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Abstract The goal of this paper is to study the mathematical properties of a new model
of soil carbon dynamics which is a reaction-diffusion system with a chemotactic term, with
the aim to account for the formation of soil aggregations in the bacterial and microorganism
spatial organization (hot spot in soil). This is a spatial and chemotactic version of MOMOS
(Modelling Organic changes by Micro-Organisms of Soil), a model recently introduced by
M. Pansu and his group. The authors present here two forms of chemotactic terms, first a
“classical” one and second a function which prevents the overcrowding of microorganisms.
They prove in each case the existence of a nonnegative global solution, and investigate its
uniqueness and the existence of a global attractor for all the solutions.
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1 Introduction

Chemotaxis is the ability of some bacteria to direct their movement according to the gra-

dient of chemicals contained in their environment. In soil, some bacteria microorganisms that

degrade organic carbon (SOC for short) are motile and chemotactic. This phenomenon is ob-

served in experiments (see [1]) and on field. Nevertheless to our best knowledge no model

of terrestrial carbon cycle adresses this issue. Indeed, these models are essentially compar-

timental corresponding naturally to systems of ordinary differential equations (e.g. Century,

RothC, MOMOS) (see [2]). They are used globally to estimate soil CO2 emissions in local land

management and crop optimization, among other things.

Very few prototypes of spatial soil organic model have been proposed. Some of them use

systems of partial differential equations: Balesdent et al. [3] combined vertical directed trans-

port of organic carbon with a degradation phenomenon and diffusion. More recently, Goudjo
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et al. [4] proposed a three dimensional model for dissolved organic matter using also a sys-

tem of PDEs. Other authors opted for a finite sequence of interconnected systems of ordinary

differential equations each localized in a soil layer (see [5]).

We previously studied the model MOMOS proposed by Pansu [6–7], which is a nonlinear

system of ordinary differential equations (see [8]) written as

ẏ = g(t,y),

where

y =



u
v
w




and

G(t,y) =




−k1(t)u− q(t)u2 + k2(t)v + k3(t)w + f(t)
k1(t)u − (k2(t) + k4(t))v

k4(t)v − k3(t)w.


 .

In these equations the unknown u models the alive microbial biomass, whereas the unknowns

v and w are soil organic matters with distinct decomposition rates.

In reality, the nonnegative functions ki, i ∈ {1, 2, 3, 4}, q and f depend not only on time

but also on space because of the variability in soil clay content. The phenomena described

by MOMOS can also be subjected to the influence of transport and sedimentation through

transport and diffusion.

In order to test the effect of soil heterogeneity we studied in [9] the following reaction-

diffusion-advection initial problem:





∂ui
∂t

− div(Ai(t, x)∇ui) +Bi(t, x)∇ui = g+i (t, x,u), (t, x) ∈ QT := (0, T )× Ω,

γ (Ai(t, x)∇ui) · ν + βi(t, x)ui = 0, (t, x) ∈ ΣT := (0, T )× ∂Ω,

ui(0) = ui,0 in Ω,

where Ω is a domain in R
n representing the soil, Ai is a diffusion matrix and Bi a transport

vector, for each i = 1, 2, 3.

In [9] the boundary conditions were either of Dirichlet type (γ = 0, βi ≡ 1) or of Neumann-

Robin type (γ = 1, βi(t, x) ≥ 0). The right hand side term of (1.1) was

g+(t, x,u) :=




−k1(t, x)u1 − q(t, x)|u1|u1 + k2(t, x)u2 + k3(t, x)u3 + f(t, x)
k1(t, x)u1 − (k2(t, x) + k4(t, x))u2

k4(t, x)u2 − k3(t, x)u3


 ,

where we replaced the term q(t, x)u21 with q(t, x)|u1|u1 for more accuracy, since q(t, x)u1 cor-

responds to a kinetic coefficient that cannot be negative. We assumed there that the diffusion

matrices Ai were bounded, symmetric and coercive:

Ai ∈ L∞(QT )
n×n,

Ai(t, x)ζ · ζ ≥ c|ζ|2, ∀ζ ∈ R
n, a.e. in QT with c > 0
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and the transport vectors Bi were bounded on QT :

Bi ∈ L∞(QT )
N , |(Bi(t, x))j | ≤ cmax a.e. in QT for all 1 ≤ j ≤ n.

Also we assumed that the functions kj , βi and q were nonnegative and bounded, i.e., for all

j = 1, 2, 3, 4 and i = 1, 2, 3,

kj , q ∈ L∞(QT ), 0 ≤ kj(t, x), q(t, x) ≤ Cmax a.e. on QT ,

βi ∈ L∞(ΣT ), 0 ≤ βi(t, x) ≤ Cmax a.e. on ΣT ,

where constant Cmax > 0. Finally we assumed that the initial data and input were nonnegative

and bounded:

ui,0 ∈ L2
+(Ω), f ∈ L2

+(QT ), f(t, x) ≤ Cmax a.e. on QT .

In [9] we proved first that this model had a unique weak solution. We were looking for weak

solutions, because initial inputs were not regular enough to give rise to more “regular” solutions.

Second, for periodic data, we proved the existence of a maximal and a minimal periodic solution

of this system. In some particular cases, the minimal and the maximal periodic solutions

coincide and this function becomes a global attractor for any bounded solution of the periodic

system.

In the present work a new PDEs model is considered to take account of chemotaxis. The

chemotactic movement of bacteria to root exudates is well known to play an important role

in rhizosphere colonisation. Field studies with tracers and laboratory experiments using soil

columns were both used to demonstrate the effect of chemotaxis on microbial movements. So,

the model proposed here can represent the spatial heterogeneity of soil microbial biomass,

highlighted by recent observations at submicron scale (see [1]).

The new model derived from a simplified MOMOS ODEs model, which comprised only two

differential equations instead of the three originally, where the microbial biomass was u and the

organic matter was v. As additional simplifying hypothesis soil temperature, soil moisture, soil

texture and organic input were considered to be isotropic and constant with time. Hence, the

simplified ODEs model can be expressed as

{
u̇ = −k1u− qu2 + k2v,

v̇ = −k2v + k1u+ f

with the initial conditions (u0, v0), where k1 is the microbial mortality rate, k2 is the soil carbon

degradation rate, q is the metabolic quotient and f is the soil organic carbon input. It can be

proved that the unique positive steady state (u∗0, v
∗
0) is stable (see [8]).

The chemotaxis-type model was finded following the conventional Keller-Segel approach (see

[10]), using an advection-diffusion system. This comprised two parabolic equations in a smooth

domain with no-flux boundary conditions. The advection term was controlled by the gradient

of the chemo-attractant. Applying the same principles to our problem leads to the following
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reaction-diffusion-chemotaxis system (Ph):





∂tu− a∆u = −βdiv(h(u)∇v)− k1u− q|u|u+ k2v, (t, x) ∈ QT ,

∂tv − d∆v = −k2v + k1u+ f, (t, x) ∈ ΩT ,

∇u · ν = ∇v · ν = 0, (t, x) ∈ ΣT ,

u(0) = u0 in Ω,

v(0) = v0 in Ω.

(Ph)

The parameter β is the chemotaxis sensitivity, a and d are the diffusion coefficients of microbes

and soil organic carbon respectively, Ω is a smooth and bounded domain, and h(·) is a continuous
function, involved in the modelling of chemotaxis. As bacteria can release exoenzymes to avoid

overcrowding, the function h can be selected to limit overcrowding, as required. This new

model is, therefore, a new variation of the Keller-Segel approach (see [10]) with the reaction

part modified to fit the MOMOS model. In the first equation of (Ph), we change again the

term qu2 by q|u|u (see [9]).

We prove here (see Appendix 1) the existence of Turing patterns that may provide possi-

ble explanations for the formation of soil aggregations, for the bacterial (see [21]) and micro-

organisms spatial organizations (hotspots in soil) or justify the formation of the microscopic

patterns observed by Vogel et al. [1]. Although spatial heterogeneity can be verified visually in

a numerical simulation (see Appendix 2), formal mathematical analysis is required to confirm

its emergence and to provide a mathematical proof of the necessary conditions. The mathe-

matical criteria are based on matrices derived from equations and analysed using conditions on

the determinant, trace and eigenvalues.

Keller-Segel model was the earliest mathematical system involving chemotaxis (see [10]).

Many other models emerged specially in biology and ecology. Most authors focused their efforts

essentially on existence and on asymptotic behaviour of solutions in one or two dimensional

domains in order to avoid blow-up of solutions (see [11–15] and references therein).

Unlike the classical Keller-Segel model, where equations are coupled only by the chemotactic

term, the system of partial differential equations (Ph) is also coupled through the reaction term.

More specifically, the organic matter will not only attract microorganisms, but part of it will be

“transformed”, under a degradation process, to microorganisms. This mechanism introduces

a supplementary linear coupling term in the first equation of this model. Many authors (see

[11–13] and references therein) already considered reaction coupling terms, but under some re-

strictive conditions, which are not verified here. This feed-back in the chemotactic equation is

not compatible with mass conservation of microorganisms, unlike in [12, 15]. Furthermore, nei-

ther the boundedness of the microorganisms total mass nor the positivity and the boundedness

(existence of threshold) of the solution remain immediate, unlike in [11, 13–14].

Our main concern here is to prove the existence of a unique solution to this minimal MOMOS

model improved by adding chemotaxis effect. We consider two chemotactic functions h, a

“classical” one, h(u) = u, and a second one which prevents overcrowding of microorganisms,

h(u) = u(M − u) if 0 ≤ u ≤M and zero otherwise, proposed by Wrzosek [15].

This paper is organized as follows. Section 2 introduces some notations, results and tools

used throughout the paper. Section 3 presents sufficient conditions to get global solutions, and
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to prove the existence of an exponential attractor, in the case where h(u) = u. Section 4 is

concerned with the second chemotactic function, where the chemotactic term cancels when u

achieves the threshold M , which helps to prove that any local solution is actually global. In

Sections 3–4 the domain is two dimensional. In Section 5, still keeping the second form of h

and for domains of dimension less than or equal to 3 (the dimension 3 is particularly interesting

in applications), we prove the existence of a unique solution, with less restrictions on the initial

conditions and forcing term than in Section 4. In Appendix 1 we prove that chemotactic term in

system (Ph) is mandatory to obtain Turing patterns and in Appendix 2 we give some numerical

simulations.

2 Mathematical Preliminary and Notations

Unless it is explicitly indicated, Ω is a bounded region in R
2 of C3 class, the constants

a, β, q, d, k1 and k2 are nonnegative, and f is a nonegative function belonging to an admissible

space to be fixed later. In all that follows C denotes a positive constant which may vary from

line to line.

We recall here some known results (see [16–17] and references therein) that will help after-

wards.

Interpolation space For 0 ≤ s0 < s < s1 < ∞, Hs(Ω) is the interpolation space

[Hs0(Ω), Hs1(Ω)]θ with s = (1−θ)s0+θs1 between Hs0(Ω) and Hs1(Ω). Furthermore, we have

‖ · ‖Hs ≤ ‖ · ‖1−θ
Hs0 ‖ · ‖θHs1 . (2.1)

Embedding theorem When 0 < s < 1, Hs(Ω) ⊂ Lp(Ω) for 1
p
= 1−s

2 with the estimate

‖ · ‖Lp ≤ Cs‖ · ‖Hs .

When s = 1, H1(Ω) ⊂ Lq(Ω) for any 1 ≤ q <∞ and

‖ · ‖Lq ≤ Cq,p‖ · ‖
1− p

q

H1 ‖ · ‖
p
q

Lp , (2.2)

where 1 ≤ p ≤ q <∞.

When s > 1, Hs(Ω) ⊂ C(Ω) with continuous embedding.

Fractional power of the Laplace operator (see [12] and [17, Chapter 2.7]) Let a0, a1 > 0

be constants and L = −a1∆+a0 be the Laplace operator equipped with the Newman boundary

conditions, with the domain D(L) =
{
u ∈ H2(Ω); ∂u

∂ν
= 0 on ∂Ω

}
= H2

N (Ω). Thus L is a

positive definite self-adjoint operator of L2(Ω). For θ > 0, the fractional power on L is defined

and noted Lθ and Lθ is also a positive definite self-adjoint operator on L2(Ω). More

D(Lθ) =





H2θ(Ω), 0 ≤ θ <
3

4
,

H2θ
N (Ω),

3

4
< θ ≤ 3

2

with the norm equivalence.



258 A. Hammoudi and O. Iosifescu

There are some useful inequalities.

Biler’s lemma (see [18]) Let 0 ≤ u ∈ H1(Ω) and N1
log(u) := ‖(u + 1)log(u + 1)‖L1 . For

any η > 0,

‖u‖3L3 ≤ η‖u‖H1N1
log(u) + p(η−1)‖u‖L1, (2.3)

where p(·) denotes here some increasing function.

Let ε ∈ (0, 1]. It is proved in [13], (2.10)–(2.12) that

‖∇(u∇v)‖L2 ≤ Cε‖u‖H1‖v‖H2+ε for all u ∈ H1(Ω), v ∈ H2+ε(Ω), (2.4)

‖∇(u∇v)‖L2 ≤ Cε‖u‖H1+ε‖v‖H2 for all u ∈ H1+ε(Ω), v ∈ H2(Ω), (2.5)

‖∇(u∇v)‖H1 ≤ C‖u‖H2‖v‖H3 for all u ∈ H2(Ω), v ∈ H3(Ω). (2.6)

Local existence We need first to prove the existence of local solution of (Ph). For this

purpose, we use the result obtained by Yagi and based on the Galerkin method (see [12, 17]).

Let V and H be seperable Hilbert spaces with dense and compact embedding V ⊂ H . Let

V ′ be the dual space of V and identify H and H ′ to get

V ⊂ H ⊂ V ′.

The duality product between V and V ′ is denoted by 〈·, ·〉. It coincides with the scalar product

on H denoted by (·, ·).
Consider the following Cauchy problem of a semilinear abstract differential equation:

dU

dt
+AU = G(U) + F (t), 0 < t ≤ T,

U(0) = U0

(2.7)

in the space V ′.

Here, A is the positive definite self-adjoint operator ofH defined by a symmetric sesquilinear

form a(U, Ũ) on V , with 〈AU, Ũ〉V,V ′ = a(U, Ũ).

Assumptions on a(·, ·)

(a.i) ‖a(U, Ũ)‖H ≤M‖U‖V ‖Ũ‖V , U, Ũ ∈ V,

(a.ii) a(U,U) ≥ δ‖U‖2V , U ∈ V

with constants δ, M > 0. The operator A is also bounded from V to V ′.

Assumptions on G(·) G(.) is a continuous function from V to V ′, which satisfy

(g.i) For each ζ > 0, there exists an increasing continuous function φζ : [0,∞) → [0,∞)

such that

‖G(U)‖V ′ ≤ ζ‖U‖V + φζ(‖U‖H), U ∈ V.

(g.ii) For each ζ > 0, there exists an increasing continuous function ψζ : [0,∞) → [0,∞)

such that

‖G(U)−G(Ũ)‖V ′ ≤ ζ‖U − Ũ‖V + ψζ(‖U‖H + ‖Ũ‖H)
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× ‖U − Ũ‖H(‖U‖V + ‖Ũ‖V + 1), U, Ũ ∈ V.

Finally F (·) ∈ L2(0, T ;V ′) is a given function and U0 ∈ H is an initial value. Then, we have

the following result (see [12]).

Theorem 2.1 Under Assumptions (a.i), (a.ii), (g.i) and (g.ii) and for every F (·) ∈ L2(0, T ;

V ′) and U0 ∈ H, there exists a unique local solution U of (2.7) such that

U ∈ H1(0, T (U0, F );V
′) ∩ C([0, T (U0, F )];H) ∩ L2(0, T (U0, F ), V ).

Here T (U0, F ) is determined by the norm ‖U0‖H and ‖F‖L2(0,T ;V ′).

3 First Case: h(u) = u

3.1 Local existence and positivity

Let ε0 arbitrarily fixed, ε0 ∈ (0, 1).

Theorem 3.1 Let u0 ∈ L2(Ω), v0 ∈ H1+ε0(Ω) and f ∈ L2(0, T ;Hε0(Ω)) be nonnegative

functions. Then (Ph) has a unique nonnegative local solution on an interval [0, T0] such that

u ∈ H1(0, T0;H
1(Ω)

′
) ∩ C([0, T0];L2(Ω)) ∩ L2(0, T0, H

1(Ω)),

v ∈ H1(0, T0;H
ε0(Ω)) ∩ C([0, T0];H1+ε0(Ω)) ∩ L2(0, T0, H

2+ε0
N (Ω)),

where T0 depends only on ‖f‖L2(0,T ;Hε0 (Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω).

Proof First Step Construction of a unique local solution.

Let A1 = −a∆+ k1 and A2 = −d∆+ k2 be two operators with the same domain H2
N (Ω).

A1 and A2 are positive self-adjoint operators on L2(Ω). We can then define their corresponding

fractional power operators (see [17]), as described in the previous section.

Let V = H1(Ω)×H2+ε0
N (Ω) and H = L2(Ω)×H1+ε0(Ω). Identifying H with its dual space

gives V ⊂ H = H ′ ⊂ V ′ and V ′ = (H1(Ω))′ ×Hε0(Ω) with the duality product:

〈U, Ũ〉V,V ′ = 〈u, ũ〉H1,(H1)′ + 〈A1+
ε0
2

2 v,A
ε0
2
2 ṽ)〉L2,L2 ,

where U = (u, v) ∈ V and Ũ = (ũ, ṽ) ∈ V ′.

We also set a symmetric sesquilinear form on V × V ,

a(U, Ũ) =

∫

Ω

{a∇u · ∇ũ+ k1uũ}dx+ (A
1+

ε0
2

2 v,A
1+

ε0
2

2 ṽ)L2

for U = (u, v) and Ũ = (ũ, ṽ) ∈ V .

This form is in fact a linear isomorphism A from V to V ′:

A =

(
A1 0
0 A2

)

and A becomes a positive definite self-adjoint operator in H .

Finally let f(·) ∈ L2(0, T,Hε0(Ω)) and let G : V → V ′ be the mapping

G(U) :=

(
β∇(u∇v) − q|u|u+ k2v

k1u

)
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with U = (u, v) ∈ V .

Then (Ph) is the following semilinear differential equation:

dU

dt
+AU = G(U) + F (t) in V ′, 0 < t ≤ T,

U(0) = U0,
(3.1)

where F (t) =
(

0
f(t)

)
.

In order to apply the existence result of Theorem 2.1 to problem (3.1), let us verify the

assumptions on a(·, ·) and G(·).
The assumptions on a(·, ·) are classically satisfied (see for example [12]).

For the conditions on G we have that for an arbitrary U = (u, v) ∈ V and δ > 0,

‖∇ · (u∇v)‖(H1)′ ≤ C‖u‖L4‖∇v‖L4 ≤ ‖u‖
1
2

L2‖u‖
1
2

H1‖v‖
1
2

H1‖v‖
1
2

H2

≤ ‖u‖
1
2

L2‖u‖
1
2

H1‖v‖
1+ε0

2

H1+ε0
‖v‖

1−ε0
2

H2+ε0

≤ C‖U‖1+
ε0
2

H ‖U‖1−
ε0
2

V ≤ ζ‖U‖V + φζ(‖U‖H)

and

‖v‖(H1)′ ≤ C‖U‖H , ‖u2‖(H1)′ ≤ C‖u‖2L3 ≤ ζ‖u‖H1 + φζ(‖u‖L2).

Finally it is clear that

‖u‖Hε0 ≤ ζ‖u‖H1 + Cζ(‖u‖L2).

All these inequalities show that the condition (g.i) is fullfiled.

From the embedding theorem, we have

∣∣∣
∫

Ω

(ũ− u)∇v · ∇ρ dx
∣∣∣ ≤ C‖ũ− u‖L2‖ṽ‖H2+ε0 ‖ρ‖H1 ,

∣∣∣
∫

Ω

∇(ṽ − v)u · ∇ρ dx
∣∣∣ ≤ C‖u‖H1‖ṽ − v‖H1+ε0 ‖ρ‖H1 ,

and using the interpolation theorem and Young inequality we obtain

‖u− ũ‖Hε0 ≤ C‖U − Ũ‖ε0V ‖U − Ũ‖1−ε0
H

≤ ζ‖U − Ũ‖V + Cζ‖U − Ũ‖H

for an arbitrary ζ > 0. On the other hand we have that

‖u|u| − ũ|ũ|‖(H1)′ ≤ C(‖(|u| − |ũ|)u‖
L

3
2
+ ‖(u− ũ)|ũ|‖

L
3
2
)

≤ C‖u− ũ‖L2(‖u‖L6 + ‖ũ‖L6).

All these inequalities permit to show that condition (g.ii) is fullfiled too.

Second Step Positivity of the solution.

Now let us take the following semilinear system:

dU

dt
+AU = G̃(U) + F (t), 0 < t ≤ T,

U(0) = U0,
(3.2)
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where A, F and Y0 are defined as previously, and the mapping G̃ : V → V ′ is defined by

G̃(U) :=

(
β∇(u∇v)− q|u|u+ k2|v|

k1u

)
.

By Theorem 2.1. there exists a local solution U = (u, v) on [0, T0]×Ω with T0 depending only

on U0 and F . Let us define u+ = max(u, 0) and u− = max(−u, 0).
We multiply the first equation by −u− and we integrate in space. So

1

2

d

dt
‖u−‖2L2 + a‖∇u−‖2L2 + k1‖u−‖2L2 ≤

∫

Ω

βu−∇v∇u−dx

≤ β‖∇v‖L∞

∫

Ω

u−|∇u−|dx

for 0 < t ≤ T0.

Using Young inequality we get

1

2

d

dt
‖u−‖2L2 + a‖∇u−‖2L2 ≤ ‖∇v‖L∞(Cε‖u−‖2L2 + ε‖∇u−‖2L2)

with ε > 0 small enough and Cε > 0.

Taking ε = a
‖∇v‖L∞

we get

d

dt
‖u−‖2L2 ≤ C‖∇v‖2L∞‖u−‖2L2

≤ C‖v‖2H2+ε0 ‖u−‖2L2 .

Since v ∈ L2(0, T0;H
2+ε0(Ω)) and ‖u−0 ‖2L2 = 0 by Gronwall lemma we deduce that u is non-

negative on [0, T0]. By classical results on linear parabolic equations v is nonnegative on [0, T0]

too. So, the nonnegative solution U of (3.2) is also a solution of (3.1).

Remark 3.1 If initial conditions U0 and data f are not positive, this theorem proves anyway

the existence of a local solution. However, as this is an ecology model, only nonnegative solutions

make sense.

With minor changes due to our different problem (Ph), we prove as in [13] the following

theorems.

Theorem 3.2 Let U0 = (u0, v0) ∈ H1(Ω) ×H2
N (Ω) and f ∈ L2(0, T ;H1(Ω)). Then there

exists a unique local solution U = (u, v) of (3.1) on an interval [0, TU0,f ] such that

u ∈ H1(0, TU0,f ;L
2(Ω)) ∩ C([0, TU0,f ];H

1(Ω)) ∩ L2(0, TU0,f , H
2
N (Ω)),

v ∈ H1(0, TU0,f ;H
1(Ω)) ∩ C([0, TU0,f ];H

2
N (Ω)) ∩ L2(0, TU0,f , H

3
N (Ω)),

where TU0,f is determined by ‖f‖L2(0,T ;H1(Ω)), ‖u0‖H1(Ω) and ‖v0‖H2(Ω).

Theorem 3.3 Let U0 = (u0, v0) ∈ H2
N (Ω) ×H3

N (Ω) and f ∈ L2(0, T ;H2
N(Ω)). Then there

exists a unique local solution U = (u, v) to (3.1) on an interval [0, TU0,f ] such that

u ∈ H1(0, TU0,f ;H
1(Ω)) ∩ C([0, TU0,f ];H

2
N (Ω)) ∩ L2(0, TU0,f , H

3
N (Ω)),

v ∈ H1(0, TU0,f ;H
2
N (Ω)) ∩ C([0, TU0,f ];H

3
N (Ω)) ∩ L2(0, TU0,f , D(A2

2)(Ω)),

where TU0,f is determined by ‖f‖L2(0,T ;H2(Ω)), ‖u0‖H2(Ω) and ‖v0‖H3(Ω).
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3.2 Global existence

This section is devoted to proving the following result.

Theorem 3.4 Let ε0 ∈ (0, 1) and let u0 ∈ L2(Ω), v0 ∈ H1+ε0(Ω) and f ∈ L2(0, T,H1(Ω))∩
L∞(0, T ;L2(Ω)) be nonnegative functions. Then there exists a unique global and nonnegative

solution (u, v) for the system (Ph) with h(u) = u such that

u ∈ H1(0, T ; (H1(Ω))′) ∩C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

v ∈ H1(0, T ;Hε0(Ω)) ∩ C([0, T ];H1+ε0(Ω)) ∩ L2(0, T ;H2+ε0
N (Ω)).

Proof We proceed in two steps.

First Step We show that ‖v‖H1(Ω) and N1
log(u) = ‖(u + 1)log(u + 1)‖L1(Ω) are bounded

for all t ∈ [0, T0].

We consider the function log(u + 1). Since ∇log(u + 1) = ∇u
u+1 , it follows that log(u + 1) ∈

L2(0, T0;H
1(Ω)). Noting that

d

dt

∫

Ω

{(u+ 1)log(u + 1)− u} dx =
〈du
dt
, log(u+ 1)

〉

H1, (H1)′
,

we obtain from the first equation of (Ph) multiplied by log(u+ 1) that

d

dt

∫

Ω

{(u+ 1)log(u+ 1)− u}dx+ 4a

∫

Ω

|∇
√
u+ 1|2 dx

= β

∫

Ω

u

u+ 1
∇u∇v dx+

∫

Ω

(−k1u− qu2 + k2v) log(u+ 1)dx.

So using Stokes theorem we deduce
∫

Ω

u

u+ 1
∇u∇v dx =

∫

Ω

(log(u + 1)− u)∆v dx ≤ η

2
‖∆v‖2L2(Ω) +

1

2η
‖u‖2L2(Ω).

Since

(k1u+ qu2)log(u+ 1) ≥ k1((u + 1)log(u+ 1)− u),

if we denote Ψ(t) = ‖(u+ 1)log(u+ 1)− u‖L1(Ω), we get

d

dt
Ψ(t) + k1Ψ(t) ≤ η

2
‖∆v‖2L2(Ω) +

(k22
2ε

+
β2

2η

)
‖u‖2L2(Ω) +

ε

2
‖v‖2L2(Ω)

with arbitary ε, η > 0.

From the second equation of (Ph) multiplied respectively by v and ∆v, we obtain that

1

2

d

dt

∫

Ω

v2 + d

∫

Ω

|∇v|2dx+ k2

∫

Ω

v2dx = k1

∫

Ω

u v dx+

∫

Ω

vfdx

≤
(k1A

2
+
B

2

)
‖v‖2L2(Ω) +

k1
2A

‖u‖2L2(Ω) +
1

2B
‖f‖2L2(Ω)

with arbitrary A,B > 0 and

1

2

d

dt

∫

Ω

|∇v|2 + d

∫

Ω

|∆v|2dx+ k2

∫

Ω

|∇v|2dx = k1

∫

Ω

u∆v dx+

∫

Ω

f∆v dx
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≤
(k1C

2
+
D

2

)
‖∆v‖2L2(Ω) +

k1
2C

‖u‖2L2(Ω) +
1

2D
‖f‖2L2(Ω)

with arbitrary C,D > 0.

Choosing ε = d, η = k2, A = k2

2k1
, B = k2

2 , C = d
2k1

, D = d
2 , we deduce

d

dt
(Ψ(t) + ‖v‖2H1(Ω)) +

d

2
‖∆v‖2L2(Ω) + k2‖v‖2H1(Ω) + k1Ψ(t)

≤
(k21
k2

+
β2

2k2
+
k22
2d

+
k21
d

)
‖u‖2L2(Ω) +

( 1

k2
+

1

d

)
‖f‖2L2(Ω). (3.3)

By addition of the first two equation of (Ph) it follows that

d

dt
(‖u‖L1(Ω) + ‖v‖L1(Ω)) + q‖u‖2L2(Ω) = ‖f‖L1(Ω), (3.4)

which implies that for all t ∈ [0, T0] we have the inequality

‖u(t)‖L1(Ω) + ‖v(t)‖L1(Ω)

≤ ‖u0‖L1(Ω) + ‖v0‖L1(Ω) +

∫ t

0

‖f(s)‖L1(Ω)ds. (3.5)

As N1
log(u) =

∫
Ω
(u + 1)log(u + 1) dx we have Ψ(t) = N1

log(u(t)) − ‖u(t)‖L1(Ω). Denote δ :=

max
(
1, 1

q

(k2
1

k2
+ β2

2k2
+

k2
2

2d +
k2
1

d

))
and σ := min(k1, k2) > 0. Therefore from (3.3)–(3.5) we obtain

the following inequality:

d

dt
(N1

log(u(t)) + ‖v(t)‖2H1(Ω) + (δ − 1)‖u(t)‖L1(Ω) + δ‖v(t)‖L1(Ω))

+ σ(N1
log(u(t)) + ‖v(t)‖2H1(Ω) + (δ − 1)‖u(t)‖L1(Ω) + δ‖v(t)‖L1(Ω))

≤ σ(δ + 1)(‖u0‖L1(Ω) + ‖v0‖L1(Ω))

+ δ‖f(t)‖L1(Ω) +
( 1

k2
+

1

d

)
‖f(t)‖2L2(Ω) + σδ

∫ t

0

‖f(s)‖L1(Ω)ds.

We denote g(t) = N1
log(u(t)) + ‖v(t)‖2

H1(Ω) + (δ − 1)‖u(t)‖L1(Ω) + δ‖v(t)‖L1(Ω).

Since g(t) satisfies the following ordinary differential inequality:

g′(t) + σg(t) ≤ σ(δ + 1)(‖u0‖L1(Ω) + ‖v0‖L1(Ω)) + δ‖f(t)‖L1(Ω)

+
( 1

k2
+

1

d

)
‖f(t)‖2L2(Ω) + σδ

∫ t

0

‖f(s)‖L1(Ω)ds = C

with C > 0 depending only on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω), we get

g(t) ≤ e−σtg(0) + C for all t ≥ 0. (3.6)

Thus the inequality

N1
log(u(t)) + ‖v(t)‖2H1(Ω)

≤ N1
log(u0) + ‖v0‖2H1(Ω) + (δ − 1)‖u0‖L1(Ω) + δ‖v0‖L1(Ω) + C (3.7)

holds for all t ∈ [0, T0], where the last constant C > 0 is independent of T0 and depends only

on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω).
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Second Step We take t1 ∈ (0, T0) so that v(t1) ∈ H2
N (Ω) and u(t1) ∈ H1(Ω) and we set

u(t1) = u1 and v(t1) = v1. From Theorem 3.1 we already know that such a time t1 exists,

arbitrary small. In this step t varies in [t1, T0]. From the first equation of (Ph) we have

1

2

d

dt
‖u‖2L2 + a‖∇u‖2L2 + k1‖u‖2L2 + q‖u‖3L3 =

∫

Ω

uv dx+
β

2

∫

Ω

u2∆v dx.

From Young inequality and interpolation inequality (2.1) we get

∫

Ω

u2∆v dx ≤ η‖∆v‖3L3 + η−
1
2 ‖u‖3L3(Ω)

≤ ηC‖v‖2H3‖v‖1H1 + η−
1
2 ‖u‖3L3

with η > 0 arbitrary.

Therefore (3.7) together with this yields that

∫

Ω

u2∆v dx ≤ ηC‖v‖2H3 + η−
1
2 ‖u‖3L3.

In addition
∫

Ω

uv dx ≤ χ‖u‖3L3(Ω) + χ− 1
2 ‖v‖

3
2

H1(Ω)

with χ > 0 arbitrary.

Using Biler’s lemma (2.3) we verify from (3.7) that

‖u‖3L3(Ω) ≤ ηC‖u‖2H1 + p(η−1)

with p a positive increasing function, depending on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω)

as well as the constant C > 0.

Thus we deduce the following inequality:

1

2

d

dt
‖u‖2L2 + a‖∇u‖2L2 + k1‖u(t)‖2L2 + q‖u‖3L3

≤ ξ(‖v‖2H3 + ‖u‖2H1) + p(ξ−1) (3.8)

with p a positive increasing function depending on ‖f‖L∞(0,T ;L2(Ω)), ‖u0‖L2(Ω) and ‖v0‖H1+ε0 (Ω),

ξ > 0 an arbitrary constant.

On the other hand, we consider v as a solution of the Cauchy problem

d

dt
v +A2v = k1u+ f, t1 ≤ t ≤ T0,

v(t1) ∈ H1(Ω)

in the space H1(Ω). Since k1u + f ∈ L2(t1, T0;H
1(Ω)) and v1 ∈ D(A2) = H2

N (Ω) it follows

that v ∈ L2(t1, T0;D(A
3
2
2 ) ∩H1(t1, T0;D(A

1
2
2 ) and

d

dt
A

1
2
2 v = −A

3
2
2 v + k1A

1
2
2 u+A

1
2
2 f, t1 ≤ t ≤ T0.



Mathematical Analysis of a Chemotaxis-Type Model of Soil Carbon Dynamic 265

Therefore

d

dt
‖A2v‖2L2 + ‖A

3
2
2 v‖2L2 ≤ C{‖A

1
2
2 u‖2L2 + ‖A

1
2
2 f‖2L2}.

As D(A
3
2 ) ⊂ H3(Ω), we obtain

d

dt
‖A2v‖2L2 + δ‖v‖2H3 ≤ C{‖u‖2H1 + ‖f‖2H1} (3.9)

with some δ > 0. Let a1 = min(a, k1) > 0. We now sum up (3.9) and (3.8) multiplied by 2C
a1

,

where C > 0 is the constant appearing in (3.9). Then it follows that

d

dt

{C
a1

‖u‖2L2 + ‖A2v‖2L2

}
+ C

(
1− ξ

2C

a1

)
‖u‖2H1 +

(
δ − ξ

2C

a1

)
‖v‖2H3

≤ C1{‖f(t)‖2H1 + p(ξ−1)} (3.10)

with some constant C1 > 0 independent of T0. Choosing ξ small enough we conclude that

∫ s

t1

(‖v(t)‖2H3 + ‖u(t)‖2H1) dt ≤ C2

{
‖u1‖2L2 + ‖v1‖2H2 +

∫ T

t1

(‖f(t)‖2H1 + 1) dt
}

with some constant C2 > 0 dependent on ‖f‖L∞(0,T ;L2(Ω)) and the initial condition U0 through

‖u0‖L2 and ‖v0‖H1+ε0 , but independent of T0. The norms ‖u‖L2(t1,T0;H1(Ω)) and ‖v‖L2(t1,T0;

H3(Ω)) do not depend on T0 and hence those of ‖u‖C([t1,T0];L2(Ω)) and ‖v‖C([t1,T0];H2(Ω)) do not

depend either.

In particular this shows that the solution (u, v) can be extended as a weak solution beyond

the T0.

3.3 Exponential attractor

Suppose that f is a positive constant function. Then we have the following result.

Proposition 3.1 Let u0 ∈ H2
N (Ω) and v0 ∈ H3

N (Ω) be nonnegative functions. Let u, v be

the global solution of (Ph). Then, with some continuous increasing function p(·) the following

estimate holds:

‖u(t)‖H2(Ω) + ‖v(t)‖H3(Ω) ≤ p(‖u0‖H2(Ω) + ‖v0‖H3(Ω) + f)

for 0 < t <∞.

Proof Using (3.10) we deduce the existence of two constants σ > 0 and C > 0 such that

‖u(t)‖2L2 + ‖v(t)‖2H2 ≤ Ce−σt(‖u0‖2L2 + ‖v0‖2H2)

+ p(f +N1
log(u0) + ‖v0‖H1). (3.11)

Multiplying the first equation of (Ph) by ∆u and integrating over Ω gives

1

2

d

dt
‖∇u‖2L2 + a‖∆u‖2L2 + k1‖∇u‖2L2

≤ β
(
ε‖∆u‖2L2 +

1

2ε

∫

Ω

|∇u|2|∇v|2 dx+
1

2ε

∫

Ω

|u|2|∆v|2 dx
)
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+ ε′‖∇u‖2L2 + Cε′‖∇v‖2L2, (3.12)

where ε, ε′ and Cε′ are positive constants derived from Young inequality. Using technical

inequalities proved in [13, Proposition 4.1], we obtain

1

2

d

dt
‖∇u‖2L2 + (a− βε)‖∆u‖2L2 + (k1 − ε′)‖∇u‖2L2

≤ β

2ε

(∫

Ω

|∇u|2|∇v|2 dx+

∫

Ω

|u|2|∆v|2 dx
)
+ Cε′‖∇v(t)‖2L2

≤ β

2ε
(η‖∆u‖2L2 + p(‖u‖L2 + ‖v‖H2 + η−1)) + Cε′‖∇v‖2L2.

Taking η = ε2, ε = a
2β leads to

d

dt
‖∇u‖2L2 + a‖∆u‖2L2 + 2(k1 − ε′)‖∇u‖2L2

≤ β2

a
p(‖u‖L2 + ‖v‖H2(Ω)) + Cε′‖∇v‖2L2 . (3.13)

Take the second equation of (Ph) operated by ∆, choose ∆2v as a test function and integrate

the product in Ω. After some calculations as in [13], we have

d

dt
‖∇∆v‖2L2 + d‖∆2v‖2L2) + 2k2‖∇∆v‖2L2 ≤ k21

d
‖∆u‖2L2. (3.14)

We sum (3.14) multiplied by γ and (3.13). Thus we obtain

d

dt
(‖∇u‖2L2 + γ‖∇∆v‖2L2) + γd‖∆2v‖2L2 +

(
a− γk21

d

)
‖∆u‖2L2

+ 2(k1 − ε′)(‖∇u‖2L2 +
k2γ

k1 − ε′
‖∇∆v‖2L2)

≤ p(‖u‖L2 + ‖v‖H2).

Then for γ and ε′ small enough, there exists a positive constant σ′ such that

d

dt
(‖∇u‖2L2 + γ‖∇∆v‖2L2) + σ′(‖∇u‖2L2 + γ‖∇∆v(t)‖2L2)

≤ p(‖u‖L2 + ‖v‖H2). (3.15)

So, we can find χ > 0 such as (3.11) is valid when σ = χ and

‖u(t)‖2H1(Ω) + ‖v(t)‖2H3

≤ e−χt(‖u0‖2H1 + ‖v0‖2H3) + p(f + ‖u0‖L2 + ‖v0‖H2). (3.16)

We verify also that

∫ t

0

(‖∆2v(s)‖2L2 + ‖u(s)‖2H2)ds ≤ C(‖v0‖2H3 + ‖u0‖2H1) + tp(f + ‖u0‖L2 + ‖v0‖H2).

Finally, taking the first equation of (Ph) operated by ∇ and multiplied by ∇∆u, as in [13],

gives

1

2

d

dt
‖∆u‖2L2 + a‖∇∆u‖2L2 = β

∫

Ω

∇(∇ · u∇v) · ∇∆udx
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+ k1

∫

Ω

∇u · ∇∆udx+ 2q

∫

Ω

u∇u · ∇∆udx

− k2

∫

Ω

∇v · ∇∆udx, (3.17)

that is,

1

2

d

dt
‖∆u‖2L2(Ω) + a‖∇∆u‖2L2(Ω) ≤

a

2
‖∇∆u‖2L2 + C

∫

Ω

|∇(∇ · (u∇v)|2dx

+ C
( ∫

Ω

|u∇u|2dx+ ‖∇v‖2L2

)
. (3.18)

The terms
∫
Ω
|∇(∇ · (u∇v)|2dx and

∫
Ω
|u∇u|2dx of (3.18) can be estimated (see [13, Proof of

Proposition 4.1, Step 6]) by

η‖∇∆u‖2L2 + p(‖u‖H1 + ‖v‖H3 ,+η−1)

with an arbitrary η > 0. Thus we obtain

1

2

d

dt
‖∆u‖2L2 +

a

2
‖∇∆u‖2L2 + ζ‖∆u‖2L2

≤ η‖∇∆u‖2L2 + p(‖u‖H1 + ‖v‖H3 + η−1). (3.19)

Hence we can find a constant χ > 0 such that (3.16) is valid and

‖u(t)‖2H2 ≤ e−χt‖u0‖2H2 + p(f + ‖u0‖H1 + ‖v0‖H3). (3.20)

To prove the existence of an exponential attractor, we will use the following result.

Proposition 3.2 Let u0 ∈ L2(Ω), v0 ∈ H1+ε0(Ω) be nonnegative functions. Then there

exists a continuous increasing function p(·) independent of u0 and v0, such that

‖u(t)‖2H2 + ‖v(t)‖2H3 ≤ p(f +N1
log(u0) + ‖v0‖H1(Ω) + t−1).

Proof Since the proof follows exactly the same ideas and technical difficulties as in the

proof of [13, Theorem 4.6], we skip it here.

We can now prove the existence of an exponential attractor: Let H = L2(Ω) ×H1(Ω) and

consider the initial value problem

dU

dt
+AU = G(U),

U(0) = U0

(E)

in H , with A as in Subsection 3.1 and D(A) = H2
n(Ω)×H3

n(Ω) and

G(U) :=

(
β∇(u∇v)− q|u|u+ k2v

k1u+ f

)
.

Let K = {(u, v) ∈ L2
+(Ω)×H1+ε0

+ (Ω)} be the space of initial values and U0 ∈ K.

We have proved already the existence of a unique global solution U = (u, v) continuous with

respect to the initial condition U0. We define then a continuous semigroup {S(t)t≥0} on K by

S(t)U0 = U(t). For a fixed t > 0, S(t) maps K into K ∩D(A).

Denote Br := {(u, v) ∈ K; ‖u0‖L2 + ‖v0‖H1+ε0 ≤ r} a bounded ball of K with radius r > 0.
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Proposition 3.3 There exists a universal constant C > 0 such that the following statement

holds: For each r > 0 there exists a time tr > 0 such that

sup
t≥tr

sup
U0∈Br

‖S(t)U0‖H2(Ω)×H3(Ω) ≤ C.

Proof Fix 0 < r < ∞. By tr and Cr we denote some time and positive constant which

depend on r but are uniform in U0 ∈ Br, respectively. By Proposition 3.2, there exist a time

tr and a constant Cr such that for t ≥ tr,

‖u(t)‖2H2 + ‖v(t)‖2H3 ≤ Cr. (3.21)

The desired estimate will be established step by step.

Let us add the first equation of (Ph) and the second one multiplied by 2 and let us integrate

in space the result. If Φ(t) := ‖u(t)‖L1 + 2‖v(t)‖L1, we obtain

d

dt
Φ(t) +

k2
2
Φ(t) =

∫

Ω

(
− qu2 + k1u+

k2
2
u
)
dx+ f |Ω| ≤

{ 1

4q

(
k1 +

k2
2

)2

+ f
}
|Ω|.

Thus

Φ(t) ≤
{
Φ(0)− 2

k2

( 1

4q

(
k1 +

k2
2

)2

+ f
)
|Ω|

}
e−

k2
2 t +

2

k2

( 1

4q

(
k1 +

k2
2

)2

+ f
)
|Ω|

and we deduce

‖u(t)‖L1 + 2‖v(t)‖L1 ≤ C(Cre
−ct + 1)

with C, c > 0 universal constants and Cr > 0 a constant depending on r. This shows that

there exists a time denoted by tr such that for all t ≥ tr,

‖u(t)‖L1 + ‖v(t)‖L1 ≤ C (3.22)

with C > 0 a universal constant.

From (3.6) and (3.22) it follows that

g(t) ≤ (g(0)− C)e−σ(t−tr) + C for t ≥ tr.

Then there exists another time tr and another universal constant C > 0 such that

‖v(t)‖H1 ≤ C, N1
log(u(t)) ≤ C for t ≥ tr.

From (3.11) and (3.21) we deduce that

‖v(t)‖H2(Ω) + ‖u(t)‖L2(Ω) ≤ Cre
−σ(t−tr) + C for t ≥ tr,

and that there exist another time tr and another constant C > 0, such that

‖v(t)‖H2(Ω) + ‖u(t)‖L2(Ω) ≤ C for t ≥ tr.

Finally using (3.16), (3.20) and repeat the argument we finish the proof.
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Let B = {(u, v) ∈ H2
N (Ω) ×H3

N (Ω) / ‖u‖H2(Ω) + ‖v‖H3(Ω) ≤ C} ∩K with C the constant

appearing in Proposition 3.3. We proved that B is a compact absorbing set for ({S(t)}t≥0,K).

Hence by Temam [19], there exists a global attractor A ⊂ K, where A is a compact and

connected subset of K.

Let H = ∪
t≥tB

S(t)B where tB is such that S(t)B ⊂ B. Then H is a compact set of K

with A ⊂ H ⊂ K. Since H is absorbing and positively invariant for {S(t)t≥0}, we apply to

the dynamical system ({S(t)}t≥0,H ) as follows.

Theorem 3.5 (see [20, Theorem 3.1]) Let Γ(t, U0) = S(t)U0 be a mapping from [0, T ]×H

into H . If G satisfies

‖G(U)−G(V )‖ ≤ ‖A 1
2 (U − V )‖, U, V ∈ H (C1)

and Γ is such that

‖Γ(t, U0)− Γ(s, V0)‖ ≤ CT (|t− s|+ ‖U0 − V0‖H , t, s ∈ [0, T ], U0, V0 ∈ H (C2)

for each T > 0, then there is an exponential attractor M for ({S(t)},H ).

Thus we obtain the following result.

Theorem 3.6 There exists an exponential attractor M of the dynamical system ({S(t)}t≥0,

H ) in H

Proof Since the forcing term f is constant and the reaction coupling of the first equation

of (E) is linear in U : k2v, the proof is the same as provided in [13, Theorem 5.1].

4 Second Case: h(u) = u(M − u)

Let M be a positive constant and consider a continuous function h̃ of h such as
{
h̃(u) = u(M − u) if 0 ≤ u ≤M,

h̃(u) = 0 otherwise.
(4.1)

Then we have the following result.

Proposition 4.1 Let ε0 > 0 and f be a nonnegative function in L2(0, T ;H1(Ω))∩  L∞(ΩT ).

For each nonnegative initial condition (u0, v0) in L2(Ω)×H1+ε0(Ω) there exists a constant T0

such that 0 < T0 ≤ T and a unique nonnegative solution (u, v) of (P
h̃
) such that

u ∈ H1(0, T0; (H
1(Ω))′) ∩C([0, T0];L2(Ω)) ∩ L2(0, T0;H

1(Ω)),

v ∈ H1(0, T0;H
ε0(Ω)) ∩ C([0, T0];H1+ε0(Ω)) ∩ L2(0, T0;H

2+ε0
ν (Ω)).

Proof The proof is essentially the same as in Subsection 3.2.

Moreover we can prove the following result.

Lemma 4.1 Suppose that M ≥
(‖f‖L∞(ΩT )

q

) 1
2 and M ′ = qM2+k1M

k2
> 0. If the initial

condition (u0, v0) satisfies almost everywhere in Ω the following inequalities:

0 ≤ u0(x) ≤M, 0 ≤ v0(x) ≤M ′,
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then the solution (u, v) of (P
h̃
) satisfies

0 ≤ u(t, x) ≤M, 0 ≤ v(t, x) ≤M ′

almost everywhere in ΩT .

Proof Define ũ =M − u and ṽ =M ′ − v. Thus we get

ũt = a∆ũ− βdiv(h̃(ũ)∇ṽ)− (2qM + k1)ũ+ qũ2 + k2ṽ + qM2 + k1M − k2M
′,

ṽt = d∆ṽ − k2ṽ + k1ũ+ k2M
′ − k1M − f.

As M ≥
(‖f‖L∞(ΩT )

q

) 1
2 and M ′ = qM2+k1M

k2
, we obtain

qM2 + k1M − k2M
′ = 0

and

k2M
′ − k1M − f ≥ 0.

We multiply the first equation by −ũ− and the second by −ṽ− and we integrate in space.

Thank to the identity:
∫
Ω h̃(ũ)∇ṽ∇ũ−dx = 0 and since qũ2ũ−, k2ũ

−ṽ+, k1ṽ
−ũ+ ≥ 0 almost

everywhere in Ω, we deduce

1

2

d

dt
‖ũ−‖2L2(Ω) ≤ (2qM + k1)‖ũ−‖2L2(Ω) + k2

∫

Ω

ṽ−ũ− dx

and

1

2

d

dt
‖ṽ−‖2L2(Ω) ≤ k2‖ṽ−‖2L2(Ω) + k1

∫

Ω

ṽ−ũ− dx.

Taking the sum of the two previous inequalities and using Young inequality, it follows

d

dt
(‖ũ−‖2L2(Ω) + ‖ṽ−‖2L2(Ω)) ≤ C(‖ũ−‖2L2(Ω) + ‖ṽ−‖2L2(Ω))

for some constant C > 0. By Gronwall lemma we get

‖ũ−‖2L2(Ω) + ‖ṽ−‖2L2(Ω) = 0,

which completes the proof.

Remark 4.1 (i) If the hypothesis of Lemma 4.1 are fulfilled, thanks to this lemma, the

solution obtained in Proposition 4.1 is global in ΩT ,

(ii) By Proposition 4.1 and Lemma 4.1 it follows that (u, v) is also a solution of (Ph) with

h(u) = u(M − u).

The uniqueness of the solution is obtained in the following.

Theorem 4.1 Let f ∈ L∞(ΩT ) ∩ L2(0, T ;H1(Ω)) be a nonnegative function. Let h(u) =

u(M − u) and suppose that M ≥
(‖f‖L∞(ΩT )

q

) 1
2 . Let (u0, v0) ∈ L2(Ω) × H1+ε0(Ω) such that
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0 ≤ u0 ≤M and 0 ≤ v0 ≤M ′ with M ′ = qM2+k1M
k2

. Then there exists a unique global solution

for (Ph) which is nonnegative and such that

u ∈ L∞(ΩT ) ∩H1(0, T ; (H1(Ω))′) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

v ∈ H1(0, T ;Hε0(Ω)) ∩C([0, T ];H1+ε0(Ω)) ∩ L2(0, T ;H2+ε0(Ω))

and

0 ≤ u ≤M, 0 ≤ v ≤M ′.

Proof We skip here the proof of uniqueness since there is rigorously the same as in Theorem

5.1.

5 A Three Dimensional Domain

In order to prove the global existence of a solution of system (Ph), we supposed in the

previous sections that Ω was a two dimensional domain and the initial conditions (u0, v0) ∈
L∞(Ω)×H1+ε0(Ω) were nonnegative and verifying some regularity conditions. These conditions

are quite restrictive for a model of soil organic carbon and three dimensional domains are

obviously more relevant in applications than bidimensional ones.

In this section we prove that if Ω is of dimension less than or equal to 3, if h = h̃ (4.1)

and if both initial conditions and forcing term are nonnegative and less regular that in the

previous section: (u0, v0) ∈ (L2(Ω))2 and f ∈ L2(0, T ;L2(Ω)), then the system (Ph) has a

global nonnegative solution. Furthermore, if (u0, v0) ∈ (L∞(Ω))2 and f ∈ L∞(ΩT ), then the

solution is unique.

Here we use the following setting:

V = H1(Ω)×H1(Ω),

H = L2(Ω)× L2(Ω),

V ′ = (H1(Ω))′ × (H1(Ω))′.

We let h̃ be the continuous function defined by (4.1). Let us consider the following system:





∂tu− a∆u = −βdiv(h̃(u)∇v) − k1u− q|u|u+ k2v in ΩT ,

∂tv − d∆v = −k2v + k1u+ f in ΩT ,

∇u · η(x) = ∇v · η(x) = 0 on ΣT ,

u(0, ·) = u0, v(0, ·) = v0 in Ω,

(P-S)

where (u0, v0) ∈ (L2(Ω))2, f ∈ L2(0, T ;L2(Ω)) and u is a function in X = L2(ΩT ).

For the sake of simplicity we take dim(Ω) = 3, since all results remain the same if dim(Ω) < 3.

We will apply the Schauder fixed point theorem but let us first gather some more information.

First Step Invariant ball.

For any function u ∈ X the existence of a unique local solution of (P-S) (uu, vu) follows by

direct application of Theorem 2.1. Additionally we have the following result.
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Proposition 5.1 Let (u0, v0) ∈ (L2(Ω))2 and f ∈ L2(0, T ;L2(Ω)).

(1) For any u ∈ X the unique local solution (uu, vu) of (P-S) is global and satisfies:

uu ∈ H1(0, T ; (H1(Ω))′) ∩ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

vu ∈ H1(0, T ; (H1(Ω))′) ∩C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)).

(2) Furthermore, for all u ∈ X, there exist two constant R > 0 and C > 0 such that

‖uu‖L2(ΩT ) ≤ R, ‖u‖W ≤ C, (5.1)

where

W = {u ∈ L2(0, T ;H1(Ω)), ut ∈ L2(0, T ; (H1(Ω))′)}.

Proof To prove that(uu, vu) is global in time, we multiply the first equation by uu and the

second by vu and use Young inequality to get

1

2

d

dt
‖uu‖2L2(Ω) + a‖∇uu‖2L2(Ω) +

∫

Ω

{k1|uu|2 + q|uu|3}dx

≤ k2

∫

Ω

{
u2u +

1

4
v2u

}
dx+

M2
u

4

(M2

8a
‖∇vu‖2L2(Ω) +

a

2

4

M2
‖∇uu‖2L2(Ω)

)

and

1

2

d

dt
‖vu‖2L2(Ω) + d‖∇vu‖2L2(Ω) + k2‖vu‖2L2(Ω)

≤ k2
2
‖vu‖2L2(Ω) +

∫

Ω

{ k21
2k2

u2u

}
dx+

k2
4
‖vu‖2L2(Ω) +

1

k2
‖f‖2L2(Ω).

Multiplying by ρ > 0 the first inequality and adding to the second one gives

1

2

d

dt
(ρ‖uu‖2L2(Ω) + ‖vu‖2L2(Ω)) +

ρa

2
‖∇uu‖2L2(Ω) + d‖∇vu‖2L2(Ω) +

∫

Ω

{ρk1|uu|2 + ρq|uu|3}dx

≤ ρ
M4

32a
‖∇vu‖2L2(Ω) + C

∫

Ω

|uu|2dx+
1

k2
‖f‖2L2(Ω),

where C =
k2
1

2k2
+ k2. For ρ = 16ad

M4 we obtain the following inequality:

1

2

d

dt
(ρ‖uu‖2L2 + ‖vu‖2L2(Ω)) +

ρa

2
‖∇uu‖2L2(Ω) +

d

2
‖∇vu‖2L2(Ω)

+

∫

Ω

{(ρk1 − C)|uu|2 + ρq|uu|3}dx ≤ 1

k2
‖f‖2L2(Ω). (5.2)

If (ρk1 − C) ≥ 0 we finish the proof of part 1. If (ρk1 − C) < 0 then, for any 0 < λ < ρq, note

Kλ = 4
27

(ρk1−C)3

(ρq−λ)2 < 0. By a simple real analysis argument, we deduce

(ρk1 − C)|u|2 + ρq|u|3 ≥ λ|u|3 +Kλ

for any u ∈ X . Hence the inequality (5.2) becomes

1

2

d

dt
(ρ‖uu‖2L2(Ω) + ‖vu‖2L2(Ω)) +

ρa

2
‖∇uu‖2L2(Ω) +

d

2
‖∇vu‖2L2(Ω) +

∫

Ω

{λ|uu|3 +Kλ}
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≤ 1

k2
‖f‖2L2(Ω).

Since u0, v0 ∈ L2(Ω) we deduce that uu, vu are bounded in L∞(0, T ;L2(Ω))∩L2(0, T,H1(Ω)),

and this bound does not depend on u. Using interpolation technique we obtain that uu is bound-

ed in L4(0, T ; (L3(Ω)) and consequently |uu|uu is bounded in L2(0, T ; (L
3
2 (Ω)), independent of

u.

Combining Hölder inequality, the boundedness of uu, vu in L2(0, T,H1(Ω)) and L4(0, T ;

(L3(Ω)) and the continous injection of L2(0, T ;H1(Ω)) into L2(0, T ; (L3(Ω)), we obtain that

∂tuu, ∂tvu are bounded in L2(0, T ; (H1(Ω))′), independent of u. So we finish the proof.

We can then define the mapping Π : X → X such that uu = Π(u) is the unique solution of

(P-S). From (5.1) the ball BR ⊂ X is invariant by Π.

Second Step Compactness of Π(BR). The second statement of the previous proposition

implies that Π(BR) ⊂ {u ∈ W, ‖u‖W ≤ C}. But the embedding of W into L2(0, T, L2(Ω)) is

compact thanks to the Aubin-Lions lemma.

Third Step Π is a continuous mapping. Let zn ∈ BR such that zn → z in L2(ΩT ) strong

and let un = Π(zn). Then Un = (un, vn) satisfies the system (P-S)n:





∂tun − a∆un = −βdiv(h̃(zn)∇vn)− k1un − q|un|un + k2vn in ΩT ,

∂tvn − d∆vn = −k2vn + k1un + f in ΩT ,

∇un · ν = ∇vn · ν = 0 on ΣT ,

un(0, ·) = u0, vn(0, ·) = v0 in Ω.

Since the sequence (un, vn)n≥1 is bounded in W 2 and (L∞([0, T ];L2(Ω)))2, there exists by the

Aubin-Lions lemma a subsequence (not relabeled) such that




un → u in L2(ΩT ), un → u a.e. in (ΩT ),

∇un ⇀ ξ in (L2(ΩT ))
3,

∂tun ⇀ ψ in L2(0, T, (H1(Ω))′).

To prove that ∇u = ξ, we take a test function ϕ ∈ (D(ΩT ))
3, so that

∫ T

0

∫

Ω

∇uni ϕ dxdt = −
∫ T

0

∫

Ω

uni ∇ϕ dxdt.

Taking the limit when n→ ∞ of both sides of this equation, we obtain

∫ T

0

∫

Ω

ξiϕ dxdt = −
∫ T

0

∫

Ω

ui∇ϕ dxdt =

∫ T

0

∫

Ω

∇uiϕ dxdt

and we conclude by a density argument. To prove that ∂tu = ψ, we use a similar computation

for the derivative with respect to time, with test function ϕ ∈ C1
c (0, T,H

1(Ω)). Thus we have

un ⇀ u in L2(0, T,H1(Ω)),

∂un ⇀ ∂u in L2(0, T, (H1(Ω))′),

|un|un ⇀ |u|u in L2(0, T, L
3
2 (Ω)),

(5.3)
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where the last assertion is a straightforward consequence of the upper bound of sequence |un|un
in L2(0, T, L

3
2 (Ω)) and the a.e. convergence of the sequence (un)n≥1 in ΩT . We obtain also a

similar convergence for vn towards v as in (5.3).

Finally, thanks to suitable choices of test functions it follows that the limit function v is a

solution of the following problem:





∂tv − d∆v = −k2v + k1u+ f in ΩT ,

∇v · ν = 0 on ΣT ,

v(0, ·) = v0 in Ω.

(5.4)

Obviously we prove that ∇vn → ∇v in (L2(ΩT )
3, when n → ∞ and thereby vn strongly

converges to v in L2(0, T,H1(Ω)). Since h is continous, zn → z in L2(ΩT ) and ∇vn → ∇v in

(L2(ΩT )
3, there exists a subsequnce (not relabeled) such that h̃(znk

)∇vnk
→ h̃(z)∇v a.e. in

ΩT . As h̃(znk
)∇vnk

is bounded in L2(ΩT ), we obtain by the dominated convergence theorem:

h̃(znk
)∇vnk

→ h̃(z)∇v in L2(ΩT )

and we can pass to the limit in the (P-S)n system. Thus





∂tu− a∆u = −βdiv(h̃(z)∇v)− k1u− q|u|u+ k2v in ΩT ,

∂tv − d∆v = −k2v + k1u+ f in ΩT ,

∇u · ν = ∇v · ν = 0 on ΣT ,

u(0, ·) = u0, v(0, ·) = v0 in Ω

(5.5)

and we get u = Π(z).

By the uniqueness of the solution (u, v) of (5.5), we deduce that all the sequence converges.

We conclude that Π is a continuous mapping.

We can now apply the Schauder fixed point theorem to prove the existence statement of the

following result.

Proposition 5.2 Let f be a nonnegative function in L2(0, T ;L2(Ω)). For each couple of

nonnegative functions (u0, v0) ∈ (L2(Ω))2, there exists a nonnegative solution for the problem

(Ph) with h = h̃.

To prove the positivity of the solution, we proceed as in Section 4: We multiply the first

equation by −u− and the second by −v−, we integrate in space and we add the two equations.

Thanks to the identity
∫
Ω
h(u)∇v∇u− = 0, a straightforward calculation gives:

d

dt
(‖u−‖2L2(Ω) + ‖v−‖2L2(Ω)) ≤ C(‖u−‖2L2(Ω) + ‖v−‖L2(Ω))

with C > 0. We finish the proof by applying the Gronwall lemma.

For the uniqueness of solution of problem (Ph) we have the following result.

Theorem 5.1 Let f ∈ L∞(ΩT ) be a nonnegative function. Consider (u0, v0) ∈ (L∞(Ω))2

such that 0 ≤ u0 ≤ M and 0 ≤ v0(x) ≤ vM almost everywhere in Ω, where vM is a positive

constant. Then there exists a constant α ≥ 0 such that

0 ≤ u(t, x) ≤Meαt, 0 ≤ v(t, x) ≤ vMeαt (5.6)



Mathematical Analysis of a Chemotaxis-Type Model of Soil Carbon Dynamic 275

and the solution of problem (Ph) is unique, when h = h̃.

Proof Let ũ = u−Meαt and ṽ = v − vMeαt. Then we have

ũt = a∆ũ− β∇(h(u)∇ṽ)− k1ũ− qũ2 + k2ṽ

− (αM + k1M + 2quM − k2vM )eαt − qM2e2αt

and

ṽt = a∆ṽ + k1ũ+ {f + eαt((−k2 − α)vM + k1M)}.

We take α large enough such that

f + eαt((−k2 − α)vM + k1M) ≤ 0

and

αM + k1M − k2vM ≥ 0.

Multiplying the first equation by ũ+ and the second by ṽ+ and then adding the two equations

gives

1

2

( d

dt
‖ũ+‖2L2(Ω) +

d

dt
‖ṽ+‖2L2(Ω)

)

≤ β

∫

Ω

h(u)∇v∇ũ+ + C(‖ũ+‖2L2(Ω) + ‖ṽ+‖2L2(Ω)).

Thanks to (4.1) β
∫
Ω
h(u)∇v∇ũ+ = 0 and we obtain (5.6) by using Gronwall lemma.

To prove uniqueness, suppose that there exist two solutions (u1, v1) and (u2, v2). Then

u = u1 − u2 and v = v1 − v2 verify

ut = a∆u− β∇(h(u1)∇v1 − (h(u2)∇v2)− k1u− qu1
2 + qu22 + k2v,

vt = d∆v − k2v + k1u,

u0 = v0 = 0 a.e in Ω.

(5.7)

Multiplying the first equation by u, the second by v and integrating over Ω leads to

1

2

d

dt
‖u‖2L2(Ω) + a‖∇u‖2L2(Ω)

≤ β

∫

Ω

|(h(u1)∇v1 − h(u2)∇v2)∇u| dx+ C(‖u‖2L2(Ω) + ‖v‖2L2(Ω))

and

1

2

d

dt
‖v‖2L2(Ω) + d‖∇v‖2L2(Ω) + k2‖v‖2L2(Ω) = k1

∫

Ω

uv dx.

It follows that

1

2

d

dt
‖u‖2L2(Ω) + a‖∇u‖2L2(Ω)

≤ β

∫

Ω

(|h(u1)− h(u2)| |∇v1|+ h(u2) |∇v|)|∇u| dx+ C(‖u‖2L2(Ω) + ‖v‖2L2(Ω)) (5.8)
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and

1

2

d

dt
‖v‖2L2(Ω) + d‖∇v‖2L2(Ω) + k2‖v‖2L2(Ω) ≤ C(‖u‖2L2 + ‖v‖2L2(Ω)). (5.9)

Recalling (5.6) u and v are bounded in ΩT . Classical parabolic regularity results and (5.4)

imply that v ∈ Lp(0, T,W 2,p(Ω)) for each p ∈ (1,∞). By Sobolev embedding, there is p > 3

such that ∇v1 ∈ L2(0, T ;L∞(Ω)). Hence

∫

Ω

|h(u1)− h(u2)| |∇v1| |∇u| dx

≤M‖∇v1‖L∞(Ω)‖u‖L2(Ω)‖∇u‖L2(Ω)

≤ ε‖∇u‖2L2(Ω) + Cε‖∇v1‖2L∞(Ω)‖u‖2L2(Ω) (5.10)

and
∫

Ω

h(u2) |(∇v)| |∇u| ≤
M

2
‖∇v‖L2(Ω)‖∇u‖L2(Ω)

≤ ε′‖∇u‖2L2(Ω) + C′
ε‖∇v‖2L2(Ω). (5.11)

We sum up (5.8)–(5.9) multiplied by a constant σ > 0 small enough, and we use (5.10) and

(5.11) with a wise choise of ε, ε′ and σ such that ε + ε′ ≤ a and σC′
ε ≤ d. Thereby we prove

the existence of a constant C > 0 such that

d

dt
(σ‖u‖2L2(Ω) + ‖v‖2L2(Ω)) ≤ C(‖∇v1‖L∞(Ω) + 1)(σ‖u‖2L2(Ω) + ‖v‖2L2(Ω)).

The Gronwall lemma entail that ‖u(t)‖L2(Ω) = ‖v(t)‖L2(Ω) = 0 for every t ∈ [0, T ], which

completes the proof.

6 Appendices

6.1 Appendix 1

Non-emergence of spatial patterns in (Ph) model without chemotaxis term

(β = 0)

Firstly we considere the PDEs system (Ph) without chemotaxis term (β = 0). As in Lotka-

Volterra systems (see [20]), also known as the predator-prey equations, diffusion alone cannot

disturb a constant equilibrium, and so spatial heterogeneity cannot emerge. Using the following

notation:

x̃ =

√
k1
a
x, t̃ = k1t, α =

q

k1
, ζ =

k2
k1
, c =

f

k1
, D =

d

a
,

we obtain the following non-dimensional equations (we revoke the notation):

{
∂tu = ∆u− u− αu2 + ζv ,
∂tv = D∆v + u− ζv + c,

(x, t) ∈ Ω× (0;T ) (6.1)
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with the same initial conditions and boundary conditions as (Ph) system . Without diffusion,

the system (6.1) has a unique positive steady state:

u∗ =

√
c

α
, v∗ =

u∗ + c

ζ
. (6.2)

To assess the steady state stability, the system is linearised around (u∗, v∗). Setting

εw1 = u− u∗, εw2 = v − v∗,

where 0 < ε≪ 1, gives the following linear system:
{
∂tw1 = ∆w1 − w1 − 2αu∗w1 + ζw2,
∂tw2 = D∆w2 + w1 − ζw2,

(x, t) ∈ Ω× (0, T ) (6.3)

with no-flux boundary conditions.

As in [20–21], we look for a solution of the form:

w =

(
w1

w2

)
∝ e(ik·x+ρt). (6.4)

Let k = |k| be the Euclidean norm of the wave vector. We obtain the following eigenvalue

problem:

Aw = ρw,

where A is the two by two matrix

A =

(
−1− 2αu∗ − k2 ζ

1 −ζ − k2D

)
.

The eigenvalue ρ depends on k.

Turing instability occurs (which means that spatial patterns appear) when ρ(k2) > 0 , for

a given value of k. But the matrix A has a strictly negative trace and a positive determinant,

and so ρ(k2) < 0 for all values of k . Hence no patterns will emerge in this case.

Emergence of spatial patterns in (Ph) model with β > 0

Finally, for the model with both diffusion and chemotaxis, it can be proven that the equilib-

rium solutions of the equation system (Ph) can be rendered non-stable under certain conditions,

and thus produce patterns and spatial heterogeneity. As in the previous section, the system

(Ph) was linearised around the steady state (u∗, v∗). We obtain the following system:
{
∂tw1 = ∆w1 − e∆w2 − w1 − 2αu∗w1 + ζw2,
∂tw2 = D∆w2 + w1 − ζw2,

(x, t) ∈ Ω× (0, T ), (6.5)

where

e = βh(u∗)
k1
a
.

Looking for solutions like in (6.4), the following eigenvalue problem must be solved:

Bw = ρw, (6.6)

where B is the two by two matrix

B =

(
−1− 2αu∗ − k2 ζ + ek2

1 −ζ − k2D

)
.

In this case, the trace of matrix B is strictly negative while its determinant can be strictly

negative for some values of k. Thus, taking chemotaxis into account in the system may lead to

the emergence of spatial patterns.
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6.2 Appendix 2

Numerical simulations

A set of validated parameters derived from studies published [7] was used to run numerical

simulations. The data used came from an Andean Pramo site near Gavidia, Venezuela. As

pattern geometries depend on the shape of the spatial domain (see [20]), two different forms of

spatial domain were tested. Figures below show the numerical simulations of the soil microbial

biomass compartment for the nearly rectangular and circular domains, using either h(u) =

h1(u) = u which does not prevent explicitly any overcrowding (Figures 1–2), or h(u) = h2(u) =

u(M − u) which explicitly does prevent overcrowding (Figures 3–4). These figures show the

spatial variability and patterns obtained for soil microbial biomass after 60 days and for the

two spatial domain shapes. The soil microbial biomass pattern agrees with the distribution

within the soil matrix of the microbial hot spots at micron scale. Numerical simulations were

performed using COMSOL Multiphysics 5.0.

Figure 1 Spatial microbial biomass distribution when h = h1 after 60 days.

Figure 2 Spatial microbial biomass distribution when h = h1 after 60 days.
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Figure 3 Spatial microbial biomass distribution when h = h2 after 60 days.

Figure 4 Spatial microbial biomass distribution when h = h2 after 60 days.
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