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Abstract The conservation laws of continuum mechanics, written in an Eulerian frame,
do not distinguish fluids and solids, except in the expression of the stress tensors, usually
with Newton’s hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic
solids. By taking the velocities as unknown monolithic methods for fluid structure interac-
tions (FSI for short) are built. In this paper such a formulation is analysed when the solid
is compressible and the fluid is incompressible. The idea is not new but the progress of
mesh generators and numerical schemes like the Characteristics-Galerkin method render
this approach feasible and reasonably robust. In this paper the method and its discretisa-
tion are presented, stability is discussed through an energy estimate. A numerical section
discusses implementation issues and presents a few simple tests.
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1 Introduction

Currently two methods dominate FSI (Fluid-Structure-Interaction) science: Arbitrary La-

grangian Eulerian (ALE for short) methods especially for thin structures (see [17, 28]) and

immersed boundary methods (IBM for short) (see [11, 29]), for which the mathematical anal-

ysis is more advanced (see [5]) but the numerical implementations lag behind. ALE for large

displacements have meshing difficulties (see [25]) and to a lesser extent with the matching con-

ditions at the fluid-solid interface (see [23]). Furthermore, iterative solvers for ALE-based FSI

methods which rely on alternative solutions of the fluid and the structure parts are subject to

the added mass effect and require special solvers (see [7, 16]).

Alternatives to ALE and IBM are few. One old method (see [2–3]) has resurfaced recently,

the so-called actualized Lagrangian methods for computing structures (see [22, 26]), see also

[10] although different from the present study because it deals mostly with membranes.

Continuum mechanics does not distinguish between solids and fluids till it comes to the

constitutive equations. This has been exploited numerically in several studies but most often

in the context of ALE (see [21, 24, 32]).
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In the present study, which is a follow-up of [30] and [19], we investigate what Stephan

Turek [21], Heil [20] and Wang [34] called a monolithic formulation but here in an Eulerian

framework, as in [13–15, 31], following the displaced geometry of the fluid and the solid. In

[13], the authors obtained excellent results with the fully Eulerian formulation adopted here but

at the cost of meshing difficulties to handle the Lagrangian derivatives. Here we advocate the

Characteristic-Galerkin method and obtain an energy estimate, which is not a proof of stability

but a prerequisite for it.

2 Conservation Laws

Let the time dependent computational domain Ωt be made of a fluid region Ωf
t and a solid

region Ωs
t with no overlap: Ωt = Ω

f

t ∪ Ω
s

t , Ω
f
t ∩ Ωs

t = ∅ at any times t ∈ (0, T ). At initial time

Ωf
0 and Ωs

0 are prescribed.

Let the fluid-structure interface be Σt = Ω
f

t ∩Ω
s

t and the boundary of Ωt be ∂Ωt. The part

of ∂Ωt on which either the structure is clamped or on which there is a no slip condition on the

fluid, that part is denoted by Γ and assumed to be independent of time.

The following standard notations are used. For more details see one of textbooks: [1–2,

9, 27], or the following articles: [21, 24]. For clarity we use bold characters for vectors and

tensors/matrices, with some exceptions, like x, x0 ∈ R
d, d = 2 or 3.

• X : Ω0 × (0, T ) 7→ Ωt: X(x0, t), the Lagrangian position at t of x0.

• u = ∂tX, the velocity of the deformation.

• F = ∇TX = ((∂x0
i
Xj)), the Jacobian of the deformation.

• J = detF.

We denote by trA and detA the trace and determinant of A. To describe the fluid structure

system we need the following:

• ρ = 1Ωf
t
ρf + 1Ωs

t
ρs, the density.

• σ = 1Ωf
t
σf + 1Ωs

t
σs, the stress tensor.

• f(x, t) the density of volumic forces at x, t.

• d = X(x0, t)− x0, the displacement.

Finally and unless specified all spatial derivatives are with respect to x ∈ Ωt and not with

respect to x0 ∈ Ω0. Let φ a function of x, t; as x = X(x0, t), x0 ∈ Ω0, φ is also a function of x0

and we have

∇x0φ = [∂x0
i
φ] = [∂x0

i
Xj∂xj

φ] = FT∇φ.

When X is one-to-one and invertible, d and F can be seen as functions of (x, t) instead of

(x0, t). They are related by

FT = ∇x0X = ∇x0(d+ x0) = ∇x0d+ I = FT∇d+ I ⇒ F = (I−∇d)−T
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Time derivatives are related by (note the notation Dt)

Dtφ :=
d

dt
φ(X(x0, t), t)|x=X(x0,t) = ∂tφ(x, t) + u · ∇φ(x, t).

It is convenient to introduce (note the difference between Dt above and D here):

Du = ∇u+∇Tu.

Conservation of momentum and conservation of mass take the same form for the fluid and the

solid:

ρDtu = f +∇ · σ, Dtρ+ ρ∇ · u = Dt(Jρ) = 0.

So Jρ = ρ0 at all times

J−1ρ0Dtu = f +∇ · σ in Ωt, ∀t ∈ (0, T ) (2.1)

with continuity of u and of σ · n at the fluid-structure interface Σ in absence of interface con-

straint like surface tension. There are also unwritten constraints pertaining to the realisability

of the map X (see [9, 27]).

Figure 1 The geometry of the FLUSTRUK test (see [15]). The cylinder (in black)

is fixed but the flag is a thick compressible Mooney-Rivlin material clamped to the

cylinder by its left boundary; the outer rectangle is filled with a fluid which enters from

the left Γin and leaves on the right Γout; the horizontal boundaries of the outer rectangle

are walls, so they form together with the cylinder the boundary Γw. The flag is at time

zero a rectangle of size l × h. The outer rectangle has size L × H . The center of the

circle representing the cylinder is at (c, c) in a frame of reference which has the lower

left corner at (0, 0); the cylinder has radius r and is fixed.

2.1 Constitutive equations

We consider a bi-dimensional geometry. For the 3d case (see [8]).

• For a Newtonian incompressible fluid : σf = −pfI+ µfDu,

• For an hyperelastic material : σs = ρs∂FΨFT,
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where Ψ is the Helmholtz potential which, in the case of a St-Venant-Kirchhoff material, is (see

[9])

Ψ(F) =
λs

2
tr2

E
+ µstrE2 , E =

1

2
(FTF− I). (2.2)

It is easy to see that trE = 1
2 trFTF − 1 and

∂FtrFTF =
((

∂Fij

∑

m,n

F 2
m,n

))
= 2F ⇒ ∂FtrE = F,

∂Ftr(FTF)2 =
((

∂Fij

∑

n,m,p,k

Fn,kFn,mFp,mFp,k

))
= 4FFTF, (2.3)

which implies that ∂FtrE2 = 2FE. Therefore

∂FΨ(F)FT = (λstrEF+ 2µsFE)FT,

which in turn implies that

σs = ρsF(λstrE + 2µsE)FT = J−1ρs0F(λ
strE + 2µsE)FT.

For a tensor A define |A| =
∑
ij

A2
ij .

Remark 2.1 Some authors have a different definition for the Lamé coefficient λρs0 → λ,

µρs0 → µ which define σs.

Proposition 2.1 Let γ = trFFT . Then

γ = trFFT = (2− 2∇ · d+ |∇d|2)J2, γ̃ = γJ−2

and the following holds

σs = ρs(aI+ 2b(Dd−∇d∇Td))

with

a = λs
(1
2
γ − 1

)
(γ̃ − 1) + µs(γ − J2 − 1)γ̃,

b =
1

2

(λs

2
+ µs

)
(γ − 1)−

λs

4
. (2.4)

Proof First note that if B = FFT then

σs = ρs
[[
λs

(1
2
γ − 1

)
− µs

]
B+ µsB2

]
. (2.5)

Now by the Cayley- Hamilton theorem in 2-dimensions, B2 − γB+ J2I = 0. As

B−1 = I−Dd+∇d∇Td,

let C = I−B−1 = Dd−∇d∇Td. Then

B = γI− J2B−1 = (γ − J2)I+ J2C, B2 = (γ2 − (1 + γ)J2)I+ γJ2C. (2.6)
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Therefore

σs = ρs
[[
λs

(1
2
γ − 1

)
− µs

]
[(γ − J2)I+ J2C] + µs[(γ2 − (1 + γ)J2)I+ γJ2C]

]

= ρs
[[(

λs
(1
2
γ − 1

))
(γ − J2) + µsγ(γ − 1− J2)

]
I

+
[
λs

(1
2
γ − 1

)
+ µs(γ − 1)

]
J2C

]
. (2.7)

2.2 Variational monolithic Eulerian formulation

From now on we limit our analysis to the case ρs0, ρf0 constant.

One must find (u, p) with u|Γ = 0, d and Ωs
t , Ω

f , solution for all (û, p̂) with û|Γ = 0 of





∫

Ωf
t

[
ρfDtu · û− p∇ · û− p̂∇ · u+

µf

2
Du : Dû

]

+

∫

Ωs
t

ρs[Dtu · û+ b(Dd−∇d∇Td) : Dû+ a∇ · û] =

∫

Ωt

f · û,

Dtd = u, J−1 = detI−∇d, ρr = J−1ρr0,

{ẋ(t) = u(x(t), t), x(0) = x0 ∈ Ωr
0 ⇒ x(t) ∈ Ωr

t}, r = s, f.

(2.8)

For an existence result, up to time T ∗ (see [6, 12, 33]), provided a regularization term is added

to the formulation to insure that ∂td has H1-regularity; T ∗ is such that the solid does not touch

the boundary and Σt does not buckle.

3 Numerical Scheme

For the stability of the numerical scheme, the problem is that even for small displacements

the Lamé terms µs∇u : ∇û+λs∇ · u∇ · û are hidden in bDd : Dû and a∇ · û in the above

variational formulation (2.8).

But notice that

J2 = 1 + 2∇ · d− 2det∇d + 3(∇ · d)2 + o(|∇d|2),

γ = 2
(
1 +∇ · d+ (∇ · d)2 +

1

2
|∇d|2 − 2det∇d

)
+ o(|∇d|2),

(γ
2
− 1

)
(γ̃ − 1) = ∇ · d− (∇ · d)2 −

1

2
|∇d|2 − 2det∇d+ o(|∇d|2).

(3.1)

So it makes sense to define

c = a− λs∇ · d. (3.2)

To prepare the time discretisation of (2.8) with a given time step δt, let

d = d− δtu. (3.3)
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Then (2.8) becomes




∫

Ωf
t

[
ρDtu · û− p∇ · û− p̂∇ · u+

µf

2
Du : Dû

]

+

∫

Ωs
t

ρδt[b(Du−∇d∇Tu−∇u∇Td+ δt∇u∇Tu) : Dû+ λs∇ · u ∇ · û]

+

∫

Ωs
t

ρ[Dtu · û+ b(Dd−∇d∇Td) : Dû+ (c+ λs∇ · d)∇ · û] =

∫

Ωt

f · û,

Dtd = u, ρ = ρ0detI−∇d.

Here linear elasticity is visible because the zero order term of b is µf

2 . From now on we do not

use d because the Characteristics-Galerkin discretisation of Dtd = u will give an analogue of

(3.3).

3.1 Discretisation of total derivatives

Let Ω ⊂ R
d, u ∈ H1

0(Ω) = (H1
0 (Ω))

d (d = 2 here), t ∈ (0, T ) and x ∈ Ω. Then let χt
u,x(τ)

be the solution at time τ of

χ̇(τ) = u(χ(τ), τ) with χ(t) = x.

If u is Lipschitz in space and continuous in time the solution exists. The Characteristics-

Galerkin method relies on the concept of total derivative:

Dtv(x, t) :=
d

dτ
v(χ(τ), τ)|τ=t = ∂tv + u · ∇v.

Given a time step δt, let us approximate

χ
(n+1)δt
un+1,x

(nδt) ≈ Y
n+1(x) := x− un+1(x)δt.

Remark 3.1 Note also that, as Jρ is convected by u, that is Jρ|χt
u,x(τ),τ

= Jρ|x,t, so a

consistent approximation is

(Jnρn) ◦ Y
n+1(x) = Jn+1(x)ρn+1(x), x ∈ Ωn+1.

Thus discretising the total derivative of u or the one of ρ0u will give the same scheme.

ρ0(x)
un+1(x)− un(Yn+1(x))

δt

= Jn+1ρn+1
un+1 − un ◦ Yn+1

δt

=
Jn+1ρn+1u

n+1 − (Jnρnu
n) ◦ Yn+1

δt

=
ρ0u

n+1 − (ρ0u
n) ◦ Yn+1

δt
. (3.4)

3.2 Updating the fluid and solid domain

From the definition of Y, notice that the only way to be consistent is to define Ωn+1 using

un+1, i.e., implicitly, since the later is defined also on Ωn+1:

Ωn+1 = (Yn+1)−1(Ωn) = {x : Y
n+1(x) := x− un+1(x)δt ∈ Ωn}.
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3.3 The time discretised scheme

Let

d̃n := dn ◦ Yn+1, dn+1 = d̃n + δtun+1, ρn+1 = ρ0detI−∇dn+1 . (3.5)

Let b̃n, c̃n be given by (2.4) and (3.2) computed with d̃n. The following defines un+1, pn+1 with

un+1|Γ = 0: ∀û, p̂ with û|Γ = 0,





∫

Ωn+1

ρn+1
un+1 − un ◦ Yn+1

δt
· û

+

∫

Ωf
n+1

[
− pn+1∇ · û− p̂∇ · un+1 +

µf

2
Dun+1 : Dû

]

+

∫

Ωs
n+1

ρn+1δt[̃bn(Dun+1 −∇d̃n∇Tun+1 −∇un+1∇Td̃n) : Dû

+λs∇ · un+1∇ · û]

+

∫

Ωs
n+1

[̃bn(Dd̃n −∇d̃n∇Td̃n) : Dû+ (c̃n + λs∇ · d̃n)∇ · û]

=

∫

Ωn+1

f · û.

(3.6)

3.4 Iterative solution by fixed point

The most natural method to solve the above is to freeze some coefficients so as to obtain a

well posed linear problem and iterate:

(1) Start with u = un, Y(x) = x− uδt, Ωr = Y
−1(Ωr

n), r = s, f .

(2) Set d̃n = dn ◦ Y, ρ̃n = ρ0detI−∇d̃
; compute b̃n, c̃n.

(3) Find un+1, pn+1 by solving





∫

Ω

ρ̃n
un+1 − un ◦ Y

δt
· û

+

∫

Ωf

[
− pn+1∇ · û− p̂∇ · un+1 +

µf

2
Dun+1 : Dû

]

+

∫

Ωs

ρ̃nδt[̃bn(Dun+1 −∇d̃n∇Tun+1 −∇un+1∇Td̃n) : Dû

+λs∇ · un+1∇ · û]

+

∫

Ωs

[̃bn(Dd̃n −∇d̃n∇Td̃n) : Dû+ (c̃n + λs∇ · d̃n)∇ · û]

=

∫

Ω

f · û.

(3.7)

(4) Set u = un+1, Y(x) = x− uδt, Ωr = Y
−1(Ωr

n), r = s, f.

(5) If not converged return to Step 2 else set dn+1 = dn ◦ Y+ δtun+1.

Notice that (3.7) is a well posed linear problem whenever

A(u, û) =

∫

Ωs

[ ρ
δt
u · û+ b̃(Du−∇d̃n∇Tu−∇u∇Td̃n) : Dû+ λs∇ · u∇ · û

]
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is coercive. Then (3.7) gives a solution bounded in H1(Ω) and converging subsequences can be

extracted from ρn+1,u
n+1,Ωr

n+1 when Ω = Ωf
n ∪ Ωs

n is fixed. Then convergence would occur if

we could prove that Ωr
n+1 converges.

3.5 Spatial discretisation with finite elements

Let T 0
h be a triangulation of the initial domain. Spatial discretisation can be done with the

most popular finite element for fluids: The Lagrangian triangular elements of degree 2 for the

space Vh of velocities and displacements and Lagrangian triangular elements of degree 1 for the

pressure space Qh; later we will also discuss the stabilised P 1 −P 1 element. As the pressure is

defined up to a constant, a small penalization term with parameter ǫ must be added to impose

uniqueness.

This leads us to find un+1
h ∈ Vh0Γ , p

n+1
h ∈ Qh, Ωn+1 such that for all ûh, p̂h ∈ Vh0Γ × Qh

with

d̃n
h := dn

h ◦ Yn+1,

where

Y
n+1(x) = x− un+1

h (x)δt,

the following holds:





a(ρ̃n, b̃n, c̃n;u
n+1, û) :=

∫

Ωn+1

ρ̃n
un+1
h − un

h ◦ Yn+1

δt
· ûh

+

∫

Ωf

n+1

[
− pn+1∇ · ûh − p̂∇ · un+1

h +
µf

2
Dun+1

h : Dûh

]

+

∫

Ωs
n+1

ρ̃snδt[̃bn(Dun+1
h −∇d̃n

h∇
Tun+1

h −∇un+1
h ∇Td̃n

h) : Dûh

+λs∇ · un+1
h ∇ · ûh]

+

∫

Ωs
n+1

[̃bn(Dd̃n
h −∇d̃n

h∇
Td̃n

h) : Dûh + (c̃n + λs∇ · d̃n
h)∇ · ûh]

=

∫

Ωn+1

f · ûh, Ωn+1 = (Yn+1)−1(Ωn) = {x : Y
n+1(x) ∈ Ωn}.

(3.8)

Then d,

dn+1
h = d̃n

h + δtun+1
h .

3.6 Implementation

The various tests we made lead us to recommend the following.

• Move the vertices of the triangles supporting the solid with their own velocity:

qn+1
i = qni + un+1

h (qn+1
i )δt, (3.9)

which, as explained above has to be implemented through an iterative process.

• Remesh the fluid part at each iteration with a Delaunay-Voronoi mesh generator from the

boundary vertices of Σn+1. However in a Eulerian formulation there is only one mesh, even if
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the triangles are marked to be fluid or structure. Hence the fluid boundary must be identified

computationally, its oriented edges and vertices; these are then input to the fluid mesh generator

as if it was the boundary of an independent fluid domain. Finally two new meshes are merged

into a unique fluid-structure mesh.

• In doing so, the discrete topological properties of the structural part are preserved and we

have the important property that the value d[i] of d at vertex qi in the computer implementation

of d by an array of values at the nodes, satisfies

dn+1[i] = dn[i] + δtun+1[i], ∀i.

In other words, dn ◦ Yn+1 is dn[i] after moving the vertices by (3.9).

4 Energy Estimate

4.1 Stability of the scheme discretised in time

To conserve energy we need to change the scheme (3.8) slightly, from

a(ρ̃n, b̃n, c̃n;u
n+1, û) =

∫

Ωn+1

f · ûh

to

a(ρn+1, bn+1, cn+1;u
n+1, û) + δt2

∫

Ωs
n+1

ρsn+1bn+1∇un+1
h ∇Tun+1

h : Dûh

=

∫

Ωn+1

f · ûh. (4.1)

Lemma 4.1 The mapping Xn : Ω0 7→ Ωn is also Xn+1 = (Yn+1)−1 ◦Xn, n ≥ 1 and the

Jacobian of the transformation is Fn := ∇T
x0
Xn = (I−∇dn)−T .

Proof Notice that Y1(Y2(..Yn−1(Yn(Ωn))..)) = Ω0. Hence

Xn+1 = [Y1(Y2(..Yn(Yn+1)))]−1 = (Yn+1)−1 ◦Xn.

By definition of dn+1 in (3.5),

dn+1(Xn+1(x0)) = dn(Yn+1(Xn+1(x0))) + un+1(Xn+1(x0))δt

= dn(Xn(x0)) + un+1(Xn+1(x0))δt, (4.2)

and since Xn+1(x0) = dn+1(Xn+1(x0)) + x0 we have

Fn+1 = ∇t
x0
(dn+1((Xn+1(x0))) + x0)

= ∇dn+1TFn+1 + I ⇒ Fn+1 = (I−∇dn+1)−T. (4.3)

Note that (4.2) shows also that

Fn+1 = Fn + δt∇T
x0
un+1. (4.4)
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Lemma 4.2 With Ψ defined by (2.2),

∫

Ωs
n+1

ρsn+1[b
n+1(Ddn+1 −∇dn+1∇Tdn+1) : Dû+ an+1∇ · û]

=

∫

Ωs
0

∂FΨ
n+1 : ∇x0

û. (4.5)

Proof By Proposition 2.1 and Lemma 4.1,

∫

Ωs
n+1

ρsn+1(a
n+1I+ 2bn+1(Ddn+1 −∇dn+1∇Tdn+1)) : ∇û

=

∫

Ωs
n+1

σs
n+1 : ∇û =

∫

Ωs
n+1

[ρsn+1∂FΨFT]|n+1 : ∇û

=

∫

Ωs
n+1

[J−1
n+1ρ

s
0∂FΨFT]|n+1 : ∇û =

∫

Ωs
0

ρs0∂FΨ
n+1 : ∇û. (4.6)

Theorem 4.1 When f = 0 and ρ0 is constant in each domain Ωr
0, r = s, f , the numerical

scheme (4.1) has the following property:

∫

Ωn

ρn
2
|un|2 + δt

n∑

k=1

∫

Ωf

k

µf

2
|Duk|2 +

∫

Ωs
0

Ψn ≤

∫

Ω0

ρ0
2
|u0|2 +

∫

Ωs
0

Ψ0. (4.7)

Proof Let r = s or f . Let us choose û = un+1 in (4.1). By Schwartz inequality

∫

Ωr
n+1

ρn+1(u
n ◦ Yn+1) · un+1

= ρ0

∫

Ωr
n+1

(Jn+1)−1(un ◦ Yn+1) · un+1

≤ ρ0

( ∫

Ωr
n+1

(Jn+1)−1(un ◦ Yn+1)2
) 1

2
( ∫

Ωr
n+1

(Jn+1)−1(un+1)2
) 1

2

=
[ ∫

Ωr
n

ρn(u
n)2

∫

Ωr
n+1

ρn+1(u
n+1)2

] 1
2

≤
1

2

∫

Ωr
n

ρrnu
n2 +

1

2

∫

Ωr
n+1

ρrn+1u
n+12.

Plugging this estimate in (4.1) with û = un+1 leads to

∫

Ωn+1

ρn+1

2
|un+1|2 + δt

∫

Ωf
n+1

µf

2
|Dun+1|2 +

∫

Ω0

Ψn+1

≤

∫

Ωn

ρn
2
|un|2 +

∫

Ω0

Ψn.

4.2 Energy estimate for the fully discrete scheme

The proof for the spatially continuous case will work for the discrete case if

Xn = Xn+1 ◦ Yn+1. (4.8)
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Figure 2 Sketch to understand if Xn = Y
n+1

◦Xn+1 holds with the P 1
−P1 stabilised

element. A triangle T k

0 in the reference domain (chosen here to be its initial position

at time zero) becomes triangle T k

n at tn and T k

n+1 at time tn+1: T k

n = Xn(T k

0 ) and

T k

n+1 = Xn+1(T k

0 ), respectively. Vertices are preserved by these transformations.

As discussed in [19] it may be possible to program an isoparametric P 2 − P 1 element for

which (4.8) but it is certainly far from easy. On the other hand, consider the stabilised P 1−P 1

element: The fluid pressure and the solid pressure are continuous and piecewise linear on the

triangulation. The inf-sup condition for stability does not hold unless the incompressibility

condition in the fluid, ∇ · u = 0, is changed to −α∆p +∇ · u = 0. In [4], for instance, more

details are given explaining why α should be proportional to h2, in 2D, h being the local size of

the mesh edges. It amounts to adding α∇pn+1 · ∇p̂ next to the term with µf in the variational

formulations. Then (4.8) holds (see Figure 2) and the proof of the spatially continuous case can

be adapted leading to (4.7) with an additional viscous term ǫ|∇pn+1|2 next to the term with

µf .

Remark 4.1 Because of energy preservation scheme (4.1), implemented via a fixed point

algorithm as in (3.7), generates bounded sequences ρ,u, qi; it seems safe to assess that out of

these bounded subsequences will converge to a solution of the problem discretised in space but

continuous in time when δt → 0.

5 Numerical Tests

In our tests we have used the P 2 −P 1 element with 2 iterations for the nonlinear system at

each time step. In most cases 3 iterations are unnecessary but one iteration is not enough. At

each iteration the linear system is solved with the libraryMUMPS – implemented in FreeFem++

(see [18])—and the condition number does not seem to be an issue, which is natural since

the main contribution to the matrix is the mass matrix. Although mathematically better the

stabilised P 1−P 1 element with α = 10−4 did not perform better. For instance, on FLUSTRUK-

FSI-2∗ below, the flag touches, correctly, the bottom boundary at 0.41 when a mesh with 9568

vertices is used and does not converge with a mesh of 2511 vertices.

We have also tested the effect of adding the term of order δt2 to the nonlinear system: It

made no visible differences.
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5.1 The cylinder-flag test

A compressible hyperelastic Mooney-Rivlin material, shaped as a rectangle of size [0, l] ×

[0, h], is attached behind a cylinder of radius r and beats in tune with the Karman vortices of

the wake behind the cylinder; the fluid in the computational rectangular domain [0, L]× [0, H ]

enters from the left and is free to leave on the right. The center of the cylinder is at (c, c) (see

Figure 1). In [13] the following numerical values are suggested.

Geometry l = 0.35, h = 0.02, L = 2.5, H = 0.41, c = 0.2 which puts the cylinder slightly

below the symmetry line.

Fluid density ρf = 103 kg/m3 and a reduced viscosity νf = µf

ρf = 10−3 m2/s; inflow

horizontal velocity u(0, y) = U
(

6
H2 y(H − y), 0

)T
is a parabolic profile with flux UH . Top and

bottom boundaries are walls with no-slip conditions.

Solid E = 2µ(1 + σ), σ = 0.4, λ = Eσ
(1+σ)(1−2σ) .

Initial velocities and displacements are zero. In all cases the same mesh is used initially

with 2511 vertices. The time step is 0.005.

5.1.1 Free fall of a thick flag

The gravity is g = 9.81 in Ωt. When U = 0, µ = 1.5 106 and ρs = 20ρf , the flag falls under

its own weight; it comes to touch the lower boundary with zero velocity at time 0.4 and then

moves up under its spring effect. This test is named FLUSTRUK-FSI-2∗ in [13] but we have

used a different value for µ because the one reported in [13] does not give the value used for

the gravity.

Figure 3 shows a zoom around the flag at the time when it has stopped to descend and

started to move upward. Pressure lines are drawn in the flow region together with the mesh

and the velocity vectors in the flag and drawn at each vertex. Figure 4 shows the coordinates

of the upper right tip of the flag versus time. It shows also that mass is conserved because the

Figure 3 FLUSTRUK-FSI-2∗ (see [13]). Zoom near the flag at t = 0.4 just as it begins

to move up after the fall under its own weight in a flow initially at rest. Mesh and

Pressure lines are shown in the fluid and velocity vectors in the solid.
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integral in the solid of Jh is plotted. Finally to check the stability of the algorithm for high

values of ρs we performed the same test but with ρs = 2 106 and µs = 2.5 106 (with 1.5 instead

of 2.5 the flag touches the bottom boundary). Then we compared with ρs = 2 for the same

value of µs. Results are shown in Figure 5. Stability is established and a high value of ρs affects

the frequency of the oscillations.

Figure 4 FLUSTRUK-FSI-2∗ test of [13]. Position of the upper right corner of the flag

versus time: x vs t on the left and y vs t on the right. In addition on the right the mass

multiplied by 20 is plotted at each time step.

Figure 5 FLUSTRUK-FSI-2∗: µs = 2.5 106 ; comparison between a small value of

ρs = 2 (top curve), and a high value ρs = 2106 (lower curve).

5.1.2 Flow past a cylinder with a thick flag attached

This test is known as FLUSTRUK-FSI-3 in [13]. The geometry is the same as above but

now U = 2, µ = 2106 and ρs = ρf . After some time a Karman-Vortex alley develops and the

flag beats accordingly. Results are shown in Figures 6–7; the first one displays a snapshot of

the velocity vector norms and the second the y-coordinate versus time of the top right corner

of the flag.

These numerical results compare reasonably well with those of [13]. The frequency is 5s−1

compared to 5.04 and the maximum amplitude 0.031 compared to 0.032. However the results
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are still somewhat sensitive to the time step size, the number of iterations in the nonlinear

solver and the mesh size. An extensive convergence analysis needs to be made to assert that

the precision of these simulations is better than 10%.

Figure 6 FLUSTRUK-FSI-3 Test. Color map based on the norm of the fluid and solid

velocity vectors.

Figure 7 FLUSTRUK-FSI-3 Test. Vertical position of the upper right tip of the flag

versus time shown up to t=5.

6 Conclusion

A fully Eulerian fluid-structure formulation has been presented for compressible materials

with large displacements, discretised by an implicit first order Euler Scheme and the P 2 − P 1

or stabilised P 1 − P 1 elements. An energy estimate has been obtained which guarantees the

stability of the scheme so long as the motion of the vertices does not flip-over a triangle. The

method has been implemented with FreeFem++ (see [18]). It is reasonably robust when the

vertices in the structure are moved by their velocities and the fluid is remeshed with an auto-

matic Delaunay mesh generator. The method is first order in time and therefore somewhat too

diffusive for delicate tests. It is being extended to 3D and to second order in time discretisation.

7 Appendix

7.1 The Freefem++ Script

We include this script for readers wishing to try the program. First download and install

FreeFEM++ and then run this program.
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// NBPROC 1

load "MUMPS"

// Turek-Dunne FSI Test

load "Curvature"

load "isoline"

verbosity=0;

int m=4;

int la1=10, la2=11;

real U0=0, cx0 = 0.2, cy0 = 0.2; // center of cyl.

real r=0.05, H=0.41, L=2.5; // radius of cylinder, size of domain

real ll=0.35, h2=0.01;//flagella length and half thickness

real la=asin(h2/r), x0=sqrt(r*r-h2*h2);

border fr1(t=0,L){x=t; y=0; label=1;}

border fr2(t=0,H){x=L; y=t; label=2;}

border fr3(t=L,0){x=t; y=H; label=1;}

border fr4(t=H,0){x=0; y=t; label=3;}

border fr5(t=la,2*pi-la){x=cx0+r*cos(-t); y=cy0+r*sin(-t); label=4;}

border br1(t=-la,la){x=cx0+r*cos(-t); y=cy0+r*sin(-t); label=4;}

border br2(t=0,ll){x=cx0+x0+t; y=cy0-h2;label=la1;}

//border br3(t=-pi/2,pi/2){x=cx0+x0+ll+h2*cos(t); y=cy0+h2*sin(t); label=la1;}

border br3(t=-h2,h2){x=x0+cx0+ll; y=cy0+t;label=la1;}

border br4(t=ll,0){x=cx0+x0+t; y=cy0+h2;label=la1;}

func FixBord = fr1(20*m)+fr2(4*m)+fr3(20*m)+fr4(4*m)+fr5(12*m);

//plot(FixBord + br1(m)+br2(6*m)+br3(m)+br4(6*m));

mesh th=buildmesh(FixBord + br1(m)+br2(12*m)+br3(m)+br4(12*m));

// plot(th,wait=1);

// variables have been divided by rhof (which is normally 1000)

// Dunne free fall test

real Ubar=0, mu=3*0.5e3, rhos=20, gravity=9.81, T=2; int NN=100;

// Turek-Rannacher Karman Vortex text

// real Ubar=2, mu=2e3, rhos=1, gravity=0, T=4; int NN=600;

real rhof=1, nu=1./1000, penal=1e-6, dt=T/NN;

real sigma = 0.4, E = 2*mu*(1+sigma)/rhos,

lambda = E*sigma/(1+sigma)/(1-2*sigma);

int nsl=1;

real lga1;

real[int,int] SLa1(3,nsl);
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lga1=extractborder(th,la1,SLa1);

border a11(t=0,SLa1.m-1){ P.x=SLa1(0,t); P.y=SLa1(1,t); label=la1;}

th=buildmesh( a11((SLa1.m-1))+br1(m)+FixBord,fixeborder=1);

//plot(th,wait=1);

int[int] rr=[0,2]; th=change(th,region=rr);

int fluid=th(0.01,0.01).region, beam=th(x0+cx0+0.1,cy0).region;

// cout<<fluid<<" "<<beam<<endl;

mesh ths=trunc(th,region==beam);// plot(ths,wait=1);

mesh thf=trunc(th,region==fluid);// plot(thf,wait=1);

mesh thsold=ths;

int nbA;

for(int nbA=0;nbA<ths.nv;nbA++)

if((ths(nbA).x==(x0+cx0+ll)) && (ths(nbA).y==(cy0+h2)))

cout<<"nbA="<<nbA<<" x= "<<ths(nbA).x<<" y= "<<ths(nbA).y<<endl;

fespace V2h(th,P2);

fespace V2hsold(thsold,P2);

fespace Vh(th,P1);

fespace V2hs(ths,P2);

fespace V1h(ths,P1);

fespace Wh(th,[P2,P2,P1]);

Vh p,ph,pp,pph;

V2h uu=0,vv=0,u,v,uh,vh;

V2h uold=0, vold=0, uaux;

V2hs us=0,vs=0, d1=0,d2=0, usold=0,vsold=U0;

// used to keep data on an old mesh

V2hsold dd1,dd2, uusold=0,vvsold=-vsold, uus,vvs;

V1h Jh,tgammah,gammah,ah,bh;

// V2h lambda=0; // semi-smooth Newton multiplyer

macro div(u,v) ( dx(u)+dy(v) ) // EOM

macro DD(u,v) [[2*dx(u),div(v,u)],[div(v,u),2*dy(v)]] // EOM

macro Grad(u,v)[[dx(u),dy(u)],[dx(v),dy(v)]] // EOM

macro det(u,v) (dx(u)*dy(v)-dx(v)*dy(u)) //EOM

macro normg(u,v) (dx(u)^2+dy(v)^2+dx(v)^2+dy(u)^2) //EOM

macro J(d1,d2) (1./(1-div(d1,d2)+det(d1,d2))) //EOM

macro tgamma(d1,d2) (2-2*div(d1,d2)+normg(d1,d2)) //EOM

varf GStokesl([u,v,p],[uh,vh,ph]) =

int2d(th,beam)( rhos/Jh*([u,v]’*[uh,vh]/dt

+dt*bh*trace(DD(uh,vh)*(DD(u,v) -Grad(u,v)*Grad(d1,d2)’
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- Grad(d1,d2)*Grad(u,v)’))

+ dt*lambda*div(u,v)*div(uh,vh)) + penal*p*ph)

+ int2d(th,fluid)(rhof*[u,v]’*[uh,vh]/dt- div(uh,vh)*p

- div(u,v)*ph + penal*p*ph

+ nu/2*trace(DD(uh,vh)’*DD(u,v)) )

// + int1d(th,la1,la2,qfe=qf2pE) (tgv*((lambda + ckunisch*(y-toler))<=0)*v*vh)

+ on(1,4, u=0,v=0) + on(3,u=Ubar*y*(H-y)*6/H/H,v=0);

varf RHS([u,v,p],[uh,vh,ph]) =

int2d(th,fluid)(rhof*[convect([uu,vv],-dt,uold),convect([uu,vv],-dt,vold)]’

*[uh,vh]/dt - rhof*gravity*vh)

+ int2d(th,beam) ( rhos/Jh*([usold,vsold]’*[uh,vh]/dt

-gravity*vh*(1-0*rhof/rhos) - bh*trace(DD(uh,vh)*( DD(d1,d2)

- Grad(d1,d2)*Grad(d1,d2)’) )-div(uh,vh)*(ah+lambda*div(d1,d2) ) ) )

//+ int1d(th,la1,la2,qfe=qf2pE)

//(tgv*((lambda +ckunisch*(y-toler))<=0)*abs(toler-y)/dt*vh)

+ on(1,4, u=0,v=0) + on(3,u=Ubar*y*(H-y)*6/H/H,v=0);

Wh [w1,w2,wp];

/*

varf Residual([w1,w2,wp,wpp],[uh,vh,ph,pph]) =

int2d(th,beam) ( -gravity*vh*rhos - c1*trace(DD(uh,vh)*(DD(d1,d2)

- Grad(d1,d2)*Grad(d1,d2)’)) //f-Au

+ rhos*[usold,vsold]’*[uh,vh]/dt )

+ int2d(th,fluid)(rhof*[convect([uu,vv],-dt,uold),convect([uu,vv],-dt,vold)]’

*[uh,vh]/dt)

- int2d(th,beam)( rhos*[u,v]’*[uh,vh]/dt - div(uh,vh)*pp - div(u,v)*pph

+ penal*pp*pph+ penal*p*ph

+dt*c1*trace(DD(uh,vh)*(DD(u,v) -Grad(u,v)*Grad(d1,d2)’

- Grad(d1,d2)*Grad(u,v)’)))

- int2d(th,fluid)(rhof*[u,v]’*[uh,vh]/dt- div(uh,vh)*p -div(u,v)*ph

+ penal*p*ph + penal*pp*pph

+ nu/2*trace(DD(uh,vh)’*DD(u,v)));

*/

ofstream ff("tail"+m+".txt");

real t0=0, MMCL=-100, MCL=-100,maxCL=-100,minCL=100;

// Computation time loop

{

for(int n=1;n<NN;n++){

Jh=J(d1,d2); // plot(ths,Jh,fill=true,value=1,wait=1);

tgammah = tgamma(d1,d2);

gammah = tgammah*Jh^2;

ah=lambda*(tgammah-1)*(gammah/2-1) + mu*(gammah-Jh^2-1)*tgammah
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-lambda*div(d1,d2) ;

bh=(lambda*(gammah/2-1)+mu*(gammah-1))/2;

// plot(Jh,value=1,wait=1);

thsold = ths;

uus=us; vvs=vs; dd1=d1; dd2=d2; uusold=usold; vvsold=vsold;

lambda=0;

for(int j=0;j<2; j++){ // finds Omega_{n+1} implicitly

{

matrix Al=GStokesl(Wh,Wh,solver=sparsesolver);

real[int] bl=RHS(0,Wh);

[w1,w2,wp]=[0,0,0];

w1[]=Al^-1*bl;

u=w1;v=w2; p=wp; us=u; vs=v; uu=u; vv=v;

}

uus[]=us[]; vvs[]=vs[];

ths = movemesh(thsold,[x+uus*dt,y+vvs*dt]);

lga1=extractborder(ths,la1,SLa1);

thf=buildmesh( a11(-(SLa1.m-1))+FixBord,fixeborder=1);

th=ths+thf; // plot(th,wait=1);

th=change(th,region=rr);

d1=0; d2=0; usold=0; vsold=0;

// copy old values in d1,d2 defined with new ths (d(X^n))

d1[]=dd1[]; d2[]=dd2[]; usold[]=uusold[]; vsold[]=vvsold[];

}

usold[]=uus[]; vsold[]=vvs[];

uold=u; vold=v;

real xm=int2d(ths)(x), ym=int2d(ths)(y),

um=int2d(ths)(uus), vm=int2d(ths)(vvs), nm=int2d(ths)(x^2+y^2);

real yum=int2d(ths)(y*uus), xvm=int2d(ths)(x*vvs), onem=int2d(ths)(1.);

real omega=-(yum-xvm-ym*um/onem+xm*vm/onem) / (nm-(ym^2+xm^2)/onem);

uus=uus+omega*y-(um+omega*ym)/onem;

vvs=vvs-omega*x-(vm-omega*xm)/onem;

d1[]=dd1[]+dt*uus[]; // update array computed on old mesh

d2[]=dd2[]+dt*vvs[];

uaux= sqrt(uold^2+vold^2);

int n1=n+1000;

real CL=ths(nbA).y;

if(minCL>CL) minCL=CL;

if(MMCL<MCL && CL<MCL && MCL>0.2 && MMCL>0.2) {

cout<<"tf= "<<n*dt-t0<<" minCL= "<<minCL<<" maxCL= "<<MCL<<" amplitude= "

<<(MCL-minCL)/2<<endl;

MCL=-100; MMCL=-100;

t0=n*dt; minCL=10;
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}

MMCL=MCL; MCL=CL;

ff<<n*dt<<" "<<ths(nbA).x<<" "<<ths(nbA).y<<" "<< int2d(ths)(Jh)<<endl;

func box=[[-0.1,-0.1],[1,0.5]];

plot(th,bb=box,[us,vs],p,fill=0,value=0,wait=0,cmm="t="+n*dt,

ps="geom"+n+".ps");

}

}
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