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1 Introduction

The motivation of this paper comes from the study of the asymptotic stability for the

following nonlinear KdV equation posed on a finite spatial interval





yt + yx + yxxx + yyx = 0, t ∈ (0,∞), x ∈ (0, L),

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0,∞),

y(0, x) = y0(x), x ∈ (0, L),

(1.1)

where the space length L ∈ (0,∞).

When studying the asymptotic stability problem of nonlinear systems, a usual way is to

firstly do the linearization (around the origin) and study the asymptotic stability of the lin-

earized system. By dropping the nonlinear term yyx, we obtain the associated linear system of
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(1.1) as follows:





yt + yx + yxxx = 0, t ∈ (0,∞), x ∈ (0, L),

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0,∞),

y(0, x) = y0(x), x ∈ (0, L).

(1.2)

Set

X := L2(0, L).

Define the linear operator A : D(A) → X by

Aϕ = −ϕ′ − ϕ′′′, ∀ϕ ∈ D(A) (1.3)

with

D(A) := {ϕ ∈ H3(0, L); ϕ(0) = ϕ(L) = ϕ′(L) = 0}.
It is easy to see that A is closed (see [6]). The well-posedness of (1.2) has been proved by

Rosier [6] by showing that the linear operator A is the infinitesimal generator of a strongly

continuous semigroup of contractions on L2(0, L). Moreover, he introduced in [6] the following

set of critical lengths

N :=
{
2π

√
j2 + l2 + jl

3
; j, l ∈ N

∗
}
,

when considering the controllability problem where the control acts as Neumann boundary

condition at the right end-point.

For the asymptotic stability of system (1.1), it was proved in [5] that when the space length

L /∈ N , 0 is exponentially stable for the corresponding linearized equation (1.2), which gives

the local asymptotic stability around the origin for the nonlinear system (1.1). When L ∈ N ,

the exponential stability of (1.2) does not hold because of the existence of a finite-dimensional

space of solutions that are completely undamped. This is obtained by analyzing the spectrum

of the linear operator A. To be more precise, it was proved in [6] that when L ∈ N , (1.2) admits

a family of non-trivial solutions of the form y0(x)e
λt for some λ ∈ iR, where y0(x) satisfies

{
λy0(x) + y′0(x) + y′′′0 (x) = 0,

y0(0) = y0(L) = y′0(0) = y′0(L) = 0.

In this case, the origin of (1.2) is not asymptotically stable, and thus the linearization analysis

fails. However, it is still very interesting to study the asymptotic properties of the nonlinear

system (1.1) in this critical case.

In [2], we proved the existence and smoothness of the center manifold of (1.1) when L = 2kπ,

(i.e., taking j = l = k inN ), where k is a positive integer such that (see [3, Theorem 8.1, Remark

8.2])

(j2 + l2 + jl = 3k2, j, l ∈ N
∗) ⇒ (j = l = k). (1.4)

In this case, the center manifold is of dimension 1. By analyzing the reduced equation on

the center manifold, we showed that the nonlinear system (1.1) is asymptotically stable around

the origin with a polynomial decay rate. Using the same method, we proved in [7] the local

asymptotic stability for another special critical length L = 2π
√

7
3 (i.e., taking j = 1, l = 2 in

N ), where the center manifold is of dimension 2.
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While studying the existence of the center manifold, it was noticed that the linear operator

A does not generate an analytic semigroup, but a semigroup of Gevrey class. The Gevrey

class of semigroups have a behavior somewhat “between” that of differentiable semigroups and

analytic semigroups. For the convenience of readers, we first give the definition of Gevrey class

δ > 1 (see [1, 8]).

Definition 1.1 Let T (t) be a strongly continuous semigroup on a Banach space X and let

δ > 1. We say that T (t) is of Gevrey class δ for t > t0 if T (t) is infinitely differentiable for

t ∈ (t0,∞) and, for every compact subset K ⊂ (t0,∞) and each θ > 0, there exists a constant

C = C(θ,K) such that

‖T (n)(t)‖ 6 Cθn(n!)δ, ∀t ∈ K, n = 1, 2, · · · .

When δ = 1, T (t) is analytic (see [9]).

With the definition of Gevrey class δ, we give the main result of this article.

Theorem 1.1 The linear operator A defined by (1.3) does not generate an analytic semi-

group but a semigroup of Gevrey class δ for every δ > 3
2 for t > 0 and for all lengths L ∈ (0,∞).

The organization of the paper is as follows. In Section 2, we present some properties about

the spectrum of the linear operator A and give the explicit formula for the resolvent of A. In

Section 3, the estimation for the resolvent of A is proved in order to obtain our main result—

Theorem 1.1.

2 Preliminary

In [2], we proved that for all L ∈ (0,∞), the spectrum of the linear operator A consists only

of isolated eigenvalues of finite algebraic multiplicity. Moreover, the following lemma tells that

for any fixed L ∈ (0,∞), there exists at most a finite number of eigenvalues on the imaginary

axis.

Lemma 2.1 For any fixed L ∈ (0,∞), the following assertions hold:

(1) If L /∈ N , there are no eigenvalues on the imaginary axis.

(2) If L ∈ N , there exists a finite number of pairs {jk, lk}k=n
k=1 ⊂ N∗ ×N∗ with jk > lk, such

that

L = 2π

√
j2k + jklk + l2k

3
.

For each k ∈ {1, · · · , n}, there exists a pair of conjugate eigenvalues of A on the imaginary

axis and

σp(A) ∩ iR =
{
λ = ±iq; q =

( 2π

3L

)3

(2jk + lk)(jk − lk)(2lk + jk)
}
. (2.1)

Here σp(A) is the set of eigenvalues of A, i.e., the set of λ ∈ C such that there exists ϕ ∈
D(A) \ {0} (but complex-valued), such that Aϕ = λϕ.

Proof We have λ ∈ σp(A) ∩ iR if and only if there exists ϕ ∈ H3(0, L) \ {0} such that

{
λϕ + ϕ′ + ϕ′′′ = 0,

ϕ(0) = ϕ(L) = ϕ′(L) = 0.
(2.2)
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By multiplying (2.2) by ϕ, and then integrating over [0, L], we obtain

λ

∫ L

0

ϕϕdx+

∫ L

0

ϕ′ϕdx+

∫ L

0

ϕ′′′ϕdx = 0. (2.3)

Taking the real part of (2.3), we have

∫ L

0

ϕ′ϕ+ ϕ′ϕ

2
dx+

∫ L

0

ϕ′′′ϕ+ ϕ′′′ϕ

2
dx = 0. (2.4)

Integrating by parts in (2.4) and using (2.2), we get

ϕ′(0) = 0.

Hence, λ ∈ σp(A) ∩ iR if and only if there exists ϕ ∈ H3(0, L) \ {0} such that

{
λϕ+ ϕ′ + ϕ′′′ = 0,

ϕ(0) = ϕ(L) = ϕ′(0) = ϕ′(L) = 0.
(2.5)

It was proved by Rosier [6, Lemma 3.5] that when L /∈ N , there does not exist λ ∈ C,

ϕ ∈ H3(0, L) \ {0} such that (2.5) holds, thus we get that there are no eigenvalues of A on

the imaginary axis and the first part of Lemma 2.1 follows. Moreover, when L ∈ N , we get

from the proof of [6, Lemma 3.5] that there exist a finite number of eigenvalues of A on the

imaginary axis which are given explicitly in (2.1), thus the rest of this lemma follows.

From Lemma 2.1, we get immediately the following result, where ρ(A) is the resolvent set of

the closed operator A, i.e., the set of λ ∈ C for which λI−A has a bounded inverse, I denoting

the identity map.

Lemma 2.2 There exists ω0 > 0 such that iω ∈ ρ(A) whenever |ω| > ω0.

Concerning the explicit formula for the resolvent of A, we have the following lemma.

Lemma 2.3 For each λ ∈ ρ(A), λ 6= ±
(
2
√
3i

9

)
, denote by pi, i = 1, 2, 3 the three roots of

λ+ p+ p3 = 0, and set

H :=




1 1 1
ep1L ep2L ep3L

p1e
p1L p2e

p2L p3e
p3L


 .

Then we have pi 6= pj when i 6= j, and

det(H) = (p3 − p2)e
−p1L + (p1 − p3)e

−p2L + (p2 − p1)e
−p3L 6= 0. (2.6)

Moreover, the resolvent of A is given by

(λI−A)−1ψ(x) = I1(x) + I2(x) + I3(x), ∀ψ ∈ L2(0, L),

where

I1(x) =
ep1x

det(H)
×
{ (p3 − p2)e

−p1L

(p2 − p1)(p3 − p1)

∫ x

0

e−p1sψ(s)ds+
( e−p2L

p2 − p1
− e−p3L

p3 − p1

)

·
∫ L

x

e−p1sψ(s)ds− e−p1L

p2 − p1

∫ L

0

e−p2sψ(s)ds+
e−p1L

p3 − p1

∫ L

0

e−p3sψ(s)ds
}
,
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I2(x) =
ep2x

det(H)
×
{
− (p1 − p3)e

−p2L

(p3 − p2)(p2 − p1)

∫ x

0

e−p2sψ(s)ds− e−p2L

p2 − p1

∫ L

0

e−p1sψ(s)ds

+
( e−p1L

p2 − p1
+

e−p3L

p3 − p2

)∫ L

x

e−p2sψ(s)ds− e−p2L

p3 − p2

∫ L

0

e−p3sψ(s)ds
}
,

I3(x) =
ep3x

det(H)
×
{ (p2 − p1)e

−p3L

(p3 − p2)(p3 − p1)

∫ x

0

e−p3sψ(s)ds+
e−p3L

p3 − p1

∫ L

0

e−p1sψ(s)ds

− e−p3L

p3 − p2

∫ L

0

e−p2sψ(s)ds+
(
− e−p1L

p3 − p1
+

e−p2L

p3 − p2

)∫ L

x

e−p3sψ(s)ds
}
.

Proof Suppose that λ ∈ ρ(A). Then for any ψ ∈ L2(0, L), there exists a ϕ ∈ D(A) such

that

(λI−A)ϕ = ψ,

i.e.,

{
λϕ+ ϕ′ + ϕ′′′ = ψ,

ϕ(0) = ϕ(L) = ϕ′(L) = 0.
(2.7)

We consider the homogeneous differential equation associated with (2.7)

λϕ+ ϕ′ + ϕ′′′ = 0. (2.8)

The characteristic equation of (2.8) is λ+ p+ p3 = 0. Using our notation, we have





p1 + p2 + p3 = 0,
p1p2 + p2p3 + p1p3 = 1,
−p1p2p3 = λ.

(2.9)

Note that if λ + p + p3 = 0 has multiple root, we can assume without loss of generality that

p1 = p2 6= p3. In this case, we can obtain λ = ±
(
2
√
3i

9

)
. Therefore, if λ 6= ±

(
2
√
3i

9

)
, it follows

that pi 6= pj when i 6= j, and consequently, the general solution of (2.8) is given by

ϕ(x) = C1e
p1x + C2e

p2x + C3e
p3x.

Here and hereafter, we denote by C1, C2 and C3 arbitrary constants. Using the method of

variation of constant, the general solution of (2.7) is supposed to be

ϕ(x) = C1(x)e
p1x + C2(x)e

p2x + C3(x)e
p3x (2.10)

with C1(x), C2(x) and C3(x) satisfying





C′
1(x)e

p1x + C′
2(x)e

p2x + C′
3(x)e

p3x = 0,

C′
1(x)(p1e

p1x) + C′
2(x)(p2e

p2x) + C′
3(x)(p3e

p3x) = 0,

C′
1(x)(p

2
1e

p1x) + C′
2(x)(p

2
2e

p2x) + C′
3(x)(p

2
3e

p3x) = ψ(x).

(2.11)

We deduce from (2.11) that

C1(x) =

∫ x

0

e−p1sψ(s)ds

(p2 − p1)(p3 − p1)
+ C1, (2.12)
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C2(x) = −

∫ x

0

e−p2sψ(s)ds

(p3 − p2)(p2 − p1)
+ C2, (2.13)

C3(x) =

∫ x

0

e−p3sψ(s)ds

(p3 − p2)(p3 − p1)
+ C3. (2.14)

We now determine C1, C2 and C3 by using the boundary conditions in (2.7). Using (2.7),

together with (2.10) and (2.12)–(2.14) gives

H(C1, C2, C3)
T = (0,K1,K2)

T (2.15)

and

K1 = −
ep1L

∫ L

0

e−p1xψ(x)dx

(p2 − p1)(p3 − p1)
+

ep2L

∫ L

0

e−p2xψ(x)dx

(p3 − p2)(p2 − p1)
−

ep3L

∫ L

0

e−p3xψ(x)dx

(p3 − p2)(p3 − p1)
,

K2 = −
p1e

p1L

∫ L

0

e−p1xψ(x)dx

(p2 − p1)(p3 − p1)
+

p2e
p2L

∫ L

0

e−p2xψ(x)dx

(p3 − p2)(p2 − p1)
−
p3e

p3L

∫ L

0

e−p3xψ(x)dx

(p3 − p2)(p3 − p1)
.

Since λ ∈ ρ(A), it is clear that det(H) 6= 0. Then, we can determine C1, C2 and C3 through

(2.15) uniquely. To be more precise, we have

C1 =
1

det(H)
×
{( e−p2L

p2 − p1
− e−p3L

p3 − p1

)∫ L

0

e−p1xψ(x)dx − e−p1L

p2 − p1

∫ L

0

e−p2xψ(x)dx

+
e−p1L

p3 − p1

∫ L

0

e−p3xψ(x)dx
}
, (2.16)

C2 =
1

det(H)
×
{
− e−p2L

p2 − p1

∫ L

0

e−p1xψ(x)dx +
( e−p1L

p2 − p1
+

e−p3L

p3 − p2

) ∫ L

0

e−p2xψ(x)dx

− e−p2L

p3 − p2

∫ L

0

e−p3xψ(x)dx
}
, (2.17)

C3 =
1

det(H)
×
{ e−p3L

p3 − p1

∫ L

0

e−p1xψ(x)dx − e−p3L

p3 − p2

∫ L

0

e−p2xψ(x)dx

+
(
− e−p1L

p3 − p1
+

e−p2L

p3 − p2

)∫ L

0

e−p3xψ(x)dx
}
. (2.18)

Combining (2.10), (2.12)–(2.14) and (2.16)–(2.18), the result of Lemma 2.3 follows directly.

3 Estimation of the Resolvent

It is usually difficult to identify the Gevrey class regularity for a given strongly continuous

semigroup with Definition 1.1. In this paper, we will refer to the following sufficient condition

for a strongly continuous semigroup to be of Gevrey class. It is based on the estimation for the

resolvent of its infinitesimal generator.

Theorem 3.1 (see [8, Theorem 4, p. 153]) Let T (t) be a strongly continuous semigroup

satisfying ‖T (t)‖ 6Meνt. Suppose that, for some µ > ν and α satisfying 0 < α 6 1,

lim
|ω|→∞

sup |ω|α‖((µ+ iω)I−A)−1‖ = C <∞. (3.1)
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Then T (t) is of Gevrey class δ for t > 0, for every δ > 1
α
.

From Lemma 2.2, we know that when |ω| is large enough, iω ∈ ρ(A). Then for each

ψ ∈ L2(0, L), the explicit formula of (iωI − A)−1ψ is obtained by Lemma 2.3. From this

formula, we can get the following estimate for the resolvent.

Theorem 3.2 For any fixed L ∈ (0,∞), there exist positive constants ω1 > 0, M1 >M2 >

0, such that for all ω ∈ R with |ω| > ω1, the following inequality holds:

M2

|ω| 23
6 ‖(iωI−A)−1‖L2(0,L) 6

M1

|ω| 23
. (3.2)

In particular, using Theorem 3.1 with M = 1, µ = ν = 0 and α = 2
3 , the linear operator A

generates a C0-semigroup of Gevrey class δ ∈
(
3
2 ,∞

)
for t > 0.

Remark 3.1 From the left-hand side of estimation (3.2), we get that the linear operator

A does not generate an analytic semigroup (see [4, Theorem 5.2]).

Remark 3.2 To our knowledge, no equivalence exists between the estimate of the resolvent

(3.2) and the Gevrey class regularity. Thus, we were unable to confirm the optimality of the

value 3
2 .

Proof of Theorem 3.2 Without loss of generality, we consider the case where λ = iω

with ω > 0. Similar estimates can be obtained for λ = iω with ω < 0. We still denote by p1, p2
and p3 the three roots of

p3 + p+ iω = 0. (3.3)

Let, for j ∈ {1, 2, 3} and ω > 0,

qj :=
pj

ω
1

3

. (3.4)

Then qj is the solution of

i + q3j +
qj

ω
2

3

= 0. (3.5)

Applying the implicit function theorem to (3.5), we get that there exist ω1 > 0 and C(ω1) > 0

such that

|qj − q̃j | 6
C(ω1)

ω
2

3

for all ω > ω1, (3.6)

where q̃i solves i + q̃3i = 0 and

q̃1 := i, q̃2 := e
7iπ

6 , q̃3 := e−
iπ

6 . (3.7)

By (3.4) and (3.6)–(3.7), we get

|Re p1| 6
C(ω1)

ω
1

3

, (3.8)

and for ω > ω1 large enough that

Re p2 < 0, Re p3 > 0. (3.9)
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Moreover, from (3.4) and (3.6)–(3.7), we obtain that for i 6= j,

√
3

2
ω

1

3 − 2C(ω1)

ω
1

3

6 |pi − pj | 6 2ω
1

3 +
2C(ω1)

ω
1

3

. (3.10)

Next, we estimate the norm of the resolvent (iωI−A)−1. Since for each ψ ∈ L2(0, L),

(iωI−A)−1ψ = I1 + I2 + I3 (3.11)

with I1, I2 and I3 defined in Lemma 2.3, we have

‖(iωI−A)−1ψ‖L2(0,L) 6 ‖I1‖L2(0,L) + ‖I2‖L2(0,L) + ‖I3‖L2(0,L). (3.12)

By the expression of I1 in Lemma 2.3, noticing (3.8) and (3.9), we obtain through Hölder’s

inequality that

∫ L

0

|I1(x)|2dx =
1

| det(H)|2 ×
∫ L

0

|e2p1x| ·
∣∣∣

(p3 − p2)e
−p1L

(p2 − p1)(p3 − p1)

∫ x

0

e−p1sψ(s)ds

+
( e−p2L

p2 − p1
− e−p3L

p3 − p1

) ∫ L

x

e−p1sψ(s)ds− e−p1L

p2 − p1

∫ L

0

e−p2xψ(x)dx

+
e−p1L

p3 − p1

∫ L

0

e−p3xψ(x)dx
∣∣∣
2

dx

6
Θ‖ψ‖2

L2(0,L)

| det(H)|2 ×
(∣∣∣

p3 − p2
(p2 − p1)(p3 − p1)

∣∣∣
2

+
∣∣∣
e−p2L

p2 − p1
− e−p3L

p3 − p1

∣∣∣
2

+
∣∣∣
e−p2L

p2 − p1

∣∣∣
2

+
∣∣∣

1

p3 − p1

∣∣∣
2)
. (3.13)

Here and hereafter, Θ denotes various positive constants which may depend on L and ω1, but

do not depend on ψ and ω. We obtain from (3.8) to (3.10) and the expression of det(H) in

(2.6) that for ω large enough

∫ L

0

|I1(x)|2dx 6
Θ‖ψ‖2

L2(0,L)

ω
4

3

. (3.14)

Similarly, by the expression of I2 in Lemma 2.3, we have

∫ L

0

|I2(x)|2dx 6
4

| det(H)|2 ×
{∣∣∣− (p1 − p3)e

−p2L

(p3 − p2)(p2 − p1)

∣∣∣
2
∫ L

0

∣∣∣
∫ x

0

ep2(x−s)ψ(s)ds
∣∣∣
2

dx

+
∣∣∣
e−p2L

p2 − p1

∫ L

0

e−p1xψ(x)dx
∣∣∣
2
∫ L

0

|ep2x|2dx

+
∣∣∣
e−p1L

p2 − p1
+

e−p3L

p3 − p2

∣∣∣
2
∫ L

0

∣∣∣
∫ L

x

ep2(x−s)ψ(s)ds
∣∣∣
2

dx

+
∣∣∣
e−p2L

p3 − p2

∫ L

0

e−p3xψ(x)dx
∣∣∣
2
∫ L

0

|ep2x|2dx
}
. (3.15)

For the estimation of the first term in (3.15), using Hölder’s inequality and (3.9), we have

∫ L

0

∣∣∣
∫ x

0

ep2(x−s)ψ(s)ds
∣∣∣
2

dx 6

∫ L

0

(∫ x

0

eRe p2(x−s)|ψ(s)|ds
)2

dx
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6

∫ L

0

(∫ x

0

e2Re p2(x−s)ds
)(∫ x

0

|ψ(s)|2ds
)
dx

=

∫ L

0

e2Re p2x − 1

2Re p2

(∫ x

0

|ψ(s)|2ds
)
dx

6
L

−2Re p2
‖ψ‖2L2(0,L). (3.16)

By (3.9), we get

∫ L

0

|ep2x|2dx =
e2Re p2L − 1

2Re p2
< − 1

2Re p2
. (3.17)

For the estimation of the third term in (3.15), we obtain through Hölder’s inequality and (3.9)

that
∫ L

0

∣∣∣
∫ L

x

ep2(x−s)ψ(s)ds
∣∣∣
2

dx 6

∫ L

0

( ∫ L

x

eRe p2(x−s)|ψ(s)|ds
)2

dx

6

∫ L

0

( ∫ L

x

e2Re p2(x−s)ds
)(∫ L

x

|ψ(s)|2ds
)
dx

=

∫ L

0

(e2Re p2(x−L) − 1

−2Re p2

)( ∫ L

x

|ψ(s)|2ds
)
dx

6

∫ L

0

(e2Re p2(x−L) − 1

−2Re p2

)
dx

( ∫ L

0

|ψ(s)|2ds
)

=
e−2Re p2L + 2Re p2L− 1

(2Re p2)2
‖ψ‖2L2(0,L)

<
e−2Re p2L

(2Re p2)2
‖ψ‖2L2(0,L). (3.18)

Combining (3.15) to (3.18), by (3.8)–(3.10) and the expression of det(H) in (2.6), we deduce

that
∫ L

0

|I2(x)|2dx

6
Θ‖ψ‖2

L2(0,L)

| det(H)|2 ×
{∣∣∣− (p1 − p3)e

−p2L

(p3 − p2)(p2 − p1)

∣∣∣
2 L

−2Re p2
+
∣∣∣
e−p2L

p2 − p1

∣∣∣
2 L

−2Re p2

+
∣∣∣
e−p1L

p2 − p1
+

e−p3L

p3 − p2

∣∣∣
2 e−2Re p2L

(2Re p2)2
+
∣∣∣
e−p2L

p3 − p2

∣∣∣
2 1

−2Re p2

∫ L

0

e−2Re p3xdx
}

=
Θ‖ψ‖2L2(0,L)e

−2Re p2L

| det(H)|2 ×
{∣∣∣

p1 − p3
(p3 − p2)(p2 − p1)

∣∣∣
2 L

−2Re p2
+
∣∣∣

1

p2 − p1

∣∣∣
2( L

−2Re p2

)

+
∣∣∣
e−p1L

p2 − p1
+

e−p3L

p3 − p2

∣∣∣
2 1

(2Re p2)2
+
∣∣∣

1

p3 − p2

∣∣∣
2 1

−2Re p2

e−2Re p3L − 1

−2Re p3

}

6
Θ‖ψ‖2

L2(0,L)e
−2Re p2L

| det(H)|2 ×
{∣∣∣

p1 − p3
(p3 − p2)(p2 − p1)

∣∣∣
2 L

−2Re p2
+
∣∣∣

1

p2 − p1

∣∣∣
2( L

−2Re p2

)

+ 2
(∣∣∣

1

p2 − p1

∣∣∣
2

+
∣∣∣

1

p3 − p2

∣∣∣
2) 1

(2Re p2)2
+
∣∣∣

1

p3 − p2

∣∣∣
2 1

−2Re p2

1

2Re p3

}

6
Θ‖ψ‖2

L2(0,L)

ω
5

3

. (3.19)
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Let us emphasize that, from (3.9), Re p2 < 0 while Re p3 > 0. Therefore we cannot deduce the

estimates for ‖I3‖L2(0,L) from the estimates for ‖I2‖L2(0,L) directly. Thus, we have to directly

estimate ‖I3‖L2(0,L). By the expression of I3 in Lemma 2.3, we have

∫ L

0

|I3(x)|2dx 6
4

| det(H)|2 ×
{∣∣∣

(p2 − p1)e
−p3L

(p3 − p2)(p3 − p1)

∣∣∣
2
∫ L

0

∣∣∣
∫ x

0

ep3(x−s)ψ(s)ds
∣∣∣
2

dx

+
∣∣∣

1

p3 − p1

∫ L

0

e−p1xψ(x)dx
∣∣∣
2
∫ L

0

|e−p3(L−x)|2dx

+
∣∣∣− 1

p3 − p2

∫ L

0

e−p2xψ(x)dx
∣∣∣
2
∫ L

0

|e−p3(L−x)|2dx

+
∣∣∣
(
− e−p1L

p3 − p1
+

e−p2L

p3 − p2

)∣∣∣
2
∫ L

0

∣∣∣
∫ L

x

ep3(x−s)ψ(s)ds
∣∣∣
2

dx
}
. (3.20)

For the estimation of the first term in (3.20), noticing (3.9), we get through Hölder’s inequality

that
∫ L

0

∣∣∣
∫ x

0

ep3(x−s)ψ(s)ds
∣∣∣
2

dx 6

∫ L

0

( ∫ x

0

eRe p3(x−s)|ψ(s)|ds
)2

dx

6

∫ L

0

( ∫ x

0

e2Re p3(x−s)ds
)(∫ x

0

|ψ(s)|2ds
)
dx

6
1

−2Rep3

( ∫ L

0

(1− e2Re p3x)dx
)( ∫ L

0

|ψ(s)|2ds
)

=
1

−2Rep3

(
L− 1

2Re p3
(e2Re p3L − 1)

)
‖ψ‖2L2(0,L)

<
e2Re p3L

(2Re p3)2
‖ψ‖2L2(0,L). (3.21)

By (3.9), we get

∫ L

0

|e−p3(L−x)|2dx =
1− e−2Re p3L

2Re p3
<

1

2Re p3
. (3.22)

For the estimation of the last term in (3.20), we get through Hölder’s inequality and (3.9) that

∫ L

0

∣∣∣
∫ L

x

ep3(x−s)ψ(s)ds
∣∣∣
2

dx 6

∫ L

0

( ∫ L

x

eRe p3(x−s)|ψ(s)|ds
)2

dx

=

∫ L

0

( ∫ L

x

e2Re p3(x−s)ds
)(∫ L

x

|ψ(s)|2ds
)
dx

6
1

−2Rep3

∫ L

0

(e2Re p3(x−L) − 1)dx
( ∫ L

0

|ψ(s)|2ds
)

=
1

−2Rep3

(1− e−2Re p3L

2Re p3
− L

)
‖ψ‖2L2(0,L)

6
L

2Re p3
‖ψ‖2L2(0,L). (3.23)

Combining (3.20) to (3.23), we obtain through (3.8) to (3.10) that

∫ L

0

|I3(x)|2dx
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6
4‖ψ‖2

L2(0,L)

| det(H)|2 ×
{∣∣∣

(p2 − p1)e
−p3L

(p3 − p2)(p3 − p1)

∣∣∣
2 e2Re p3L

(2Re p3)2
+
∣∣∣

1

p3 − p1

∣∣∣
2(∫ L

0

e−2Re p1xdx
) 1

2Re p3

+
∣∣∣− 1

p3 − p2

∣∣∣
2( ∫ L

0

e−2Re p2xdx
) 1

2Re p3

+
∣∣∣
(
− e−p1L

p3 − p1
+

e−p2L

p3 − p2

)∣∣∣
2 L

2Re p3

}

6
Θ‖ψ‖2L2(0,L)

| det(H)|2 ×
{∣∣∣

(p2 − p1)e
−p3L

(p3 − p2)(p3 − p1)

∣∣∣
2 e2Re p3L

(2Re p3)2
+
∣∣∣

1

p3 − p1

∣∣∣
2 L

2Re p3

+
∣∣∣− 1

p3 − p2

∣∣∣
2 e−2Re p2L − 1

−2Re p2

1

2Re p3
+
∣∣∣
(
− e−p1L

p3 − p1
+

e−p2L

p3 − p2

)∣∣∣
2 L

2Re p3

}

6
Θ‖ψ‖2

L2(0,L)

ω
5

3

. (3.24)

Using (3.12), (3.14), (3.19) and (3.24), the right-hand side of estimation (3.2) follows.

In order to obtain the left-hand side of estimation (3.2), let ψ(x) = ep1x and we get

I1 =
ep1x

det(H)
×
{ (p3 − p2)e

−p1L

(p2 − p1)(p3 − p1)
x+

( e−p2L

p2 − p1
− e−p3L

p3 − p1

)
(L− x)

+
e−p1L

(p1 − p2)2
(e(p1−p2)L − 1)− e−p1L

(p1 − p3)2
(e(p1−p3)L − 1)

}

=
ep1x

det(H)
×
{ e−p2L

(p2 − p1)
(L− x) +

e−p2L

(p1 − p2)2
+

(p3 − p2)e
−p1L

(p2 − p1)(p3 − p1)
x

− e−p3L

p3 − p1
(L− x)− e−p1L

(p1 − p2)2
− e−p1L

(p1 − p3)2
(e(p1−p3)L − 1)

}

:= E(x) +D(x), (3.25)

where

E(x) :=
ep1x

det(H)

( e−p2L

p2 − p1
(L− x)

)

and

D(x) :=
ep1x

det(H)

{ e−p2L

(p1 − p2)2
+

(p3 − p2)e
−p1L

(p2 − p1)(p3 − p1)
x− e−p3L

(p3 − p1)
(L− x)

− e−p1L

(p1 − p2)2
− e−p1L

(p1 − p3)2
(e(p1−p3)L − 1)

}
.

Moreover, by (3.9)–(3.10) and the expression of det(H) in (2.6), we have

∫ L

0

|E(x)|2dx >
Θ

| det(H)|2 ×
∫ L

0

∣∣∣
e−p2L

p2 − p1
(L− x)

∣∣∣
2

dx

=
Θe−2Re p2L

|p1 − p2|2| det(H)|2 ×
∫ L

0

(L− x)2dx

=
Θe−2Re p2L

|p1 − p2|2| det(H)|2 × L3

3

>
Θ

ω
4

3

. (3.26)
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Using again (3.8) to (3.10) and the expression of det(H) in (2.6), we get

∫ L

0

|D(x)|2dx

6
Θ

| det(H)|2 ×
{∫ L

0

∣∣∣
e−p2L

(p1 − p2)2

∣∣∣
2

dx+

∫ L

0

∣∣∣
(p3 − p2)e

−p1L

(p2 − p1)(p3 − p1)
x
∣∣∣
2

dx

+

∫ L

0

∣∣∣− e−p3L

(p3 − p1)
(L − x)

∣∣∣
2

dx+

∫ L

0

∣∣∣− e−p1L

(p1 − p2)2

∣∣∣
2

dx

+

∫ L

0

∣∣∣− e−p1L

(p1 − p3)2
(e(p1−p3)L − 1)

∣∣∣
2

dx
}

6
Θ

| det(H)|2 ×
{∣∣∣

e−p2L

(p1 − p2)2

∣∣∣
2

+
∣∣∣

p3 − p2
(p2 − p1)(p3 − p1)

∣∣∣
2

+
∣∣∣
e−p3L

p3 − p1

∣∣∣
2

+
∣∣∣

1

(p1 − p2)2

∣∣∣
2

+
∣∣∣
e(p1−p3)L − 1

(p1 − p3)2

∣∣∣
2}

6
Θ

ω2
. (3.27)

Combining (3.11), (3.19), (3.24) to (3.27), and noticing

‖(iωI−A)−1ψ‖L2(0,L) = ‖E(x) +D(x) + I2(x) + I3(x)‖L2(0,L)

> ‖E(x)‖L2(0,L) − ‖D(x)‖L2(0,L) − ‖I2(x)‖L2(0,L) − ‖I3(x)‖L2(0,L),

we get that the left-hand side of estimation (3.2) holds. The proof of Theorem 3.2 is completed.
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