real numbers, that satisfies a recursive inequality; this particular recursive inequality

is related to the Bingham constitutive equation and the result is essential in the proof of

Theorem 3.1. As a consequence of this lemma, we derive Corollary 4.1 that is used to obtain

the uniqueness of the velocity for the limit problem. We should note here that this corollary

can have a direct proof, independent of Lemma 4.1; however, for convenience, we choose here

not to show the direct proof.

In Section 5 we first prove in Theorem 5.1 a Cauchy-type condition for the sequence of

solutions uℓ, that uses in an essential way the result from Lemma 4.1. Next we provide the
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proofs for the main theorems stated in Section 3. The existence and uniqueness of the solution

u∞ to the Bingham problem in the infinite periodic domain is a new result, which is not obvious,

and is contained in the proof of Theorems 3.1; in particular the function u∞ is constructed

piecewise and the problem it satisfies is then identified.

2 The Setting

Let N ≥ 2 and denote by (e1, · · · , eN ) the canonical basis of RN . For x ∈ R
N , we denote

x = (x1, x
′) with x1 ∈ R and x′ ∈ R

N−1. If x, y ∈ R
k, then x · y denotes the usual scalar

product in R
k. For a measurable subset A of Rk, we denote by |A| its k-dimensional Lebesgue

measure.

Throughout this paper, we use the following notations:

(1) Q is a bounded domain contained in (0, 1)×R
N−1 with a Lipschitz continuous boundary,

(2) Ω∞ =
∫ ( ⋃

k∈Z

Qk

)
, where Qk = Q + ke1,

(3) Ωℓ = Ω∞ ∩ {|x1| < ℓ}, for any nonnegative real number ℓ.

-

'

Figure 1 The domain Ωℓ.

Throughout this paper, we denote by D(v) the symmetric part of the velocity gradient ∇v,

given by

D(v) =
(
Dij(v)

)
i,j∈{1,··· ,N}

=
(1
2

(∂vj
∂xi

+
∂vi

∂xj

))
i,j∈{1,··· ,N}

(2.1)

for every vector field v = (v1, · · · , vN ).

Let us introduce the following problem




− div

(
τ(uℓ)

)
+∇pℓ = f in Ωℓ,

div uℓ = 0 in Ωℓ,
uℓ = 0 on ∂Ωℓ,

(2.2)

where

τ(u) = 2µD(u) +
√
2g

D(u)

|D(u)| , if |D(u)| 6= 0, (2.3)

|τ(u)| ≤
√
2g, if |D(u)| = 0, (2.4)
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and where

|D(u)| =
( N∑

i,j=1

(Dij(u))
2
) 1

2

,

and µ and g are positive constants, representing the dynamic viscosity and respectively the

yield stress.

Remark 2.1 For simplifying the presentation of the paper, we have only considered ho-

mogeneous Dirichlet boundary conditions on ∂Ωℓ. However, it is easily seen from the proofs in

Section 5 that the main results remain valid if one has non-homogeneous Dirichlet boundary

conditions. Indeed, what is important in the proof of Theorem 5.1 (see Section 5) is that

uℓ − us = 0 on the lateral boundary ∂Ωℓ \ {|x1| = ℓ}

and ∫

{x1=t}

(u1
ℓ − u1

s)(x1, x
′) dx′ = 0 for a.e. t ∈ (−ℓ, ℓ).

This remain valid if the boundary condition in (2.2) is replaced by uℓ = h on ∂Ωℓ, where h

belongs to (H1
loc(Ω∞))N and satisfies div h = 0 in Ω∞, and

‖h‖H1(Ωℓ) ≤ C̃(1 + ℓb̃) for all ℓ > 0,

for some constants C̃, b̃ > 0 (the last inequality is needed in order to obtain the estimate (5.1)

in the proof of Theorem 5.1, see Section 5).

In particular, if h = 0 on ∂Ω∞, we end up with the following situation which is interesting

from the point of view of fluid mechanics: uℓ vanishes on the lateral boundary ∂Ωℓ \ {|x1| = ℓ},
but not necessarily on the two ends ∂Ωℓ ∩ {x1 = −ℓ} and ∂Ωℓ ∩ {x1 = ℓ}, and there exists a

constant F (the flux), not necessarily zero, such that

∫

{x1=t}

u1
ℓ(x1, x

′) dx′ = F for a.e. t ∈ (−ℓ, ℓ)

(see Remark 2.2).

Problem (2.2) models the flow of a Bingham fluid in the bounded domain Ωℓ. We are

interested in its asymptotic behavior as ℓ goes to infinity.

Before giving the variational formulation of (2.2) let us introduce some functional spaces,

which will be used throughout the paper.

For any open set O of RN , we set

(1) L2(O) = (L2(O))N ,

(2) H1(O) = (H1(O))N ,

(3) H1
0(O) = (H1

0 (O))N ,

(4) Ĥ1
0(O) = {v ∈ H

1
0(O) | div v = 0 in O},

(5) Ĥ1
loc(O) = {v ∈ H

1
loc(O) = (H1

loc(O))N ; div v = 0},
where the functions in H1

0 (O) are extended by zero outside O.

We suppose that the body forces satisfy

f = (f1, · · · , fN) ∈ L
2(Ωℓ), ∀ℓ > 0. (2.5)
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Following [10], for every ℓ > 0 we associate to problem (2.2) the variational inequality below:




uℓ ∈ Ĥ
1
0(Ωℓ),

µ

∫

Ωℓ

∇uℓ · ∇(uℓ − v) dx + g
√
2

∫

Ωℓ

(|D(uℓ)| − |D(v)|) dx

≤
∫

Ωℓ

f · (uℓ − v) dx, ∀v ∈ Ĥ
1
0(Ωℓ),

(2.6)

where “·” denotes the usual scalar product of matrices, given by

A · B =
∑

i,j

aijbij for every pair (A,B) of N ×N matrices.

It is known that this problem admits a unique solution uℓ.

In the sequel we write the variational formulation (2.6) under the following equivalent form,

obtained by replacing v by uℓ − v:




uℓ ∈ Ĥ
1
0(Ωℓ),

µ

∫

Ωℓ

∇uℓ · ∇v dx+ g
√
2

∫

Ωℓ

(|D(uℓ)| − |D(uℓ − v)|) dx

≤
∫

Ωℓ

f · v dx, ∀v ∈ Ĥ
1
0(Ωℓ).

(2.7)

Remark 2.2 Let v = (v1, · · · , vN ) ∈ Ĥ
1
0(Ωℓ) for some ℓ > 0. Then, applying the Green

formula on the set Ωℓ ∩
(
(t, ℓ)× R

N−1
)
for any t ∈ (−ℓ, ℓ), we have

∫

{x1=t}

v1(x1, x
′) dx′ = 0 for a.e.t ∈ (−ℓ, ℓ).

3 Statement of the Main Results

The main result of this paper can be stated as follows.

Theorem 3.1 For any ℓ > 0, let uℓ be the solution of problem (2.7). Assume that for some

constants c0 ≥ 0 and b ∈ R the function f satisfies

‖f‖L2(Ωℓ) ≤ c0(1 + ℓb) for any ℓ > 0. (3.1)

Then

uℓ → u∞ strongly in H
1
(
Ωa) for any a > 0, (3.2)

the limit u∞ being the unique solution of the following problem:




u∞ ∈ Ĥ
1
loc(Ω∞),

µ

∫

Ω∞

∇u∞ · ∇v dx+ g
√
2

∫

Ω∞

(|D(u∞)| − |D(u∞ − v)|) dx

≤
∫

Ω∞

f · v dx for any v ∈ Ĥ
1
0(Ωa) and for any a > 0,

u∞ = 0 on ∂Ω∞,
∫

{x1=s}

u1
∞(x1, x

′) dx′ = 0 for a.e. s ∈ R,

‖∇u∞‖L2(Ωℓ) ≤ c1(1 + ℓb1) for any ℓ > 0 and for some c1 ≥ 0, b1 ∈ R.

(3.3)
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Moreover, for every α ∈
(
0, 1

2

)
, there exist two constants c ≥ 0 depending only on α and L0 > 0

independent of ℓ (but depending on µ, g, Q, α, b and c0), such that

‖∇(uℓ − u∞)‖L2(Ω ℓ
2

) ≤ cℓ−α for any ℓ ≥ L0. (3.4)

Theorem 3.1 will be proved in Section 5 and needs some preliminary tools, given in the next

section.

Remark 3.1 (1) The existence and uniqueness of the solution u∞ to problem (3.3) in the

infinite periodic domain Ω∞ is a new result which is not obvious. It is contained in the proof

of Theorem 3.1 as a byproduct of the method used therein to prove the convergence of uℓ.

(2) By comparing with the case of the Stokes system treated in [3], we see that in Theorem

3.1 we obtain a much lower rate of convergence for the solution to the Bingham problem in

the periodic domain Ωℓ: We recall that in [3] it was proved that the solution uℓ to the Stokes

problem in Ωℓ converges exponentially to its limit u∞, which is the solution to a Stokes problem

in the infinite domain Ω∞, i.e.,

‖∇(uℓ − u∞)‖L2(Ω ℓ
2

) ≤ Ce−αℓ for any ℓ > 0,

for some positive constant α.

We can trace the origin of this difference in the proof of Theorem 5.1, more precisely in

the non-homogeneity of inequality (5.10). As expected, this non-homogeneity is induced by the

supplementary nonlinear term appearing in the variational inequality (2.7) associated to the

Bingham equation: Note that in (2.7) the case g = 0 corresponds to the variational equation

associated to the Stokes problem.

(3) As an immediate consequence of the uniqueness of the solution to problem (3.3), we can

prove that if f is 1-periodic in the x1-direction, then the velocity u∞ has the same property.

Hence, as for the Stokes problem (see [3]), the periodicity of the data implies the periodicity of

the velocity corresponding to the problem in the infinite pipe.

We turn now our attention to the pressure associated to problem (2.7).

It is known that there exists pℓ ∈ L2(Ωℓ) such that the pair (uℓ, pℓ) is a solution of the

following variational problem:




uℓ ∈ Ĥ
1
0(Ωℓ),

µ

∫

Ωℓ

∇uℓ · ∇v dx+ g
√
2

∫

Ωℓ

(|D(uℓ)| − |D(uℓ − v)|) dx −
∫

Ωℓ

pℓ div v dx

≤
∫

Ωℓ

f · v dx, ∀v ∈ H
1
0(Ωℓ).

(3.5)

Remark 3.2 Unlike the pressure in the Stokes problem, the pressure pℓ corresponding to

the Bingham problem (3.5) is not unique up to an additive constant. For instance, if f = 0, then

any pair (uℓ, pℓ) with uℓ = 0 and pℓ ∈ L∞(Ωℓ) such that ‖pℓ‖L∞(Ωℓ)/R ≤ g
√

2
N is a solution to

problem (3.5).

Nevertheless, we can show the following result.

Theorem 3.2 For any ℓ > 0, let (uℓ, pℓ) be a solution of problem (3.5). Under the as-

sumptions of Theorem 3.1, for any a > 0, there exists a constant C independent of ℓ such
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that

‖pℓ‖L2(Ωa)/R ≤ C for any ℓ ≥ a. (3.6)

Moreover, if {ℓn} is a sequence which tends to +∞ and such that

pℓn ⇀ p∞ weakly in L2(Ωa)/R for any a > 0, (3.7)

for some p∞ ∈ L2
loc(Ω∞), then the pair (u∞, p∞) satisfies the following variational limit prob-

lem:




µ

∫

Ω∞

∇u∞ · ∇v dx+ g
√
2

∫

Ω∞

(|D(u∞)| − |D(u∞ − v)|) dx −
∫

Ω∞

p∞ div v dx

≤
∫

Ω∞

f · v dx for any v ∈ H
1
0(Ωa) and for any a > 0.

(3.8)

Remark 3.3 The convergence in (3.7) means that for any a > 0, by considering pℓn and p∞

as elements of L2(Ωa)/R, we can find representatives p̃ℓn and p̃∞ such that p̃ℓn ⇀ p̃∞ weakly

in L2(Ωa).

4 A Main Tool

In this section we prove an arithmetic inequality, which plays an important role in the proof

of Theorem 3.1 and seems to be interesting by itself. We also prove a useful consequence (see

Corollary 4.1).

Lemma 4.1 Let C, C̃0 ≥ 0, γ ∈ R and h ∈ N, h ≥ 2 be given. Then there exists

m0 = m0(C, C̃0, γ, h) ∈ N
∗ such that for any finite sequence {ak} containing:

mh + 1 elements, with m ≥ m0, and satisfying

{
(i) 0 ≤ a0 ≤ a1 ≤ · · · ≤ amh ≤ C̃0(1 +mγ),

(ii) ak ≤ C
(
(ak+1 − ak) +

√
ak+1 − ak

)
, ∀k ∈ {0, 1, · · · ,mh − 1},

(4.1)

we have

a0 ≤ 1

mh−1
. (4.2)

Proof We argue by contradiction assuming that

a0 >
1

mh−1
. (4.3)

If k is such that ak+1 − ak ≥ 1, then
√
ak+1 − ak ≤ ak+1 − ak. Hence, from (4.1),

ak ≤ 2C(ak+1 − ak). (4.4)

If 0 ≤ ak+1 − ak < 1, then ak+1 − ak ≤ √
ak+1 − ak so that, using again (4.1),

ak ≤ 2C
√
ak+1 − ak ,

which, taking into account the monotonicity of {ak}, implies that

a0ak ≤ a2k ≤ 4C2(ak+1 − ak).
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This gives

ak ≤ 4C2

a0
(ak+1 − ak) ≤ 4C2mh−1(ak+1 − ak). (4.5)

Let us now choose m1 ∈ N
∗ such that 2Cmh−1

1 ≥ 1. Then if m ≥ m1 from (4.4)–(4.5) we derive

ak ≤ 4C2mh−1(ak+1 − ak) for any k = 0, · · · ,mh − 1,

which is equivalent to

ak ≤ 4C2mh−1

1 + 4C2mh−1
ak+1 for any k = 0, · · · ,mh − 1.

Starting from k = 0, by iteration we deduce that

a0 ≤
( 4C2mh−1

1 + 4C2mh−1

)mh

amh ≤ C̃0(1 +mγ)
( 4C2mh−1

1 + 4C2mh−1

)mh

=
C̃0(1 +mγ)

(
1 + 1

4C2mh−1

)mh . (4.6)

Let us consider now the sequence {bm}m∈N defined by

0 ≤ bm =
C̃0m

h−1(1 +mγ)
(
1 + 1

4C2mh−1

)mh for any m ∈ N.

Observe that since lim
m→∞

(
1 + 1

4C2mh−1

)4C2mh−1

= e > 2, one has
(
1 + 1

4C2mh−1

)4C2mh−1

≥ 2

for m large enough, and therefore

bm =
C̃0m

h−1(1 +mγ)
(
1 + 1

4C2mh−1

)4C2mh−1 m
4C2

≤ C̃0m
h−1(1 +mγ)

2
m

4C2

for m sufficiently large. Consequently, lim
m→∞

bm = 0, hence there exists m2 ∈ N such that

bm ≤ 1 for every m ≥ m2.

This, together with (4.6) implies that for m ≥ m0 := max{m1,m2} we have

a0 ≤ bm
mh−1

≤ 1

mh−1
,

which contradicts (4.3) and ends the proof.

The following corollary will be used when studying the uniqueness of the limit problem.

Corollary 4.1 Let {αk}k∈N be a nonnegative, non-decreasing sequence satisfying

{
(i) αk ≤ C0(1 + kλ), ∀k ∈ N,

(ii) αk ≤ C
(
(αk+1 − αk) +

√
αk+1 − αk

)
, ∀k ∈ N

(4.7)

for some constants C,C0, λ ≥ 0. Then

αk = 0, ∀k ∈ N. (4.8)
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Proof Let k0 ∈ N be fixed and set ak = αk0+k.

For every m ∈ N such that m ≥
√
k0, thanks to (4.7)(i) we have

am2 = αk0+m2 ≤ C0(1 + (k0 +m2)λ) ≤ C0(1 + (2m2)λ) ≤ 2λC0(1 +m2λ),

which shows that (4.1)(i) is satisfied for {a0, · · · , am2}, with h = 2, C̃0 = 2λC0 and γ = 2λ.

Clearly (4.7)(ii) implies (4.1)(ii), so that from Lemma 4.1 we have

αk0
= a0 ≤ 1

m
for any m ≥ max{

√
k0,m0},

where m0 = m0(C, 2
λC0, 2λ, 2) = m0(C,C0, λ) is the one given by Lemma 4.1.

Hence, ak0
= 0, which implies (4.8), since k0 is arbitrary in N.

5 Proof of the Main Results

This section is devoted to the proof of our main results, Theorems 3.1–3.2. For Theorem

3.1, the most difficult part consists in proving the existence of a limit for uℓ in H
1
(
Ωℓ0) for any

fixed ℓ0. We follow the ideas of [4] and [3] which need some important modifications due to the

non-linearity of the problem.

We first prove a Cauchy condition for uℓ in the following theorem, which also provides some

accurate estimates.

Theorem 5.1 For any ℓ > 0, let uℓ be the solution of problem (2.7).

Under the assumptions of Theorem 3.1, there exists a constant C1 > 0, depending only on

c0, µ and Q, such that

‖∇uℓ‖L2(Ωℓ) ≤ C1(1 + ℓb) for every ℓ > 0. (5.1)

Moreover, for any α ∈
(
0, 12

)
, there exists L0 > 0 independent of ℓ and s (but depending on µ,

g, Q, α, b and c0) such that the following Cauchy condition holds:

‖∇(uℓ − us)‖L2(Ωℓ/2) ≤ c ℓ−α for every s > ℓ ≥ L0, (5.2)

where c ≥ 0 is a constant depending only on α.

Proof Taking uℓ as test function in the variational inequality (2.7), we have

µ‖∇uℓ‖2L2(Ωℓ)
≤ ‖f‖L2(Ωℓ)‖uℓ‖L2(Ωℓ) ≤ c(Q)‖f‖L2(Ωℓ)‖∇uℓ‖L2(Ωℓ), (5.3)

where c(Q) is the Poincaré constant in Ωℓ, which can be chosen depending only on Q (and

independent of ℓ). Estimate (5.1) follows then from assumption (3.1) on f .

From now on, the real numbers s and ℓ are such that s > ℓ > 0.

In order to prove the Cauchy condition (5.2), let us first note that for any s > ℓ > 0, the

difference uℓ − us satisfies the following variational inequality:

µ

∫

Ωℓ

∇(uℓ − us) · ∇v dx+ g
√
2

∫

Ωℓ

(|D(uℓ)|

− |D(uℓ − v)|+ |D(us)| − |D(us + v)|) dx ≤ 0, ∀v ∈ Ĥ
1
0(Ωℓ). (5.4)
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Indeed, it suffices (for a fixed v ∈ Ĥ
1
0(Ωℓ)) to take v as test function in the variational

inequality (2.7) satisfied by uℓ, then take −v in the variational inequality satisfied by us and

to sum up the two inequalities. Note that us = us + v in Ωs \ Ωℓ, hence |D(us)| = |D(us + v)|
in Ωs \ Ωℓ.

Following [3] and [9], we build a good test function for the variational inequality (5.4).

First we remark that div(uℓ− us) = 0, but uℓ− us = −us 6= 0 on ∂Ωℓ ∩{|x1| = ℓ}. In order

to obtain a function in H
1
0(Ωℓ), we multiply uℓ − us by the cut-off function in the variable x1,

ρ : R → R whose graph is depicted below, for ℓ1 ∈ N
∗, ℓ1 ≤ ℓ− 1.

Figure 2 The function ρ.

Then we have

div(ρ(uℓ − us)) = ρ div(uℓ − us) + ρ′(u1
ℓ − u1

s) = ρ′(u1
ℓ − u1

s)

and therefore, the divergence of ρ(uℓ − us) may not vanish on Ωℓ1+1 \ Ωℓ1 .

Thus, for any ℓ1 ∈ N
∗, we set

Dℓ1 = Ωℓ1+1 \ Ωℓ1 (5.5)

and

D+
ℓ1

= Dℓ1 ∩ {x1 > 0} = Qℓ1 , D−
ℓ1

= Dℓ1 ∩ {x1 < 0} = Q−(ℓ1+1)

and notice that Dℓ1 is the union of the disjoint connected sets D+
ℓ1

and D−
ℓ1
, which are both

translated sets of the same set Q.

Moreover, thanks to Remark 2.2 and the definition of D+
ℓ1
, we have the following equality:

∫

D+

ℓ1

ρ′(u1
ℓ − u1

s) dx = −
∫

D+

ℓ1

(u1
ℓ − u1

s) dx

=

∫ ℓ1+1

ℓ1

∫

D+

ℓ1
∩{x1=t}

(u1
s − u1

ℓ) dx
′dt = 0.

In the same manner, we obtain

∫

D−

ℓ1

ρ′(u1
ℓ − u1

s) dx = 0.
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Using a classical result (see for instance [1, 15]), this allows us to construct a function β ∈
H

1
0(Dℓ1) such that

{
div β = ρ′(u1

ℓ − u1
s) in Dℓ1 ,

‖∇β‖L2(Dℓ1
) ≤ C‖u1

ℓ − u1
s‖L2(Dℓ1

), C = C(Q) independent of ℓ, ℓ1.
(5.6)

More specifically, we construct the function β separately on each connected component of Dℓ1 ,

i.e., on D+
ℓ1

and D−
ℓ1
. Or these domains are both translated sets of Q. Since the constant C

appearing in (5.6) is stable with respect to translations, it depends only on the domain Q and

it is therefore independent on ℓ and ℓ1.

Extending β by 0 outside Dℓ1 we obtain that

vs,ℓ
.
= ρ(uℓ − us)− β ∈ Ĥ

1
0(Ωℓ), (5.7)

which is now a good test function for inequality (5.4).

Therefore

µ

∫

Ωℓ1+1

∇(uℓ − us) · ∇vs,ℓ dx

+ g
√
2

∫

Dℓ1

(
|D(uℓ)| − |D(uℓ − vs,ℓ)|+ |D(us)| − |D(us + vs,ℓ)|

)
dx ≤ 0,

since

uℓ − vs,ℓ = uℓ − ρ(uℓ − us) + β =

{
us in Ωℓ1 ,

uℓ in Ωℓ \ Ωℓ1+1

and

us + vs,ℓ = us + ρ(uℓ − us)− β =

{
uℓ in Ωℓ1 ,
us in Ωℓ \ Ωℓ1+1.

Observe that β vanishes outside Dℓ1 and that for any u, v ∈ H
1(Dℓ1),

|D(u)| − |D(v)| ≤ |D(u)−D(v)| = |D(u− v)| in Dℓ1 .

Consequently,

µ

∫

Ωℓ1+1

∇(uℓ − us) · ∇
(
ρ(uℓ − us)

)
dx

≤ µ

∫

Dℓ1

∇(uℓ − us) · ∇β dx

+ g
√
2

∫

Dℓ1

(
|D(uℓ − vs,ℓ)| − |D(uℓ)|+ |D(us + vs,ℓ)| − |D(us)|

)
dx

≤ µ

∫

Dℓ1

|∇(uℓ − us)| |∇β| dx + 2g
√
2

∫

Dℓ1

|D(vs,ℓ)| dx.

We develop now ∇(ρ(uℓ − us)). Then, noticing that ρ′ vanishes outside Dℓ1 and using the
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Cauchy-Schwarz inequality in Dℓ1 , we derive

µ

∫

Ωℓ1+1

ρ|∇(uℓ − us)|2 dx

≤ −µ

∫

Dℓ1

∂(uℓ − us)

∂x1
· ρ′(uℓ − us) dx

+ µ

∫

Dℓ1

|∇(uℓ − us)| |∇β| dx + 2g
√
2

∫

Dℓ1

|D(vs,ℓ)| dx

≤ µ

∫

Dℓ1

∣∣∣∂(uℓ − us)

∂x1

∣∣∣ |uℓ − us| dx+ µ‖∇(uℓ − us)‖L2(Dℓ1
)‖∇β‖L2(Dℓ1

)

+ 2g
√
2

∫

Dℓ1

|D(vs,ℓ)| dx

≤ C(‖∇(uℓ − us)‖2L2(Dℓ1
) + ‖∇(uℓ − us)‖L2(Dℓ1

)‖u1
ℓ − u1

s‖L2(Dℓ1
))

+ 2g
√
2

∫

Dℓ1

|∇vs,ℓ| dx, (5.8)

where in the last inequality we used the Poincaré inequality, the estimate (5.6) and the inequality

|D(v)| ≤ |∇v| in Dℓ1 for any v ∈ H
1(Dℓ1), which follows from definition (2.1) of D(v).

From (5.7), using the Cauchy-Schwarz inequality in Dℓ1 , we obtain

∫

Dℓ1

|∇vs,ℓ| dx ≤
√

|Dℓ1 | ‖∇(ρ(uℓ − us)− β)‖L2(Dℓ1
)

≤
√

2|Q| (‖∇(ρ(uℓ − us))‖L2(Dℓ1
) + ‖∇β‖L2(Dℓ1

)). (5.9)

We compute once again ∇
(
ρ(uℓ − us)

)
and apply (5.6) and the Poincaré inequality in (5.9).

This, used in (5.8) together with the remark that ρ = 1 in Ωℓ1 and ρ ≥ 0 in Ωℓ1+1, implies

that there exists a constant C depending only on Q, g and µ, such that

‖∇(uℓ − us)‖2L2(Ωℓ1
) ≤ C‖∇(uℓ − us)‖2L2(Dℓ1

)

+
4g

√
|Q|

µ
(‖∇(ρ(uℓ − us))‖L2(Dℓ1

) + ‖∇β‖L2(Dℓ1
))

≤ C(‖∇(uℓ − us)‖2L2(Dℓ1
) + ‖∇(uℓ − us)‖L2(Dℓ1

)). (5.10)

Let ℓ0 ∈ N
∗ be fixed such that ℓ0 ≤ ℓ− 1. Then for any k ∈ N satisfying ℓ0 + k ≤ ℓ− 1, we can

take ℓ1 = ℓ0 + k in the previous inequality.

We also remark that

‖∇(uℓ − us)‖2L2(Dℓ1
) = ‖∇(uℓ − us)‖2L2(Ωℓ1+1)

− ‖∇(uℓ − us)‖2L2(Ωℓ1
).

By denoting ak = ‖∇(uℓ − us)‖2L2(Ωℓ0+k)
, in view of (5.10) we obtain that for all these k we

have the following inequality:

ak ≤ C((ak+1 − ak) +
√
ak+1 − ak ). (5.11)

Let h ∈ N, h ≥ 2 be fixed.
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We first show that if

2(mh + 1) ≤ ℓ < s ≤ 2((m+ 1)h + 1) for some m ∈ N
∗,

and ℓ0 ∈ N
∗ is such that ℓ0 ≤

[
ℓ
2

]
+ 1 ([·] denotes the integer part), then the finite sequence

{ak}m
h

k=0, ak = ‖∇(uℓ − us)‖2L2(Ωℓ0+k)

satisfies the hypotheses of Lemma 4.1.

Inequality (4.1)(ii) follows from (5.11). Moreover, we notice that the finite sequence {ak}
is non-negative and non-decreasing. Let us prove that the last inequality in (4.1)(i) is also

verified.

Indeed, this inequality is a consequence of inequality (5.1) and of the fact that ℓ0 +mh ≤ ℓ:

√
amh = ‖∇(uℓ − us)‖L2(Ω

ℓ0+mh) ≤ ‖∇(uℓ − us)‖L2(Ωℓ) ≤ ‖∇uℓ‖L2(Ωℓ) + ‖∇us‖L2(Ωℓ)

≤ ‖∇uℓ‖L2(Ωℓ) + ‖∇us‖L2(Ωs) ≤ C1(1 + ℓb + 1 + sb)

≤ 2C1(1 + 2b((m+ 1)h + 1)b) ≤ Cb,h(1 +mhb).

Consequently, the desired inequality is satisfied with γ = 2hb and a constant C̃0 depending only

on C1, b and h.

Thus, if m ≥ m0(C, C̃0, γ, h), then by Lemma 4.1, we have that

a0 = ‖∇(uℓ − us)‖2L2(Ωℓ0
) ≤

1

mh−1
,

hence

‖∇(uℓ − us)‖L2(Ωℓ0
) ≤

1

m
h−1

2

(5.12)

for any ℓ and s satisfying

2(mh + 1) ≤ ℓ < s ≤ 2((m+ 1)h + 1)

and any ℓ0 ∈ N
∗ such that ℓ0 ≤

[
ℓ
2

]
+ 1.

Let us observe that for any ℓ ≥ 2(mh
0 + 1), there exists m ∈ N

∗, m ≥ m0 such that

2(mh + 1) ≤ ℓ ≤ 2((m+ 1)h + 1). (5.13)

In order to prove (5.2), let us choose s > ℓ ≥ 2(mh
0 +1). Since s > ℓ, there exists an integer

q ∈ N such that

2[(m+ q)h + 1] ≤ s ≤ 2[(m+ q + 1)h + 1].

Then we have

‖∇(uℓ − us)‖L2(Ωℓ0
) ≤ ‖∇(uℓ − u2((m+1)h+1))‖L2(Ωℓ0

)

+

q−1∑

i=1

‖∇(u2((m+i)h+1) − u2((m+i+1)h+1))‖L2(Ωℓ0
)

+ ‖∇(u2((m+q)h+1) − us)‖L2(Ωℓ0
)

≤
q∑

i=0

1

(m+ i)
h−1

2

≤
+∞∑

i=0

1

(m+ i)
h−1

2

=

+∞∑

k=m

1

k
h−1

2

≤
∫ +∞

m−1

dy

y
h−1

2

=
2

(h− 3)(m− 1)
h−3

2

≤ ch

m
h−3

2

,
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where in the second inequality we have used (5.12) and for the last computations we assumed

that h ≥ 4.

From (5.13) one has (m + 1)h ≥ ℓ
2 − 1 so that m ≥

(
ℓ
2 − 1

) 1
h − 1 ≥ Chℓ

1
h . Thus, taking

L0 = 2(mh
0 + 1), we obtain

‖∇(uℓ − us)‖L2(Ωℓ0
) ≤

c

ℓ
h−3
2h

, ∀s > ℓ ≥ L0.

Let now α ∈
(
0, 12

)
be the constant given in the statement of the theorem and choose h such

that h−3
2h = 1

2 − 3
2h ≥ α and ℓ0 =

[
ℓ
2

]
+ 1. We derive

‖∇(uℓ − us)‖L2(Ω ℓ
2

) ≤ ‖∇(uℓ − us)‖L2(Ωℓ0
) ≤

c

ℓ
h−3
2h

≤ c

ℓα
, ∀s > ℓ ≥ L0,

since ℓ
2 ≤ ℓ0. This gives the desired Cauchy inequality.

Proof of Theorem 3.1 It is divided into four steps.

Step 1 Proof of a Cauchy condition for uℓ.

From Theorem 5.1 we deduce that for every ℓ0 > 0, we have

‖∇(un − um)‖L2(Ωℓ0
) ≤ c n−α, ∀n,m ∈ N

∗, m > n ≥ max{L0, 2ℓ0}, (5.14)

which implies using the Poincaré inequality in Ωℓ0 that {un}n∈N∗ is a Cauchy sequence in

H
1(Ωℓ0). Then the sequence {un} converges to some uℓ0

∞ in the Banach space H
1(Ωℓ0).

This together with Theorem 5.1, implies that for every ℓ0 > 0 there exists a function

uℓ0
∞ ∈ H

1(Ωℓ0) such that

uℓ → uℓ0
∞ strongly in H

1(Ωℓ0). (5.15)

Step 2 Construction of the limit function u∞ and proof of estimate (3.4).

In this step we prove that there exists a function u∞ such that u∞ = uℓ0
∞ on each Ωℓ0 .

According to Step 1, we have in particular that for every n ∈ N
∗ there exists a function

un
∞ ∈ H

1(Ωn) such that

uℓ → un
∞ strongly in H

1(Ωn).

Then, for n < m we have that un
∞ = um

∞ a.e. in Ωn ⊂ Ωm, so that by setting

u∞ =

{
u1
∞ in Ω1,

un
∞ in Ωn \ Ωn−1 for n ≥ 2,

we obtain

uℓ → u∞ strongly in H
1(Ωℓ0) for every ℓ0 > 0. (5.16)

Now, passing to the limit in (5.2) as s → +∞, for a fixed ℓ, we deduce estimate (3.4).

Step 3 Identification of the problem satisfied by u∞.

In this step we prove that the limit u∞ constructed in the previous step is a solution of

problem (3.3).



Bingham Flows in Periodic Domains of Infinite Length 197

In order to prove that u∞ ∈ Ĥ
1
loc(Ω∞) it remains to prove that it is divergence-free. This

is a simple consequence of the fact that div uℓ = 0 in Ωℓ0 for any ℓ ≥ ℓ0 and of convergence

(5.16).

Let us now pass to the limit in the variational inequality (2.7).

Let ℓ0 > 0 be fixed and v ∈ Ĥ
1
0(Ωℓ0). Then, for any ℓ ≥ ℓ0 the function v belongs to Ĥ

1
0(Ωℓ).

Therefore using v as test function in (2.7) we have

µ

∫

Ωℓ0

∇uℓ · ∇v dx+ g
√
2

∫

Ωℓ0

(|D(uℓ)| − |D(uℓ − v)|) dx ≤
∫

Ωℓ0

f · v dx,

since uℓ = uℓ − v outside Ωℓ0 .

Making ℓ → +∞ in the above inequality and using again convergence (5.16) we derive that

µ

∫

Ωℓ0

∇u∞ · ∇v dx+ g
√
2

∫

Ωℓ0

(|D(u∞)| − |D(u∞ − v)|) dx ≤
∫

Ωℓ0

f · v dx.

Using the fact that v vanishes outside of Ωℓ0 , this implies the variational inequality in (3.3).

Observe also that as a simple consequence of (5.16) we also have

u∞ = 0 on ∂Ω∞. (5.17)

We now prove that
∫

{x1=s}

u1
∞(x1, x

′) dx′ = 0 for a.e. s ∈ R. (5.18)

Let ℓ0 > 0 be fixed. Then, for every ℓ > ℓ0, by Remark 2.2 we have in particular,
∫

{x1=s}

u1
ℓ(x1, x

′) dx′ = 0 for a.e. s ∈ (−ℓ0, ℓ0).

Passing to the limit as ℓ → +∞, in view of convergence (5.16) and the trace theorem we have

(5.18) since ℓ0 is arbitrary.

Finally, let us show that u∞ satisfies the estimate for the gradient in (3.3). This follows

from (5.1) of Theorem 5.1 and estimate (3.4) proved in Step 2, since for any ℓ ≥ L0

2 , we have

‖∇u∞‖L2(Ωℓ) ≤ ‖∇(u∞ − u2ℓ)‖L2(Ωℓ) + ‖∇u2ℓ‖L2(Ω2ℓ)

≤ c(2ℓ)−α + C1(1 + (2ℓ)b) ≤ c̃1(1 + ℓb).

Taking c1 = max{c̃1, ‖∇u∞‖L2(ΩL0/2)}, we get

‖∇u∞‖L2(Ωℓ) ≤ c1(1 + ℓb) for every ℓ > 0,

where c1 depends on µ, g, Q, α, c0, b, but is independent of ℓ.

Step 4 Uniqueness of the solution to the limit problem.

Let u∞ and w∞ be two solutions of problem (3.3).

The same argument used in the proof of Theorem 5.1 to show (5.10), replacing uℓ and us

by u∞ and w∞ respectively, gives

‖∇(u∞ − w∞)‖2L2(Ωℓ1
) ≤ C (‖∇(u∞ − w∞)‖2L2(Dℓ1

) + ‖∇(u∞ − w∞)‖L2(Dℓ1
)) (5.19)
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for every ℓ1 ∈ N
∗, where Dℓ1 is given by (5.5).

Set now α0 = 0 and αk = ‖∇(u∞ − w∞)‖2L2(Ωk)
for k ∈ N

∗. Then, the sequence {αk}k∈N

satisfies the hypotheses of Corollary 4.1, thanks to the estimate of the gradient in (3.3) satisfied

by u∞ and w∞ and (5.19).

This implies (4.8), that is

‖∇(u∞ − w∞)‖L2(Ωk) = 0 for any k ∈ N
∗,

which by the Poincaré inequality gives u∞ = w∞. The proof is now complete.

Proof of Theorem 3.2 Let a > 0 be fixed and ℓ ≥ a. Let p̃ℓ = pℓ − 1
|Ωa|

∫
Ωa

pℓ dx be the

representative of pℓ in L2(Ωa)/R satisfying
∫
Ωa

p̃ℓ dx = 0. Then (see for instance [1, 15]) there

exists vℓ ∈ H
1
0(Ωa) such that

{
div vℓ = p̃ℓ in Ωa,
‖vℓ‖H1(Ωa) ≤ Ca‖p̃ℓ‖L2(Ωa),

(5.20)

where the constant Ca depends only on Ωa.

On the other hand, it is obvious that the pair (uℓ, p̃ℓ) also satisfies the variational inequality

in (3.5), i.e.,





µ

∫

Ωℓ

∇uℓ · ∇v dx+ g
√
2

∫

Ωℓ

(|D(uℓ)| − |D(uℓ − v)|) dx −
∫

Ωℓ

p̃ℓ div v dx

≤
∫

Ωℓ

f · v dx, ∀v ∈ H
1
0(Ωℓ).

Taking (−vℓ) (extended by 0 outside of Ωa) as test function in the variational inequality above,

we get by using the Cauchy-Schwarz inequality, the inequality |D(vℓ)| ≤ |∇vℓ| and (5.20),

∫

Ωa

p̃2ℓ dx =

∫

Ωa

p̃ℓ div vℓ dx

≤ µ

∫

Ωa

∇uℓ · ∇vℓ dx+ g
√
2

∫

Ωa

(|D(uℓ + vℓ)| − |D(uℓ)|) dx−
∫

Ωa

f · vℓ dx

≤ µ‖∇uℓ‖L2(Ωa)‖∇vℓ‖L2(Ωa) + g
√
2

∫

Ωa

|D(vℓ)| dx + ‖f‖L2(Ωa)‖vℓ‖L2(Ωa)

≤ Ca

(
µ‖∇uℓ‖L2(Ωa) + g

√
2|Ωa|

1
2 + ‖f‖L2(Ωa)

)
‖p̃ℓ‖L2(Ωa)

≤ C‖p̃ℓ‖L2(Ωa),

where the constant C is independent of ℓ (but depends on Ωa, u∞|Ωa
and f|Ωa

), since thanks

to (3.4),

‖∇uℓ‖L2(Ωa) ≤ ‖∇(uℓ − u∞)‖L2(Ωa) + ‖∇u∞‖L2(Ωa)

≤ ‖∇(uℓ − u∞)‖L2(Ω ℓ
2

) + ‖∇u∞‖L2(Ωa) ≤ cℓ−α + ‖∇u∞‖L2(Ωa)

≤ c(2a)−α + ‖∇u∞‖L2(Ωa)

for ℓ ≥ max{2a, L0}, and thanks to (5.1),

‖∇uℓ‖L2(Ωa) ≤ ‖∇uℓ‖L2(Ωℓ) ≤ C1(1 + ℓb) ≤ C1 max{1 + ab, 1 + (max{2a, L0})b},
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if a ≤ ℓ < max{2a, L0}.
Therefore, ‖p̃ℓ‖L2(Ωa) ≤ C for all ℓ ≥ a, hence

‖pℓ‖L2(Ωa)/R ≤ C for all ℓ ≥ a.

Since L2(Ωa) is a Hilbert space, there exists a sequence {pℓ̃n} and a function pa∞ ∈ L2(Ωa) such

that pℓ̃n ⇀ pa∞ weakly in L2(Ωa)/R. Letting a take all the values in N
∗ and using a diagonal

selection process for a sequence of successive subsequences, we can construct a sequence {pℓn}
and a function p∞ ∈ L2

loc(Ω∞) (for the construction of p∞ we use a technique that is similar

to the one in Step 2 of the proof of Theorem 3.1) such that

pℓn ⇀ p∞ weakly in L2(Ωa)/R for any a > 0.

The fact that the pair (u∞, p∞) satisfies the variational inequality (3.8) is then simply obtained

by passing to the limit (as n goes to +∞) in the variational inequality (3.5) satisfied by the

pair (uℓn , pℓn).
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