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Abstract In this paper, for a coupled system of wave equations with Neumann boundary

controls, the exact boundary synchronization is taken into consideration. Results are then

extended to the case of synchronization by groups. Moreover, the determination of the

state of synchronization by groups is discussed with details for the synchronization and for

the synchronization by 3-groups, respectively.
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1 Introduction

Synchronization is a widespread natural phenomenon. It was first observed by Huygens in

1665 (see [3]). The theoretical research on synchronization phenomenon from the mathematical

point of view dates back to Wiener in 1950s (see [13]). However, almost all the previous works

focused on systems described by ODEs, and studied the asymptotic synchronization of the

states of the system as t → +∞. For coupled systems governed by PDEs, as shown by Li and

Rao, synchronization can be realized in a limited time period by means of proper boundary

controls, and after switching off all the controls, the state of synchronization remains. Precisely

speaking, Li and Rao considered the exact boundary synchronization for a coupled system of

wave equations with Dirichlet boundary controls in any given space dimensions in the framework

of weak solutions (see [4, 6]), and acquired related results for the same system in one space

dimension with all kinds of boundary controls in the framework of classical solutions (see [2,

9]). Moreover, they got also corresponding results on the exact boundary synchronization by

groups in [5, 7].
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In this paper, we consider the following coupled system of wave equations with Neumann

boundary controls:




U ′′ −∆U +AU = 0 in (0,+∞)× Ω,
U = 0 on (0,+∞)× Γ0,

∂νU = DH on (0,+∞)× Γ1

(1.1)

and the corresponding initial data

t = 0 : U = Û0, U ′ = Û1, (1.2)

where Ω ⊂ R
n is a bounded domain with smooth boundary Γ = Γ1 ∪ Γ0 such that Γ1 ∩ Γ0 = ∅

and mes(Γ0) > 0, ∂ν denotes the outward normal derivative on the boundary, the coupling

matrix A = (aij) is of order N , the boundary control matrix D is a full column-rank matrix of

order N ×M (M ≤ N), both A and D have real constant elements, U = (u(1), · · · , u(N))T and

H = (h(1), · · · , h(M))T denote the state variables and the boundary controls, respectively.

Denote

H0 = L2(Ω), H1 = H1
Γ0
(Ω), L = L2

loc(0,+∞;L2(Γ1)), (1.3)

where H1
Γ0
(Ω) is the subspace of H1(Ω), composed of all the functions with the null trace on

Γ0.

We assume that Ω satisfies the usual multiplier geometric control condition (see [1]). With-

out loss of generality, we assume that there exists an x0 ∈ R
n, such that setting m = x − x0,

we have

(m, ν) ≤ 0, ∀x ∈ Γ0; (m, ν) > 0, ∀x ∈ Γ1, (1.4)

where (·, ·) denotes the inner product in R
n.

Define the linear unbounded operator −∆ in H0 by

D(−∆) = {Φ ∈ H2(Ω) : Φ|Γ0
= 0, ∂νΦ|Γ1

= 0}.

Clearly, −∆ is a positively definite self-adjoint operator with a compact resolvent. Then, for

any given s ∈ R, we can define the operator (−∆)
s
2 with the domain

Hs = D((−∆)
s
2 ),

which, endowed with the norm ‖Φ‖s = ‖(−∆)
s
2Φ‖L2(Ω) constitutes a Hilbert space, and its

dual space is H′
s = H−s. In particular, we have (see [11])

H1 = D(
√
−∆) = {Φ ∈ H1(Ω) : Φ|Γ0

= 0}.

Lemma 1.1 (see [8]) For any given initial data (Û0, Û1) ∈ (H1−s × H−s)
N with s > 1

2 ,

and any given boundary function H ∈ LM , the mixed initial-boundary value problem (1.1)–

(1.2) admits a unique weak solution U ∈ (Cloc([0,+∞);H1−s))
N ∩ (C1

loc([0,+∞);H−s))
N with

continuous dependance.

Definition 1.1 System (1.1) is exactly null controllable at the time T > 0 in the space

(H1 × H0)
N , if for any given initial data (Û0, Û1) ∈ (H1 × H0)

N , there exists a boundary



Exact Boundary Synchronization with Neumann Boundary Controls 235

control H ∈ LM with compact support in [0, T ], such that the corresponding mixed initial-

boundary value problem (1.1)–(1.2) admits a unique weak solution U ∈ (Cloc([0,+∞);H1−s))
N∩

(C1
loc([0,+∞);H−s))

N with s > 1
2 , satisfying

t ≥ T : U = U ′ ≡ 0. (1.5)

Moreover, we have the continuous dependence:

‖H‖LM ≤ c‖(Û0, Û1)‖(H1×H0)N , (1.6)

where c is a positive constant.

For the exact boundary null controllability and the non-exact boundary null controllability

of system (1.1), the following results were proved in [8].

Lemma 1.2 When M = N , there exists a constant T > 0, such that system (1.1) is exactly

null controllable at the time T for any given initial data (Û0, Û1) ∈ (H1 ×H0)
N .

However, if there is a lack of boundary controls, we have the following lemma.

Lemma 1.3 When M < N , no matter how large T > 0 is, system (1.1) is not exactly null

controllable at the time T for any given initial data (Û0, Û1) ∈ (H1 ×H0)
N .

Therefore, it is necessary to discuss whether system (1.1) is controllable in some weaker

senses when there is a lack of boundary controls, namely, when M < N . Although the results

are similar to those for the coupled system of wave equations with Dirichlet boundary controls,

since the solution to a coupled system of wave equations with Neumann boundary conditions

has a relatively weaker regularity, in order to realize the desired result, we need stronger function

spaces, and the corresponding adjoint problem is also different.

We first give the following lemma (see [10]).

Lemma 1.4 For any given N×N matrix A and any given full row-rank (N−p)×N matrix

C with 1 ≤ p < N , the following properties are equivalent:

(1) Ker(C) is an invariant subspace of A :

AKer(C) ⊆ Ker(C). (1.7)

(2) There exists a unique matrix A of order (N − p), such that

CA = AC. (1.8)

Moreover, the matrix A is given by

A = CAC+, (1.9)

where C+ denotes the Moore-Penrose inverse of C:

C+ = CT(CCT)−1. (1.10)

Since Lemma 2.1 in [7] is independent of the type of boundary conditions, we still have the

following lemma.
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Lemma 1.5 Assume that U is the solution to the mixed problem (1.1)–(1.2). Let C be a

full row-rank (N − p)×N matrix (where 1 ≤ p < N) such that

t ≥ T : CU = 0 in Ω. (1.11)

Then we have either

AKer(C) ⊆ Ker(C) (1.12)

or there exists a full row-rank (N − p+ 1)×N matrix Ĉ such that

t ≥ T : ĈU = 0 in Ω. (1.13)

2 Exact Boundary Synchronization

Definition 2.1 System (1.1) is exactly synchronizable at the time T > 0 in the space

(H1 × H0)
N , if for any given initial data (U0, U1) ∈ (H1 × H0)

N , there exists a boundary

control H ∈ LM with compact support in [0, T ], such that the weak solution U = U(t, x) to the

mixed initial-boundary value problem (1.1)–(1.2) satisfies

t ≥ T : u(1)(t, x) ≡ · · · ≡ u(N)(t, x)
def.
= u(t, x), (2.1)

where, u = u(t, x), being unknown a priori, is called the corresponding state of synchronization.

The above definition requires that system (1.1) maintains the state of synchronization even

though the boundary control is canceled after the time T.

Theorem 2.1 Assume that M < N . If system (1.1) is exactly synchronizable in the space

(H1 × H0)
N , then the coupling matrix A = (aij) should satisfy the following condition of

compatibility (the sums of elements in every row are equal to each other):

N∑

j=1

aij
def.
= a, (2.2)

where a is a constant independent of i = 1, · · · , N .

Proof By Lemma 1.3, since M < N , system (1.1) is not exactly null controllable, then

there exists an initial data (U0, U1) ∈ (H1 × H0)
N , such that for any given boundary control

H , the corresponding state of synchronization u(t, x) 6≡ 0. Then, noting (2.1), the solution to

problem (1.1) corresponding to this initial data satisfies

u′′ −∆u +
( N∑

j=1

aij

)
u = 0 in D′((T,+∞)× Ω) (2.3)

for all i = 1, · · · , N. Then we have

( N∑

j=1

akj −
N∑

j=1

aij

)
u = 0 in D′((T,+∞)× Ω) (2.4)



Exact Boundary Synchronization with Neumann Boundary Controls 237

for i, k = 1, · · · , N . It follows that

N∑

j=1

akj =

N∑

j=1

aij , i, k = 1, · · · , N, (2.5)

which is just the required condition of compatibility (2.2).

Now, let

C1 =




1 −1
1 −1

. . .
. . .

1 −1




(N−1)×N

(2.6)

be the corresponding matrix of synchronization. C1 is a full row-rank matrix, and Ker(C1) =

Span{e1}, where e1 = (1, 1, · · · , 1)T. Clearly, the synchronization (2.1) can be equivalently

written as

t ≥ T : C1U(t, x) ≡ 0 in Ω. (2.7)

By Lemma 1.4, we have

Lemma 2.1 The following properties are equivalent:

(1) The condition of compatibility (2.2) holds;

(2) e = (1, 1, · · · , 1)T is a right eigenvector of A, corresponding to the eigenvalue a given by

(2.2);

(3) Ker(C1) is a one-dimensional invariant subspace of A :

AKer(C1) ⊆ Ker(C1); (2.8)

(4) There exists a unique matrix A1 of order (N − 1), such that

C1A = A1C1. (2.9)

A1 = (aij) is called the reduced matrix of A by C1, where

aij =

N∑

p=j+1

(ai+1,p − aip) =

j∑

p=1

(aip − ai+1,p), i, j = 1, · · · , N − 1. (2.10)

Theorem 2.2 Assume that M = N − 1. Under the condition of compatibility (2.2), if the

matrix C1D is invertible, namely, rank(C1D) = N − 1, then there exists a constant T > 0

so large that system (1.1) is exactly synchronizable at the time T in the space (H1 × H0)
N ,

moreover, we have the continuous dependence:

‖H‖LN−1 ≤ C‖C1(Û0, Û1)‖(H1×H0)N−1, (2.11)

where C is a positive constant.

On the other hand, when rank(C1D) < N − 1 (especially, when M < N − 1), no matter how

large T > 0 is, system (1.1) is not exactly synchronizable at the time T.
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Proof Under the condition of compatibility (2.2), let

W = C1U, Ŵ0 = C1Û0, W1 = C1Û1.

Noting (2.9), it is easy to see that the original mixed problem (1.1)–(1.2) for U can be reduced

to the following self-closed mixed problem for W :




W ′′ −∆W +A1W = 0 in (0,+∞)× Ω,
W = 0 on (0,+∞)× Γ0,

∂νW = DH on (0,+∞)× Γ1,

t = 0 : W = Ŵ0, W
′ = Ŵ1 in Ω,

(2.12)

where D = C1D. Noting that C1 is a surjection from (H1×H0)
N onto (H1×H0)

N−1, we easily

check that the exact boundary synchronization of system (1.1) for U is equivalent to the exact

boundary null controllability of system (2.12) for W . Since rank(D) = rank(C1D) = N − 1, by

Lemma 1.2, for any given initial data (Ŵ0, Ŵ1) ∈ (H1 ×H0)
N−1, system (2.12) is exactly null

controllable by means of a boundary control DH ∈ LN−1. By (1.6) in Definition 1.1, we get

the continuous dependence (2.11). Since D is invertible matrix, there exists a corresponding

boundary control H ∈ LN−1, such that system (1.1) is exactly synchronizable.

On the other hand, when rank(C1D) < N − 1, DH can be rewritten as D̃H̃ such that D̃ is

a full column-rank matrix of order N×M̃ with M̃ < N −1 and H̃ ∈ LM̃ with compact support

in [0, T ], by Lemma 1.3, the reduced system (2.12) is not exactly null controllable, then system

(1.1) is not exactly synchronizable either.

3 Exact Boundary Synchronization by p-Groups

When there is a further lack of boundary controls, we consider the exact boundary syn-

chronization by p-groups (p ≥ 1; when p = 1, it becomes the exact boundary synchronization).

This indicates that the components of U are divided into p groups:

(u(1), · · · , u(n1)), (u(n1+1), · · · , u(n2)), · · · , (u(np−1+1), · · · , u(np)), (3.1)

where 0 = n0 < n1 < n2 < · · · < np = N, and each group is required to possess the exact

boundary synchronization, respectively.

Definition 3.1 System (1.1) is exactly synchronizable by p-groups at the time T > 0 in the

space (H1 ×H0)
N , if for any given initial data (Û0, Û1) ∈ (H1 ×H0)

N , there exists a boundary

control H ∈ LM with compact support in [0, T ], such that the weak solution U = U(t, x) to the

mixed initial-boundary value problem (1.1)–(1.2) satisfies

t ≥ T : u(k)
def.
= us, ns−1 + 1 ≤ k, l ≤ ns, 1 ≤ s ≤ p, (3.2)

where, (u1, · · · , up)T, being unknown a priori, is called the corresponding state of synchroniza-

tion by p-groups.

Let Ss be an (ns − ns−1 − 1)× (ns − ns−1) full row-rank matrix:

Ss =




1 −1
1 −1

. . .
. . .

1 −1


 , 1 ≤ s ≤ p (3.3)
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and let Cp be the following (N − p)×N matrix of synchronization by p-groups:

Cp =




S1

S2

. . .

Sp


 . (3.4)

Obviously, we have

Ker(Cp) = Span{e1, · · · , ep}, (3.5)

where for 1 ≤ s ≤ p,

(es)j =

{
1, ns−1 + 1 ≤ j ≤ ns,

0, otherwise.
(3.6)

Thus, (3.2) can be equivalently written as

t ≥ T : CpU ≡ 0 or equivalently U =

p∑

s=1

uses in Ω. (3.7)

Theorem 3.1 Assume that system (1.1) is exactly synchronizable by p-groups. Then we

necessarily have M ≥ N − p. Especially, when M = N − p, the coupling matrix A = (aij)

should satisfy the following condition of compatibility:

AKer(Cp) ⊆ Ker(Cp). (3.8)

Proof By (3.7), we have CpU = 0 in Ω when t ≥ T . If AKer(Cp) 6⊆ Ker(Cp), by Lemma

1.5, we can construct a full row-rank (N − p+1)×N matrix C̃1 such that C̃1U = 0 in Ω when

t ≥ T . If AKer(C̃1) 6⊆ Ker(C̃1), still by Lemma 1.5, we can construct another full row-rank

(N − p + 2) ×N matrix C̃2 such that C̃2U = 0 in Ω when t ≥ T , · · · . This procedure should

stop at the rth step, where 0 ≤ r ≤ p. Thus, we get a full row-rank (N − p+ r)×N matrix C̃r

such that

t ≥ T : C̃rU = 0 in Ω (3.9)

and

AKer(C̃r) ⊆ Ker(C̃r). (3.10)

By Lemma 1.4, there exists a unique matrix Ã of order (N − p+ r), such that

C̃rA = ÃC̃r.

Setting W = C̃rU in (1.1), we get the following reduced problem:





W ′′ −∆W + ÃW = 0 in (0,+∞)× Ω,
W = 0 on (0,+∞)× Γ0,

∂νW = D̃H on (0,+∞)× Γ1,

t = 0 : W = C̃rÛ0, W
′ = C̃rÛ1 in Ω,

(3.11)
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where D̃ = C̃rD. Moreover, by (3.9) we have

t ≥ T : W ≡ 0. (3.12)

Noting that C̃r is an (N − p+ r)×N full row-rank matrix, the linear mapping

(Û0, Û1) → (C̃rÛ0, C̃rÛ1) (3.13)

is a surjection from (H1 ×H0)
N onto (H1 ×H0)

N−p+r, then, (3.11) is exactly null controllable

at the time T in the space (H1 ×H0)
N−p+r. By Lemmas 1.2–1.3 (cf. the last paragraph in the

proof of Theorem 2.2), we necessarily have

rank(C̃rD) = N − p+ r,

then

M = rank(D) ≥ rank(C̃rD) = N − p+ r ≥ N − p. (3.14)

In particular, when M = N − p, we have r = 0, namely, the condition of compatibility (3.8)

holds.

Remark 3.1 The condition of compatibility (3.8) is equivalent to the fact that there exist

some constants αrs (1 ≤ r, s ≤ p) such that

Aes =

p∑

r=1

αrser, 1 ≤ s ≤ p, (3.15)

or, noting (3.6), A satisfies the following row-sum condition by blocks:

ns∑

j=ns−1+1

aij = αrs, nr−1 + 1 ≤ i ≤ nr, 1 ≤ r, s ≤ p. (3.16)

Especially, this condition of compatibility becomes (2.2) when p = 1.

Theorem 3.2 Let Cp be the (N − p)×N matrix of synchronization by p-groups defined by

(3.3)–(3.4). Under the condition of compatibility (3.8), assume that the N × (N − p) boundary

control matrix D has full column-rank and satisfies rank(CpD) = N − p. Then system (1.1)

is exactly synchronizable by p-groups by means of boundary control H ∈ LN−p, moreover, we

have the continuous dependence:

‖H‖LN−p ≤ C‖Cp(Û0, Û1)‖(H1×H0)N−p , (3.17)

where C is a positive constant.

On the other hand, when rank(CpD) < N −p (especially, when M < N −p), no matter how

large T > 0 is, system (1.1) is not exactly synchronizable by p-groups at the time T .

Proof Assume that the coupling matrix A = (aij) satisfies the condition of compatibility

(3.8). By Lemma 1.4, there exists a unique matrix Ap of order (N − p), such that

CpA = ApCp. (3.18)
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Setting

W = CpU, D = CpD.

We can similarly get the following reduced system for W :





W ′′ −∆W +ApW = 0 in (0,+∞)× Ω,
W = 0 on (0,+∞)× Γ0,

∂νW = DH on (0,+∞)× Γ1,

t = 0 : W = CpÛ0, W
′ = CpÛ1 in Ω,

(3.19)

whereW is a vector valued function of (N−p) components. By the assumption that rank(D) =

rank(CpD) = N − p and Lemma 1.2, system (3.19) is exactly null controllable. Also, by (1.6)

in Definition 1.1, we get the continuous dependence (3.17). Then the original system (1.1) for

U is exactly synchronizable by p-groups.

On the other hand, when rank(CpD) < N − p, by Lemma 1.3 (cf. the last paragraph in the

proof of Theorem 2.2), the reduced system (2.12) is not exactly null controllable, then system

(1.1) is not exactly synchronizable by p-groups.

4 Determination of the State of Synchronization by p-Groups

Now, under the condition of compatibility (3.8), we are going to discuss the determination

of the state of synchronization by p-groups for system (1.1). Generally speaking, the state of

synchronization should depend on the initial data (Û0, Û1) and the applied boundary control

H . However, when the coupling matrix A possesses some good properties, the state of synchro-

nization by p-groups is independent of the applied boundary control, and can be determined

entirely by the solution to a system of wave equations with homogeneous boundary condition.

First, by Lemma 1.1 and noting that the space (H1 × H0)
N given in Definition 3.1 is

included in (H1−s ×H−s)
N

(
s > 1

2

)
, differently from the case of Dirichlet boundary controls,

the attainable set of states of exact boundary synchronization by p-groups for the system with

Neumann boundary controls is not the whole space (H1−s ×H−s)
p. Besides, as in the case of

Dirichlet boundary controls (see [6]), the choice of boundary controls is not unique. We have

the following theorem.

Theorem 4.1 Let H denote the set of all the boundary controls H which can realize the

exact boundary synchronization by p-groups at the time T for system (1.1). If the condition of

compatibility (3.8) holds, then for ε > 0 small enough, the value of H ∈ H on (0, ε)×Γ1 can be

arbitrarily chosen.

Proof First of all, there exists a T0 > 0 independent of the initial data, such that, when

T > T0, the reduced problem (3.19) is exactly null controllable at the time T . According to the

proof of Theorem 3.2, the exact synchronization by p-groups of system (1.1) is equivalent to

the exact null controllability of the reduced system (3.19). Therefore, taking an ε > 0 so small

that T − ε > T0, system (1.1) is still exactly synchronizable by p-groups at the time T − ε.

Assuming first that (Û0, Û1) ∈ (C∞
0 (Ω)× C∞

0 (Ω))N , and choosing arbitrarily

Ĥε ∈ (C∞

0 ([0, ε]× Γ1))
N−p,

we solve the forward problem (1.1) on the time interval [0, ε] with H = Ĥε, and get the solution

(Ûε, Û
′
ε) ∈ C0([0, ε]; (H1 × H0)

N ). Taking (Ûε(ε, ·), Û ′
ε(ε, ·)) ∈ (H1 × H0)

N as initial data, by
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Theorem 3.2, for system (1.1) we can find a boundary control

H̃ε ∈ (L2(ε, T ;L2(Γ1)))
N−p

such that the corresponding solution Ũε satisfies exactly the initial condition

t = ε : Ũε = Ûε(ε, x), Ũ ′

ε = Û ′

ε(ε, x)

and realizes the synchronization by p-groups at the time t = T . Let

H =

{
Ĥε, t ∈ (0, ε),

H̃ε, t ∈ (ε, T ),
U =

{
Ûε, t ∈ (0, ε),

Ũε, t ∈ (ε, T ).

It can be verified that U is the solution to the mixed problem (1.1) with boundary control H ,

and it is exactly synchronizable by p-groups at the time T . By this way, we get an infinity of

boundary controls H , the values of which on (0, ε) × Γ1 can be taken arbitrarily. Finally, by

the denseness of C∞
0 (Ω) in H1 and H0, we can get the desired result.

The state of synchronization by p-groups is closely related to the properties of the coupling

matrix A. Let

DN−p = {D ∈ M
N×(N−p)(R) : rank(D) = rank(CpD) = N − p}.

By [7], D ∈ DN−p if and only if it can be expressed by

D = (CT
p + (e1, · · · , ep)D0)D, (4.1)

where D0 is a p× (N − p) matrix, and D is a reversible matrix of order (N − p). We have the

following theorem.

Theorem 4.2 Under the condition of compatibility (3.8), assume that AT possesses an in-

variant subspace Span{E1, E2, · · · , Ep} which is bi-orthonormal to Ker(Cp) = Span{e1, · · · , ep} :

(Ei, ej) = δij , 1 ≤ i, j ≤ p.

Then there exists a boundary control matrix D ∈ DN−p, such that the state of synchronization

by p-groups u = (u1, · · · , up)T is independent of the applied boundary controls, and can be

determined as follows:

t ≥ T : u = ψ, (4.2)

where ψ = (ψ1, · · · , ψp)
T is the solution to the following problem with homogeneous boundary

condition:




ψ′′
r −∆ψr +

p∑

s=1

αrsψs = 0 in (0,+∞)× Ω,

ψr = 0 on (0,+∞)× Γ0,

∂νψr = 0 on (0,+∞)× Γ1,

t = 0 : ψr = (Er, Û0), ψ
′
r = (Er, Û1) in Ω,

(4.3)

where αrs (1 ≤ r, s ≤ p) are given by (3.16).
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Proof Noting that Span{E1, E2, · · · , Ep} is bi-orthonormal to Ker(Cp) = Span{e1, · · · , ep},
and taking

D0 = −ETCT
p , E = (E1, E2, · · · , Ep) (4.4)

in (4.1), we get a boundary control matrix D ∈ DN−p, such that

Er ∈ Ker(DT), 1 ≤ r ≤ p. (4.5)

On the other hand, since Span{E1, E2, · · · , Ep} is an invariant subspace of AT, we may

denote

ATEr =

p∑

s=1

βsrEs, 1 ≤ r ≤ p,

where βsr are some constants. By

(ATEr, es) = (Er, Aes), 1 ≤ r, s ≤ p,

and noticing (3.15), we have

( p∑

t=1

βtrEt, es

)
=

(
Er,

p∑

t=1

αtset

)
, 1 ≤ r, s ≤ p.

Then by bi-orthonormality, we get

βsr = αrs,

namely,

ATEr =

p∑

s=1

αrsEs, 1 ≤ r ≤ p. (4.6)

Let ψr = (Er, U). Taking the inner product with Er on both sides of (1.1), we get (4.3). Finally,

for the state of synchronization by p-groups, by (3.7) we have

t ≥ T : ψr(t) = (Er , U) =

p∑

s=1

(Er, es)us = ur, 1 ≤ r ≤ p. (4.7)

When AT does not possess any invariant subspace Span{E1, E2, · · · , Ep} which is bi-

orthonormal to Ker(Cp) = Span{e1, · · · , ep}, we can use the solution of (4.3) to give an es-

timate on the state of synchronization by p-groups.

Theorem 4.3 Under the condition of compatibility (3.8), assume that there exists a sub-

space Span{E1, E2, · · · , Ep} that is bi-orthonormal to Span{e1, · · · , ep}. Then there exist a

boundary control matrix D ∈ DN−p and a constant c independent of the initial data, such that

the state of synchronization by p-groups u = (u1, · · · , up)T satisfies the following estimate:

t ≥ T : ‖(u, u′)(t) − (ψ, ψ′)(t)‖(H2−s×H1−s)p ≤ c‖Cp(Û0, Û1)‖(H1×H0)N−p , (4.8)

where ψ = (ψ1, · · · , ψp)
T is the solution to problem (4.3), and s > 1

2 .
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Proof Since {E1, E2, · · · , Ep} is bi-orthonormal to {e1, · · · , ep}, similar to (4.4), there

exists a boundary control matrix D ∈ DN−p, such that (4.5) holds. Let φr = (Er , U). Taking

the inner product with Er on both sides of (1.1)–(1.2), we get

φ′′r −∆φr + (Er, AU) = 0.

Since

(Er, AU) = (ATEr, U) =
( p∑

s=1

αrsEs +ATEr −
p∑

s=1

αrsEs, U
)

=

p∑

s=1

αrs(Es, U) +
(
ATEr −

p∑

s=1

αrsEs, U
)

=

p∑

s=1

αrsφs +
(
ATEr −

p∑

s=1

αrsEs, U
)

(4.9)

and for any given k ∈ {1, · · · , p}, we have

(
ATEr −

p∑

s=1

αrsEs, ek

)
= (Er, Aek)−

p∑

s=1

αrs(Es, ek)

=
(
Er,

p∑

s=1

αskes

)
− αrk

=

p∑

s=1

αsk(Er , es)− αrk

= αrk − αrk = 0, (4.10)

we get

ATEr −
p∑

s=1

αrsEs ∈ {Ker(Cp)}⊥ = Im(CT
p ).

Therefore, there exists a vector Rr ∈ R
N−p, such that

ATEr −
p∑

s=1

αrsEs = CT
p Rr. (4.11)

Thus, for r = 1, · · · , p, we have




φ′′r −∆φr +

p∑

s=1

αrsφs = −(Rr, CpU) in (0,+∞)× Ω,

φr = 0 on (0,+∞)× Γ0,

∂νφr = 0 on (0,+∞)× Γ1,

t = 0 : φr = (Er, Û0), φ
′
r = (Er, Û1) in Ω,

(4.12)

where αrs (1 ≤ r, s ≤ p) are defined by (3.16), and U = U(t, x) ∈ C(0, T ; (H1−s)
N ) ∩

C1(0, T ; (H−s)
N ) is the solution to the mixed initial-boundary value problem (1.1)–(1.2). More-

over, we have

t ≥ T : φr(t) = (Er, U) =

p∑

s=1

(Er, es)us = ur, r = 1, · · · , p. (4.13)
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Noting that (4.3) and (4.12) possess the same initial data and the same boundary condition,

by the well-posedness for a system of wave equations with Neumann boundary condition, we

have (see [12, Chapter III]) that, when t ≥ 0,

‖(ψ, ψ′)(t) − (φ, φ′)(t)‖2(H2−s×H1−s)p
≤ c

∫ T

0

‖CpU‖2(H1−s)N−pds, (4.14)

where, c is a positive constant. Noting that W = CpU , by well-posedness of the reduced

problem (3.19) (see [12, Lemma 1.1]), we have

∫ T

0

‖CpU‖2(H1−s)N−pds ≤ c(‖Cp(Û0, Û1)‖2(H1×H0)N−p + ‖DH‖LN−p). (4.15)

Moreover, by (3.17) we have

‖DH‖LN−p ≤ c‖Cp(Û0, Û1)‖2(H1×H0)N−p . (4.16)

Substituting it into (4.15), we have

∫ T

0

‖CpU‖2(H1−s)N−pds ≤ c‖Cp(Û0, Û1)‖2(H1×H0)N−p , (4.17)

then, by (4.14) we get

‖(ψ, ψ′)(t)− (φ, φ′)(t)‖2(H2−s×H1−s)p
≤ c‖Cp(Û0, Û1)‖2(H1×H0)N−p . (4.18)

Substituting (4.13) into (4.18), we get (4.8).

Remark 4.1 Differently from the case of Dirichlet boundary controls, although the solution

to the problem (1.1) with Neumann boundary controls possesses a weaker regularity, the solution

to the problem (4.3), which determines the state of synchronization by p-groups, possesses a

higher regularity than the original problem (1.1) itself, then, this improved regularity makes

it possible to approach the state of synchronization by p-groups by a solution to a relatively

smoother problem.

In order to exactly express the state of synchronization by p-groups, we can extend the

subspace Span{e1, · · · , ep} to an invariant subspace Span{e1, · · · , ep, · · · , eq} of A, such that

AT possesses an invariant subspace Span{E1, · · · , Ep, · · · , Eq}, which is bi-orthonormal to

Span{e1, · · · , ep, · · · , eq}.
Let

P =

q∑

s=1

es ⊗ Es, (4.19)

in which the tensor product is defined by

(e⊗ E)U = (E,U)e = ETUe, ∀U ∈ R
N .

P can be represented by a matrix of order N . It is easy to see that

Im(P ) = Span{e1, e2, · · · , eq}, Ker(P ) = (Span{E1, E2, · · · , Eq})⊥ (4.20)
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and

PA = AP. (4.21)

Let U = U(t, x) be the solution to the mixed initial-boundary value problem (1.1)–(1.2).

We define its synchronizable part Us and controllable part Uc, respectively, as follows:

Us := PU, Uc := (I − P )U. (4.22)

If system (1.1) is exactly synchronizable by p-groups, then

t ≥ T : U ∈ Span{e1, · · · , ep} ⊆ Span{e1, · · · , ep, · · · , eq} = Im(P ), (4.23)

hence we have

t ≥ T : Us = PU = U, Uc = (I − P )U = 0.

Noting (4.21), multiplying P and (I − P ) from the left on both sides of (1.1) respectively, we

see that the synchronizable part Us of U satisfies the following system:




U ′′
s −∆Us +AUs = 0 in (0,+∞)× Ω,

Us = 0 on (0,+∞)× Γ0,

∂νUs = PDH on (0,+∞)× Γ1,

t = 0 : Us = PÛ0, U
′
s = PÛ1 in Ω,

(4.24)

while, the controllable part Uc of U satisfies the following system:




U ′′
c −∆Uc +AUc = 0 in (0,+∞)× Ω,

Uc = 0 on (0,+∞)× Γ0,

∂νUc = (I − P )DH on (0,+∞)× Γ1,

t = 0 : Uc = (I − P )Û0, U
′
c = (I − P )Û1 in Ω.

(4.25)

In fact, under the boundary controlH, Uc with the initial data ((I−P )Û0, (I−P )Û1) ∈ Ker(P )×
Ker(P ) is exactly null controllable, while, Us with the initial data (PÛ0, P Û1) ∈ Im(P )× Im(P )

is exactly synchronizable.

Theorem 4.4 Assume that the condition of compatibility (3.8) holds. Let P be defined by

(4.19). If system (1.1) is exactly synchronizable by p-groups, and the synchronizable part Us is

independent of the applied boundary control H for t ≥ T , then we have

p = q and PD = 0. (4.26)

In particular, if PÛ0 = PÛ1 = 0, then, for such initial data (Û0, Û1), system (1.1) is exactly

null controllable.

Proof By Theorem 4.1, the value of H on (0, ε) × Γ1 can be arbitrarily taken. If the

synchronizable part Us is independent of the applied boundary control H for t ≥ T , then we

have

PD = 0,

hence

Im(D) ⊆ Ker(P ).

Noting (4.20), we have

dim Ker(P ) = N − q and dim Im(D) = N − p,

then p = q.
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5 Determination of the State of Exact Boundary Synchronization

In the case of exact boundary synchronization, by Lemma 2.1, (1, 1, · · · , 1)T is a right

eigenvector of A, corresponding to the eigenvalue a defined by (2.2). Let ε1, ε2, · · · , εr and

E1, E2, · · · , Er with r ≥ 1 be the Jordan chains of A and AT, respectively, corresponding to

the eigenvalue a, and Span{ε1, ε2, · · · , εr} is bi-orthonormal to Span{E1, E2, · · · , Er}. Thus we
have 




Aεl = aεl + εl+1, 1 ≤ l ≤ r,

ATEk = aEk + Ek−1, 1 ≤ k ≤ r,

(Ek, εl) = δkl, 1 ≤ k, l ≤ r

(5.1)

with

εr = (1, 1, · · · , 1)T, εr+1 = 0, E0 = 0. (5.2)

Let U = U(t, x) be the solution to the mixed initial-boundary value problem (1.1)–(1.2). If

system (1.1) is exactly synchronizable, then

t ≥ T : U = uεr, (5.3)

where u = u(t, x) is the corresponding state of synchronization. The synchronizable part and

the controllable part are, respectively,

t ≥ T : Us = uεr, Uc = 0.

If the synchronizable part is independent of the applied boundary control H , by Theorem

4.4, we have r = 1, then A possesses a left eigenvector E1 such that

(E1, ε1) = 1.

Generally speaking, when r ≥ 1, setting

ψk = (Ek, U), 1 ≤ k ≤ r,

noting (4.19) and (4.22), we have

Us =

r∑

k=1

(Ek, U)εk =

r∑

k=1

ψkεk.

Thus, (ψ1, · · · , ψr) are the coordinates of Us under the basis (ε1, ε2, · · · , εr).
Taking the inner product with Ek on both sides of (4.24), we get the following theorem.

Theorem 5.1 Let ε1, ε2, · · · , εr and E1, E2, · · · , Er be the Jordan chains of A and AT,

respectively, corresponding to the eigenvalue a, in which εr = (1, · · · , 1)T. Then the synchro-

nizable part Us = (ψ1, · · · , ψr) is determined by the following system (1 ≤ k ≤ r) :




ψ′′
k −∆ψk + aψk + ψk−1 = 0 in (0,+∞)× Ω,

ψk = 0 on (0,+∞)× Γ0,

∂νψk = hk on (0,+∞)× Γ1,

t = 0 : ψk = (Ek, Û0), ψ
′
k = (Ek, Û1) in Ω,

(5.4)

where

ψ0 = 0, hk = ET
k DH. (5.5)
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Noting (5.3), we have

t ≥ T : ψk = (Ek, U) = (Ek, uεr) = uδkr, 1 ≤ k ≤ r.

Thus, the state of synchronization u is determined by

t ≥ T : u = u(t, x) = ψr(t, x).

However, in order to get the state of synchronization u, we must solve the whole coupled

problem (5.4)–(5.5).

6 Determination of the State of Exact Boundary Synchronization by

3-Groups

In this section, for an example, we will give the details on the determination of the state of

exact boundary synchronization by 3-groups for system (1.1). The state of synchronization by p-

groups can be discussed in a similar way. We always assume that the condition of compatibility

(3.8) is satisfied.

By synchronization by 2-groups, when t ≥ T , we have

u(1)(t, x) ≡ · · · ≡ u(n1)(t, x)
def.
= u1(t, x), (6.1)

u(n1+1)(t, x) ≡ · · · ≡ u(n2)(t, x)
def.
= u2(t, x), (6.2)

u(n2+1)(t, x) ≡ · · · ≡ u(N)(t, x)
def.
= u3(t, x). (6.3)

Recall that the matrix C3 of synchronization by 3-groups is defined by (3.4). Let





e1 = (

n1︷ ︸︸ ︷
1, · · · , 1,

n2−n1︷ ︸︸ ︷
0, · · · , 0,

N−n2︷ ︸︸ ︷
0, · · · , 0)T,

e2 = (

n1︷ ︸︸ ︷
0, · · · , 0,

n2−n1︷ ︸︸ ︷
1, · · · , 1,

N−n2︷ ︸︸ ︷
0, · · · , 0)T,

e3 = (

n1︷ ︸︸ ︷
0, · · · , 0,

n2−n1︷ ︸︸ ︷
0, · · · , 0,

N−n2︷ ︸︸ ︷
1, · · · , 1)T.

(6.4)

Obviously, we have that

Ker(C3) = Span{e1, e2, e3} (6.5)

and that the state of synchronization by 3-groups is given by (6.1)–(6.3) means that

t ≥ T : U = u1e1 + u2e2 + u3e3. (6.6)

Since the invariant subspace Span{e1, e2, e3} of A is of dimension 3, it may contain one, two

or three eigenvectors of A, thus we can distinguish the followings three cases.

(i) A admits three eigenvectors fr, gs and ht contained in Span{e1, e2, e3}, corresponding
to eigenvalues λ, µ and ν, respectively. Let f1, f2, · · · , fr; g1, g2, · · · , gs and h1, · · · , ht be the

Jordan chains corresponding to these right eigenvectors:




Afi = λfi + fi+1, 1 ≤ i ≤ r, er+1 = 0,

Agj = µgj + gj+1, 1 ≤ j ≤ s, gs+1 = 0,

Ahk = νhk + hk+1, 1 ≤ k ≤ t, ht+1 = 0,

(6.7)
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and let ξ1, ξ2, · · · , ξr; η1, η2, · · · , ηs and ζ1, ζ2, · · · , ζt be the Jordan chains corresponding to the

related left eigenvectors:




ATξi = λξi + ξi−1, 1 ≤ i ≤ r, ξ0 = 0,

ATηj = µηj + ηj−1, 1 ≤ j ≤ s, η0 = 0,

ATζk = νζk + ζk−1, 1 ≤ k ≤ t, ζ0 = 0,

(6.8)

such that

(fi, ξl) = δil, (gj , ηm) = δjm, (hk, ζn) = δkn (6.9)

for i, l = 1, · · · r; j,m = 1, · · · s; k, n = 1, · · · t and

(fi, ηj) = (fi, ζk) = (gj , ξi) = (gj , ζk) = (hk, ξi) = (hk, ηj) = 0 (6.10)

for i = 1, · · · r; j = 1, · · · s; k = 1, · · · t.
Taking the inner product with ξi, ηj , ζk on both sides of (1.1)–(1.2), respectively, and de-

noting

φi = (U, ξi), ψj = (U, ηj), θk = (U, ζk) (6.11)

for i = 1, · · · r; j = 1, · · · s; k = 1, · · · t, we get





φ′′i −∆φi + λφi + φi−1 = 0 in (0,+∞)× Ω,

φi = 0 on (0,+∞)× Γ0,

∂νφi = ξTi DH on (0,+∞)× Γ1,

t = 0 : φi = (ξi, Û0), φ
′
i = (ξi, Û1) in Ω,

(6.12)





ψ′′
j −∆ψj + µψj + ψj−1 = 0 in (0,+∞)× Ω,

ψj = 0 on (0,+∞)× Γ0,

∂νψj = ηTj DH on (0,+∞)× Γ1,

t = 0 : ψj = (ηj , Û0), ψ
′
j = (ηj , Û1) in Ω

(6.13)

and




θ′′k −∆θk + νθk + θk−1 = 0 in (0,+∞)× Ω,

θk = 0 on (0,+∞)× Γ0,

∂νθk = ζTk DH on (0,+∞)× Γ1,

t = 0 : θk = (ζk, Û0), θ
′
k = (ζk, Û1) in Ω

(6.14)

with

φ0 = ψ0 = θ0 = 0. (6.15)

Solving the reduced problems (6.12)–(6.14), we get φ1 · · · , φr; ψ1, · · · , ψs and θ1, · · · , θt.
Noting that fr, gs, ht are contained in Span{e1, e2, e3}, we have





e1 = α1fr + α2gs + α3ht,

e2 = β1fr + β2gs + β3ht,

e3 = γ1fr + γ2gs + γ3ht.

(6.16)
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By (6.6) we have

t ≥ T : U = (u1α1 + u2β1 + u3γ1)fr + (u1α2 + u2β2 + u3γ2)gs

+ (u1α3 + u2β3 + u3γ3)ht. (6.17)

Noting (6.9)–(6.10), we have

t ≥ T :





φr = u1α1 + u2β1 + u3γ1,

ψs = u1α2 + u2β2 + u3γ2,

θt = u1α3 + u2β3 + u3γ3.

(6.18)

Since e1, e2, e3 are linearly independent, the linear system (6.16) is invertible. Then, the state

(u1, u2, u3)
T of synchronization by 3-groups can be determined by solving the linear system

(6.18).

In particular, when r = s = t = 1, the invariant subspace Span{ξ1, η1, ζ1} of AT is bi-

orthonormal to Ker(C3) = Span{e1, e2, e3}. By Theorem 4.2, there exists a boundary control

matrix D ∈ DN−3, such that the state (u1, u2, u3)
T of synchronization by 3-groups is indepen-

dent of the applied boundary controls.

(ii) A admits two eigenvectors fr and gs contained in Span{e1, e2, e3}, corresponding to

eigenvalues λ and µ, respectively. Let f1, f2, · · · , fr and g1, g2, · · · , gs be the Jordan chains

corresponding to these right eigenvectors:
{
Afi = λfi + fi+1, 1 ≤ i ≤ r, er+1 = 0,

Agj = µgj + gj+1, 1 ≤ j ≤ s, gs+1 = 0
(6.19)

and let ξ1, ξ2, · · · , ξr; η1, η2, · · · , ηs be the Jordan chains corresponding to the related left eigen-

vectors:
{
ATξi = λξi + ξi−1, 1 ≤ i ≤ r, ξ0 = 0,

ATηj = µηj + ηj−1, 1 ≤ j ≤ s, η0 = 0,
(6.20)

such that

(fi, ξl) = δil, (gj, ηm) = δjm, i, l = 1, · · · , r; j,m = 1, · · · s (6.21)

and

(fi, ηm) = (gj , ξl) = 0, i, l = 1, · · · , r; j,m = 1, · · · s. (6.22)

Taking the inner product with ξi, ηj on both sides of (1.1)–(1.2), respectively, and denoting

φi = (U, ξi), ψj = (U, ηj), i = 1, · · · r; j = 1, · · · s, (6.23)

we get again the reduced problems (6.12)–(6.13).

In this case, since only two eigenvectors fr, gs are contained in the invariant subspace

Span{e1, e2, e3} of dimension 3, either fr−1 or gs−1 is contained in Span{e1, e2, e3}. For fixing
idea, we assume that fr−1 is contained in Span{e1, e2, e3}. Then we have





e1 = α1fr + α2fr−1 + α3gs,

e2 = β1fr + β2fr−1 + β3gs,

e3 = γ1fr + γ2fr−1 + γ3gs.

(6.24)
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By (6.6) we have

t ≥ T : U = (u1α1 + u2β1 + u3γ1)fr + (u1α2 + u2β2 + u3γ2)fr−1

+ (u1α3 + u2β3 + u3γ3)gs. (6.25)

Noting (6.21)–(6.22), we have

t ≥ T :





φr = u1α1 + u2β1 + u3γ1,

φr−1 = u1α2 + u2β2 + u3γ2,

ψs = u1α3 + u2β3 + u3γ3.

(6.26)

Since e1, e2, e3 are linearly independent, the linear system (6.24) is invertible, then the state

(u1, u2, u3)
T of synchronization by 3-groups can be determined by solving the linear system

(6.26).

In particular, when r = 2, s = 1, the invariant subspace Span{ξ1, ξ2, η1} of AT is bi-

orthonormal to Span{e1, e2, e3}. By Theorem 4.2, there exists a boundary control matrix

D ∈ DN−3, such that the state (u1, u2, u3)
T of synchronization by 3-groups is independent of

the applied boundary controls.

(iii) A admits only one eigenvector fr contained in Span{e1, e2, e3}, corresponding to the

eigenvalue λ. Let f1, f2, · · · , fr be the Jordan chains corresponding to this right eigenvector:

Afi = λfi + fi+1, 1 ≤ i ≤ r, fr+1 = 0, (6.27)

and let ξ1, ξ2, · · · , ξr be the Jordan chains corresponding to the related left eigenvector:

ATξi = λξi + ξi−1, 1 ≤ i ≤ r, ξ0 = 0 (6.28)

such that

(fi, ξl) = δil, i, l = 1, · · · , r. (6.29)

Taking the inner product with ξi on both sides of (1.1)–(1.2), and denoting

φi = (U, ξi), i = 1, · · · r, (6.30)

we get again the reduced problem (6.12).

In this case, since only one eigenvector fr is contained in the invariant subspace Span{e1, e2, e3}
which is of dimension 3, fr−1 and fr−2 are necessarily contained in Span{e1, e2, e3}, then we

have




e1 = α1fr + α2fr−1 + α3fr−2,

e2 = β1fr + β2fr−1 + β3fr−2,

e3 = γ1fr + γ2fr−1 + γ3fr−2.

(6.31)

By (6.6) we have

t ≥ T : U = (u1α1 + u2β1 + u3γ1)fr + (u1α2 + u2β2 + u3γ2)fr−1

+ (u1α3 + u2β3 + u3γ3)fr−2. (6.32)
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Noting (6.29), we have

t ≥ T :





φr = u1α1 + u2β1 + u3γ1,

φr−1 = u1α2 + u2β2 + u3γ2,

φr−2 = u1α3 + u2β3 + u3γ3.

(6.33)

Since e1, e2, e3 are linearly independent, the linear system (6.31) is invertible, then the state

(u1, u2, u3)
T of synchronization by 3-groups can be determined by solving the linear system

(6.33).

In particular, when r = 3, the invariant subspace {ξ1, ξ2, ξ3} of AT is bi-orthonormal to

Span{e1, e2, e3}. By Theorem 4.2, there exists a boundary control matrix D ∈ DN−3, such that

the state (u1, u2, u3)
T of synchronization by 3-groups is independent of the applied boundary

controls.
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