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Abstract This paper deals with the problem of internal controllability of a system of heat

equations posed on a bounded domain with Dirichlet boundary conditions and perturbed

with analytic non-local coupling terms. Each component of the system may be controlled in

a different subdomain. Assuming that the unperturbed system is controllable—a property

that has been recently characterized in terms of a Kalman-like rank condition—the authors

give a necessary and sufficient condition for the controllability of the coupled system under

the form of a unique continuation property for the corresponding elliptic eigenvalue system.

The proof relies on a compactness-uniqueness argument, which is quite unusual in the

context of parabolic systems, previously developed for scalar parabolic equations. The

general result is illustrated by two simple examples.
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1 Introduction

1.1 Motivation

Nonlocal parabolic systems are relevant in a variety of applications to Biology and Physics

(see [24]). They have been analyzed exhaustively in the recent past, in particular in the context

of the non-local fractional Laplacian, and significant progress has been achieved. But controlla-

bility issues for these models remain very much unexplored. Here we analyse parabolic systems

coupled by non-local lower order perturbations, the principal part being a classical constant

coefficient parabolic system.

The content of this paper is a natural combination of the methods developed in [21] to

achieve sharp results for parabolic systems coupled through constant coefficient matrices and
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those in [15] devoted to scalar equations perturbed by non-local lower order potentials. Our

goal here is to derive a simple and exploitable spectral necessary and sufficient condition of

controllability and the corresponding dual observability one.

This paper is very much inspired in the pioneering ideas introduced by J. L. Lions in his

famous SIAM Review article [19] that stimulated a significant step forward on the state of the

art. The early developments in this field were summarized with mastery in the celebrated survey

article by D. L. Russell [25]. The presentation in this paper is concise, relying significantly on

various tools of functional analysis that are developed and presented in a self-contained manner

in the more recent book by Phillippe G. Ciarlet [7].

1.2 Problem formulation and main result

Let us now present the problem under consideration into more details.

Let Ω be a smooth domain of RN (N ∈ N
∗), T > 0, n ∈ N

∗ and m ∈ N
∗ (with possibly

m < n). Let ωi (i ∈ [|1,m|]) be some open subsets of Ω that can be chosen arbitrarily (in

particular all the ωi’s may be disjoint).

We are interested in the controllability of the following system of heat equations with Dirich-

let boundary conditions:




∂tY = D∆Y +

∫

Ω

A(x, ξ)Y (t, ξ)dξ +

m∑

i=1

Biui1ωi
in (0, T )× Ω,

Y (t, x) = 0 in (0, T )× ∂Ω,

Y (0) = Y 0

(1.1)

with Y 0 ∈ [L2(Ω)]n, u = (u1, · · · , um) ∈ [L2(Ω)]m (which play the role of distributed controls),

A ∈ Mn(H) ⊂ Mn(L
2(Ω × Ω)) (where H is a space of admissible potentials that will be

introduced afterwards in (1.12)), Bi being the i-th column of B ∈ Mn,m(R).

The coupling matrix D ∈ Mn(R) is assumed to satisfy the ellipticity condition

〈DX,X〉 > C ‖X‖2 , ∀X ∈ R
n (1.2)

(here and hereafter, ‖ ·‖ will always denote the euclidean norm). Condition (1.2) is sufficient to

ensure the well-posedness of (1.13), since the principal part D∆ in (1.13) is strongly parabolic

in the sense of [17, Chapter 7, Definition 7].

More precisely, we consider the so-called null controllability problem, the goal being to

drive the system to the null final target Y (T ) ≡ 0 by a suitable choice of the controls u =

(u1, · · · , um) ∈ [L2(Ω)]m.

The scalar case (i.e., n = 1) has been analyzed in [15] for a scalar potential a ∈ H. Our goal

here is to extend those results to coupled systems, obtaining a simple and exploitable spectral

necessary and sufficient condition of controllability and the corresponding dual observability

one.

The controllability and observability of systems of partial differential equations have been

intensively studied in the last decade, leading to important progress. We shall refer to some of
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the existing literature in the end of this introduction. But, as indicated above, the number of

articles devoted to non-local problems is very limited.

Our analysis will follow a combination of the methods developed in [21] for the analysis of

parabolic systems and in [15] to handle non-local coupling terms. Accordingly, we shall use in

an essential manner the spectral decomposition of the Laplacian.

Let {λk}k≥1 be the eigenvalues of −∆ with Dirichlet boundary conditions and ek ∈ H1
0 (Ω)

be the corresponding eigenfunctions, constituting an orthonormal basis of L2(Ω).

Before considering the non-locally perturbed case, let us first recall some recent results on

models involving constant coefficient coupling terms:




∂tZ = D∗∆Z +A∗Z in (0, T )× Ω,
Z = 0 in (0, T )× ∂Ω,
Z(0) = Z0,

(1.3)

where Z0 ∈ (L2(Ω))n and A∗ ∈ Mn(R) is a constant coupling matrix.

Here, rather than dealing with the controllability problem we consider the dual observability

one. It concerns the obtention of full estimates on the state Z at time t = T out of partial

measurements on the control subsets ωi.

In [21] it was proved that system (1.3) is observable on (0, T ) in the sense that there exists

C = C(T ) > 0 such that for every Z0 ∈ [L2(Ω)]n, the solution Z of (1.3) verifies

‖Z(T )‖2 6 C(T )

m∑

i=1

∫ T

0

∫

ωi

|B∗
i Z(t, x)|2dxdt (1.4)

if and only if

rank K(λp) = n, ∀p > 1, (1.5)

where

K(λ) := [B|(−λD +A)B| · · · |(−λD +A)n−1B]. (1.6)

Moreover, following [21, Proof of Theorem 3] and [23, Proof of Theorem 2.2], a precise upper

bound on the observability constant C(T ) in (1.4) can be given for T > 0 small enough, getting

‖Z(T )‖2 6 Ce
C

T

m∑

i=1

∫ T

0

∫

ωi

|B∗
i Z(t, x)|2dxdt. (1.7)

If A∗ = 0, it is easy to prove that (1.6) is equivalent to the following Kalman rank condition:

rank KD = n, (1.8)

where, by definition,

KD := [B|DB| · · · |Dn−1B] ∈ Mn,nm(R), (1.9)

that only concerns the coupling matrix D and the control one B. When A∗ 6= 0 though, we get

a sequence of spectral conditions, depending on the eigenvalues of the Laplacian.
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In all what follows, we decompose the initial condition as

Z0(x) =

∞∑

k=1

Zkek(x), (1.10)

where (Zk)k∈N∗ ∈ (l2(N∗))n.

The observability inequality (1.7), as pointed out in [16, Remark 6.1]
(
see also [23, Lemma

3.3] with β = 1 and α = 1
2

)
, can be rewritten, in terms of the Fourier series expansion of the

initial datum Z0 given in (1.10), as

∞∑

k=1

e−R
√
λk‖Zk‖2 6 C(T )

m∑

i=1

∫ T

0

∫

ωi

|B∗
i Z(t, x)|2dxdt (1.11)

for some R > 0 and C(T ) > 0 independent of Z0 ∈ [L2(Ω)]n.

Note that this kind of observability inequality (which is related to reachability issues, see e.g.

[12]), introduced in [16], has also been used in [15, Lemma 2], for instance, to deal with non-local

perturbations. Note also that estimating R in (1.11) and, more precisely, finding explicit lower

bounds on R (in terms for instance of the geometries of Ω, ωi and the coupling matrices D and

A) is an open problem, related to the optimal weights that can be considered in a Carleman

estimate for the solutions of (2.1) (see [16] and Lemma 2.1 below), which are not known in

general. This constitutes a challenging problem, also related to the cost of controllability and

its dependence with respect to the geometry, which is still unknown in dimension greater than 1.

Summarizing, the constant R > 0 so that (1.11) holds is known to exist, but very little is known

on its actual value and its dependence on the parameters of the system under consideration.

This spectral observability inequality motivates the introduction of the following Hilbert

space of non-local potentials (that was mentioned before when describing the class of models

under consideration)

H :=
{
f(x, ξ) =

∑

m,j>1

fmjem(x)ej(ξ)

∈ L2(Ω× Ω)
∣∣∣

∞∑

m=1

( ∞∑

j=1

1

λj

|fmj|2
) 1

λm

eR
√
λm < ∞

}
, (1.12)

R > 0 being as in (1.11). Let us emphasize that kernels A ∈ Mn(H) enjoy the following

property (see for instance [15, Remark 5]):

x ∈ Ω 7→
∫

Ω

A(x, ξ)f(ξ)dξ is analytic, ∀f ∈ H1
0 (Ω)

n.

Let us now consider the following (forward) adjoint system of (1.1) involving also the non-

local coupling terms:





∂tZ = D∗∆Z +

∫

Ω

A∗(ξ, x)Z(t, ξ)dξ in (0, T )× Ω,

Z = 0 in (0, T )× ∂Ω,
Z(0) = Z0

(1.13)
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for some Z0 ∈ (L2(Ω))n.

Our goal is to extend the observability inequalities above for this complete model involving

the non-local perturbations. We are able to reduce the observability problem under consid-

eration to a unique continuation property for an elliptic problem, usually called Fattorini’s

Criterion (see [13]). This condition is much easier to be verified in practice, as illustrated by

two examples in Section 3. Note however that, due to the presence of the non-local term, this

property is not a consequence of the existing wide literature on the unique continuation for ellip-

tic problems and that analyticity assumptions are imposed on the kernel. As a consequence of

the spectral observability inequality, by duality, we shall also derive the controllability property

for the original control system involving the non-local terms.

The main result of this paper is the following.

Theorem 1.1 Consider any T > 0 and assume that A(x, ξ) ∈ Mn(H), where H is defined

in (1.12), and that KD verifies the Kalman rank condition (1.8).

Then, there exists C(T ) > 0 such that any solution Z of (1.13) (involving the non-local

perturbation terms) verifies

‖Z(T )‖2 6 C(T )

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i Z(t, x)‖2dxdt (1.14)

if and only if the following unique continuation property is verified for every λ ∈ R :






−D∗∆ϕ−
∫

Ω

A∗(ξ, x)ϕ(ξ)dξ = λϕ in Ω,

ϕ = 0 on ∂Ω,
B∗ϕ = 0 in Ω,
⇒ ϕ ≡ 0.

(1.15)

Equivalently, under condition (1.15), system (1.1) is null-controllable on (0, T ), in the sense

that for any Y 0 ∈ [L2(Ω)]n, there exists u ∈ [L2((0, T ) × Ω)]m such that the corresponding

solution to (1.1) verifies Y (T, ·) = 0.

The proof of the main result consists in obtaining the inequality (1.12) for the complete

system (1.13) on the basis of the same inequality for the system in the absence of non-local

perturbations (1.3). This is done applying a compactness-uniqueness argument, and reduces

the issue to the fulfillment of the unique continuation property above (1.15) for the spectral

problem. Once (1.12) is proved for the complete adjoint system (1.13), the null controllability

result for (1.1) is a direct consequence of a classical duality principle.

Compactness-uniqueness arguments have rarely been applied in the context of heat equations

because of the strong time irreversibility. In [15] this principle was applied in a satisfactory

manner for scalar parabolic equations involving non-local potentials, provided they belong to

the space H. This compactness-uniqueness technique, which applies in the context of non-

local perturbation terms, cannot be used for pointwise space-varying coupling terms. The main

novelty of the present article is to extend this analysis to parabolic systems involving non-local

terms.
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Several other remarks are in order.

Remark 1.1 (1) We are unable to derive an explicit estimate on the cost of controllability

in small time, similar to the one given in (1.7), because we use a contradiction argument.

(2) Remark that in (1.15), B∗ϕ = 0 is assumed on all Ω and not only ω. This is a conse-

quence of the analyticity properties of the kernel A∗. This fact facilitates the needed unique

continuation property, which becomes a problem of an algebraic nature since localisation (in

the space variable) issues do not arise.

(3) The hypothesis that A(x, ξ) belongs to Mn(H) is necessary in our study to develop the

compactness-uniqueness argument. However, it is likely that this hypothesis to be of purely

technical nature. In fact, there is no reason that A should be analytic, and it is likely that one

might obtain the same result for any kernel that is regular enough to ensure that equation (1.1)

is well-posed, for example A(x, ξ) ∈ Mn(L
2(Ω × Ω)). Hence, a natural conjecture would be

that the main result of Theorem 1.1 holds under the assumption that A(x, ξ) ∈ Mn(L
2(Ω×Ω))

(instead of A(x, ξ) ∈ Mn(H)) and provided the unique continuation property (1.15) holds.

Note that in [22] a 1-d scalar equation is considered and that the analyticity assumption is

avoided within the particular class of kernels in separated variables A(x, ξ) = Ax(x)Aξ(ξ), under

the assumption that Ax(x) does not vanish in the subset where the control is being applied. On

the other hand, as indicated by Patrick Gérard in a private communication, unique continuation

may fail for the spectral problem with smooth kernels in separated variables of compact support

even in the scalar case n = 1. Accordingly it fails for time-dependent parabolic problems

too. This example shows the necessity of some additional assumption on the kernel, such as

analyticity, for the unique continuation property to hold even for scalar equations. Finding

sharp conditions on the non-local kernel for unique continuation in the context of systems is an

interesting open problem.

1.3 Bibliographical comments

As indicated above, there is an extensive literature devoted to the controllability properties

of PDE systems but problems involving non-local terms are rarely considered. Apart from

references [15] and [22], we would like to mention [20], where a Carleman estimate for a scalar

non-local parabolic equation with an integral term involving the solution and its first order

derivatives is proved, with applications to unique continuation and inverse problems.

Concerning parabolic systems without non-local terms, some of the existing results concern

the following topics and techniques (see also the survey [1] for earlier results). For a more

detailed presentation, concerning also the hyperbolic and dispersive case, we refer to [21].

(1) One-dimensional results (i.e., d = 1) were obtained in [2–4, 6].

(2) Multi-dimensional results were obtained in [10] for constant or time-dependent coupling

terms, and partial results in the case of space-dependent coupling terms were obtained in [2–3,

5–6, 11, 18].

(3) The nonlinear case was notably studied in [8–9, 14].
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(4) Observability properties for systems involving a superposition of different dynamics

(notably coupled systems of heat and wave equations) were studied in [26].

2 Proof of the Main Result

Assuming that the spectral unique continuation property (1.15) is verified, the proof consists

in showing that the null-controllability of (1.1) holds. To do this, using the equivalence between

null controllability and observability, it suffices to show that the observability inequality (1.14)

holds for the complete system (1.13).

The proof of this inequality for the complete system involving the non-local terms relies on

a compactness-uniqueness argument similar to the one in [15, Proof of (16)]. We proceed in

several steps.

Step 1 Splitting of the solution. To get (1.14), first of all, we decompose the solution Z of

(1.13) into two parts Z = ζ + p, where p verifies






∂tp = D∗∆p in (0, T )× Ω,

p = 0 in (0, T )× ∂Ω,

p(0) = Z0

(2.1)

and ζ verifies





∂tζ = D∗∆ζ +

∫

Ω

A∗(ξ, x)ζ(t, ξ)dξ +

∫

Ω

A∗(ξ, x)p(t, ξ)dξ in (0, T )× Ω,

ζ = 0 in (0, T )× ∂Ω,

ζ(0) = 0.

(2.2)

From (1.8) and (1.11), we already know that

‖p(T )‖2 6 C

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i p(t, x)‖2dxdt. (2.3)

Step 2 An auxiliary Carleman estimate. Let us prove the following useful Carleman

estimate.

Lemma 2.1 There exist two constants C0 > 0 (not depending on T ) and C(T ) > 0 such

that for any Z0 ∈ [L2(Ω)]n, the solution p of (2.1) verifies

∫ T

0

∫

Ω

e−
C0
t ‖p(t, x)‖2 dxdt 6 C(T )

∞∑

k=1

∫ T

0

∫

Ω

m∑

i=1

‖B∗
i p(t, x)1ωi

(x)‖2dxdt. (2.4)

Proof We follow the computations of [16, Remark 6.1]. First of all, we decompose Z0 in

the Hilbert basis {ek} as

p(x) =

∞∑

k=1

pkek(x).
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For C0 > 0 (to be determined later on) we remark that

∫ T

0

∫

Ω

e−
C0
t ‖p(t, x)‖2 dxdt =

∞∑

k=1

∫ T

0

e−
C0
t ‖p̃k(t)‖2dt, (2.5)

where p̃k is the unique solution of the ordinary differential equation

{
p̃′k(t) = −λkD

∗p̃k(t) in (0, T )× Ω,

p̃k(0) = pk.
(2.6)

Using the ellipticity condition (1.2), there exists C1 > 0 (independent of C1) such that for

any t > 0, one has

‖p̃k(t)‖2 6 ‖pk‖2e−C1λkt. (2.7)

Hence, from (2.5) and (2.7) we deduce that

∫ T

0

∫

Ω

e−
C0
t ‖p(t, x)‖2 dxdt 6

∞∑

k=1

‖pk‖2
(∫ T

0

e−
C0
t

−C1λktdt
)
. (2.8)

Besides, it is well-known that, as λ → ∞,

∫ T

0

e−
C0
t

−C1λktdt ≃
(π2C0

C3
1

) 1
4

e−2
√
C1C1λ.

Hence, there exists some C2 > 0 such that for any k > 0, one has

∫ T

0

e−
C0
t
−C1λktdt 6 C2e

−2
√
C0C1λk .

We deduce from (2.8) that

∫ T

0

∫

Ω

e−
C0
t ‖p(t, x)‖2 dxdt 6 C2

∞∑

k=1

‖pk‖2e−2
√
C0C1λk . (2.9)

Inequality (2.4) then follows by using (1.11) together with (2.9) and taking C0 large enough

such that 2
√
C0C1 > R.

Step 3 Reduction to the proof of two inequalities. We remark that in order to obtain

(1.14), it is enough to prove the two following key inequalities:

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i p(t, x)‖2dxdt 6 C

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i Z(t, x)‖2dxdt (2.10)

and

‖Z(T )‖2 6 C

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i p(t, x)‖2dxdt. (2.11)
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Step 4 Proof of (2.10). Assume that (2.10) is not verified whereas (1.15) is verified. Then,

there exists a sequence (Z0
n)n∈N such that the corresponding solution pn of (2.1) with initial

condition Z0
n verifies

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i p(t, x)‖2dxdt = 1 (2.12)

and the corresponding solution Zn of (1.13) with initial condition Z0
n is such that

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i Zn(t, x)‖2dxdt <

1

n
. (2.13)

We also call ζn the solution to (2.2) where p is replaced by pn, so that we have the relation

Zn = pn + ζn. (2.14)

We are going to prove that ζn → 0 (up to a subsequence) strongly in L2((0, T )× Ω), which is

obviously in contradiction with (2.12)–(2.13) since these estimates together with (2.14) imply

1 6 2
( 1

n
+

m∑

i=1

∫ T

0

∫

ωi

‖B∗
i ζn(t, x)‖2dxdt

)
.

First of all, let us remark that there exists C > 0 such that

∥∥∥
∫

Ω

A∗(ξ, x)Zn(t, ξ)dξ
∥∥∥
L2((0,T ),H−1(Ω))

6 C. (2.15)

It is an easy consequence of the computation given in [15, (21)] applied on each component of

A∗. Hence, by classical energy estimates and compactness arguments, one may assume that ζn

converges strongly in L2((0, T ) × Ω) to some ζ ∈ L2((0, T ) × Ω). This implies, together with

(2.4) and (2.14), that if we fix δ ∈ (0, T ), (Zn)n∈N is bounded in L2((δ, T ),Ω). Hence, (Zn)n∈N

can be assumed to converge weakly in L2((δ, T ),Ω) to some Z ∈ L2((δ, T ),Ω). Then, one can

prove that Z solves the following PDE:

∂tZ = D∗∆Z +

∫

Ω

A∗(ξ, x)Z(t, ξ)dξ in (0, T )× Ω.

Moreover, we also know, thanks to (2.13), that B∗
i Z(t, x) = 0 on (0, T )×ωi, ∀i ∈ [|1,m|]. Using

the well-known Fattorini criterion for approximate controllability (see [13]), proving that Z ≡ 0

is equivalent to proving the following assertion:





−D∗∆ϕ−
∫

Ω

A∗(ξ, x)ϕ(ξ)dξ = λϕ on Ω,

ϕ = 0 on ∂Ω,

B∗
i ϕ = 0 on (0, T )× ωi, ∀i ∈ [|1,m|],

⇒ ϕ ≡ 0.

(2.16)
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Hence, we consider any ϕ ∈ L2(Ω) verifying






−D∗∆ϕ−
∫

Ω

A∗(ξ, x)ϕ(ξ)dξ = λϕ on Ω,

ϕ = 0 on ∂Ω,

B∗
i ϕ(x) = 0 on (0, T )× ωi, ∀i ∈ [|1,m|].

(2.17)

We will prove the following analyticity property on ϕ.

Lemma 2.2 Any ϕ ∈ L2(Ω) verifying the first two lines of (2.17) for some λ ∈ R is analytic

on Ω.

Proof From (2.17) and taking into account that x 7→
∫
Ω
A∗(ξ, x)ϕ(ξ)dξ is analytic on Ω

(hence C∞ on Ω) since ϕ ∈ H1
0 (Ω), an easy induction argument gives that ϕ ∈ C∞(Ω).

Now, consider any component of A∗ that we call a∗ and that we decompose as

a∗(ξ, x) =
∑

m,j>1

a∗mjem(ξ)ej(x).

Using condition (1.12) and since A∗ ∈ Mn(H), we obtain that for any j ∈ N, one has

∞∑

m=1

1

λm

eR
√
λm |a∗mj|2 < ∞,

implying thanks to (2.17) that for any ϕ ∈ H1
0 (Ω)

n, one has K(ϕ) = 0 on ∂Ω, where K is given

by

K : ϕ ∈ L2(Ω) 7→
∫

Ω

A∗(ξ, x)ϕ(ξ)dξ.

Hence, another easy induction argument enables us to conclude that

ϕ ∈
∞⋂

n=0

D(∆n), (2.18)

where ∆ represents here the Dirichlet Laplace operator with domain H1
0 (Ω) ∩ H2(Ω). Let us

now prove that ϕ is moreover analytic. Let k ∈ N. In what follows, C is a constant that may

vary from inequality to inequality and is independent of k. We consider the scalar product of

the first line of (2.17) by the vector ∆2k+1ϕ and we integrate on Ω. Taking into account (2.18),

we obtain after some integrations by parts that

‖D∗∆k+1ϕ‖2L2(Ω) − 〈ϕ,∆2k+1(Kϕ)〉L2(Ω) = λ‖∇∆kϕ‖2L2(Ω),

so that notably

‖D∗∆k+1ϕ‖2L2(Ω) 6 λ‖∇∆kϕ‖2L2(Ω) + |〈ϕ,∆2k+1(Kϕ)〉L2(Ω)|. (2.19)

Let us focus on ‖∆2k+1(Kϕ)‖L2(Ω). Following the computations of [15, Remark 5], one easily

infers that for any component of A∗ that we call a∗ and that we decompose as a∗(ξ, x) =
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∑
m,j>1

a∗mjem(ξ)ej(x), we have

∥∥∥∆2k+1
(∫

Ω

a∗(ξ, x)ϕ(ξ)dξ
)∥∥∥

2

L2(Ω)
6 C‖ϕ‖H1

0
(Ω)

∑

m>1

λ2k+1
m

∑

j>1

|a∗mj |2
λj

. (2.20)

By looking at the power series expansion of the exponential function, we deduce that
λ2k+2
m

R4k+4(4k+4)!
6 eR

√
λm , so that

λ2k+1
m 6 R4k+4(4k + 4)!

eR
√
λm

λm

.

Using the definition of H given in (1.12) together with (2.20), we deduce that

‖∆2k+1(K(ϕ))‖2L2(Ω) 6 CR4k+4(4k + 4)!‖ϕ‖2H1
0
(Ω). (2.21)

Using Young’s inequality and plugging (2.21) into (2.19) we obtain that

‖D∗∆k+1ϕ‖2L2(Ω) 6 Cλ‖ϕ‖2H2k+1 + ‖ϕ‖2L2(Ω) + CR4k+4(4k + 4)!‖ϕ‖2H1
0
(Ω)

6 C(λ‖ϕ‖2H2k+1 +R4k+4(4k + 4)!‖ϕ‖2H1
0
(Ω)). (2.22)

Using the ellipticity condition (1.2) and taking into account that

‖ϕ‖H2k+2(Ω) 6 Ck+1‖D∗∆k+1ϕ‖L2(Ω),

we obtain from (2.22) that

‖ϕ‖2H2k+2(Ω) 6 Ck(λ‖ϕ‖2H2k+1(Ω) +R4k+4(4k + 4)!‖ϕ‖2H1
0
(Ω)). (2.23)

Easy interpolation arguments together with an induction enable us to obtain from (2.23)

that for any m ∈ N
∗, one has

‖ϕ‖2Hm(Ω) 6 C(1 + Cmλ+ · · ·+ Cm(m−1)λm−1 +mR2m(2m)!)‖ϕ‖2H1
0
(Ω)

6 C(Cm2

+ Cm(2m)!)‖ϕ‖2H1
0
(Ω)

6 Cm+1(2m)!‖ϕ‖2H1
0
(Ω),

where from now on C is a constant that might depend on λ or R but not on m. Now, using

Sobolev embedding theorems together with the inequality
√
(2m)! 6 Cmm!, we deduce that

for any m ∈ N, one has

∑

|α|=m

‖∂αϕ‖L∞(Ω) 6 Cm+1m!‖ϕ‖H1
0
(Ω), (2.24)

where for any multi-index α = (α1, · · · , αN ), we write for simplicity |α| = α1 + · · · + αN and

∂αϕ = ∂α1+···+αN

∂xα1
···∂xαN

ϕ. It is well-known that inequality (2.24) implies the analyticity of ϕ on Ω,

which finishes the proof.
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We are now ready to complete the proof of Step 4. Let us consider any ϕ ∈ L2(Ω)N verifying

(2.17). Using Lemma 2.2, we deduce that ϕ is analytic on Ω, which implies that B∗ϕ is also

analytic on Ω. Hence, using the last line of (2.17), we deduce that B∗ϕ = 0 in Ω.

Now, using assumption (1.15), (2.16) is verified and hence Z ≡ 0 on (0, T )×Ω. We deduce

that pn converges weakly to −ζ in L2((0, T )×Ω), which implies that ζn → 0 = ζ in L2((0, T )×Ω)

because of (2.2). This leads to the desired contradiction.

Step 5 Proof of (2.11). This inequality is a consequence of (2.3) and easy energy estimates

on ξ using equation (2.2) and arguing as in the proof of [15, (21)].

Finally, we have proved that (1.15) implies (1.14). The fact that the null-controllability of

(1.1) (i.e., (1.14)) implies (1.15) is standard and is omitted.

3 Two Simple Examples of Application

3.1 Indirect controllability of cascade systems of two equations

In what follows, we consider the case of two coupled equations with cascade structure and

control on the first component.

More precisely, we consider the following system:






∂tY
1 = d11∆Y 1 + d12∆Y 2 +

∫

Ω

(a11(x, ξ)Y
1(t, ξ)dξ

+a12(x, ξ)Y
2(t, ξ)dξ) + u1ω in (0, T )× Ω,

∂tY
2 = d21∆Y 1 + d22∆Y 2 +

∫

Ω

a21(x, ξ)Y
1(t, ξ)dξ in (0, T )× Ω,

Y 1(t, x) = Y 2(t, x) = 0 in (0, T )× ∂Ω,

(Y 1(0), Y 2(0)) = (Y 1
0 , Y

2
0 ) in Ω.

(3.1)

Here D is given by

D :=

(
d11 d12
d21 d22

)

and is assumed to verify (1.2). The non-local potential A is given by

A(x, ξ) :=

(
a11(x, ξ) a12(x, ξ)
a21(x, ξ) 0

)
.

We consider the control operator B given by

B :=

(
1
0

)
.

The control acts on some open subset ω ⊂ Ω. We are going to prove the following sufficient

condition for the controllability of (3.1).

Theorem 3.1 Consider any T > 0 and assume that aij(x) ∈ H for (i, j) ∈ {1, 2}2, d21 6= 0

and d22 6= 0. Then, (3.1) is null-controllable.
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Proof First, observe that condition (1.8) is equivalent to d21 6= 0. Then, applying Theorem

1.1, the null-controllability of (3.1) is equivalent to the following unique continuation property:





−d21∆ϕ−
∫

Ω

a21(ξ, x)ϕ(ξ)dξ = 0 in × Ω,

−d22∆ϕ = λϕ in × Ω,

ϕ = 0 in ∂Ω,

⇒ ϕ ≡ 0.

(3.2)

By contradiction, assume that there exists some ϕ 6≡ 0 verifying the first three equations of

(3.2). Let us decompose a21 as follows: a21(ξ, x) :=
∑
k,l

cklek(x)el(ξ). Since d22 6= 0, it is clear

from the second equation of (3.2) that there exists m ∈ N
∗ such that λ = d22λm. In this case,

without loss of generality we may assume that ϕ(x) = em(x). Using the spectral decomposition

of a21, we obtain that ∫

Ω

a21(ξ, x)ϕ(ξ)dξ =
∑

k

ckmek(x).

Moreover, one has −d21∆ϕ(x) = d21λmem(x). Hence, we deduce that a21 is necessarily such

that the two following conditions are verified:

(1) ckm = 0 if k 6= m.

(2) cmm = d21λm.

The conclusion follows since such an a21 cannot be in H in view of (1.12).

3.2 Simultaneous controllability of two equations with diagonal principal part

In what follows, we consider the case of two coupled equations with simultaneous control:




∂tY
1 = d11∆Y 1 +

∫

Ω

a11(x, ξ)Y
1(t, ξ)dξ

+

∫

Ω

a12(x, ξ)Y
2(t, ξ)dξ + 1ωu in (0, T )× Ω,

∂tY
2 = d22∆Y 2 +

∫

Ω

a21(x, ξ)Y
1(t, ξ)dξ

+

∫

Ω

a22(x, ξ)Y
2(t, ξ)dξ + 1ωu in (0, T )× Ω,

Y 1(t, x) = Y 2(t, x) = 0 in (0, T )× ∂Ω,

(Y 1(0), Y 2(0)) = (Y 1
0 , Y

2
0 ) in Ω.

(3.3)

Here D is given by

D :=

(
d11 0
0 d22

)
,

where d11 > 0 and d22 > 0. A is given by

A(x, ξ) :=

(
a11(x, ξ) a12(x, ξ)
a21(x, ξ) a22(x, ξ)

)
,

where aij(x) ∈ H for i, j = 1, 2. We consider the control operator B given by

B :=

(
1
1

)
.
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The control acts on some open subset ω ⊂ Ω.

We are going to prove the following sufficient condition for the controllability of (3.3).

Theorem 3.2 Consider any T > 0 and assume that aij(x) ∈ H for (i, j) ∈ {1, 2}2, (i, j) 6=
(2, 2) and d11 6= d22. Then, (3.3) is null-controllable if the following conditions (for instance)

are verified:

(1) a11 = a21.

(2) a12 and a22 are symmetric in the variables (x, ξ).

Proof Remark that the Kalman rank condition (1.8) is verified here since d11 6= d22 and

each component of B is nonzero. Hence, we can apply Theorem 1.1 and we obtain that the

null-controllability of (3.3) is equivalent to the following unique continuation property:




−d11∆ϕ1 −
∫

Ω

a11(ξ, x)ϕ
1(ξ)dξ −

∫

Ω

a21(ξ, x)ϕ
2(ξ)dξ = λϕ1 in Ω,

−d22∆ϕ2 −
∫

Ω

a12(ξ, x)ϕ
1(ξ)dξ −

∫

Ω

a22(ξ, x)ϕ
2(ξ)dξ = λϕ2 in (0, T )× Ω,

ϕ1 + ϕ2 = 0 in Ω,

ϕ1 = ϕ2 = 0 on ∂Ω,

⇒ ϕ1 = ϕ2 = 0 in Ω.

(3.4)

Substituting ϕ2 in the first two equations of (3.4) and using the hypothesis a11 = a21, we

obtain that (3.4) is equivalent to




−d11∆ϕ1 = λϕ1 in Ω,

−d22∆ϕ1 −
∫

Ω

a12(ξ, x)ϕ
1(ξ)dξ +

∫

Ω

a22(ξ, x)ϕ
1(ξ)dξ = λϕ1 in (0, T )× Ω,

ϕ1(x) = 0 on ∂Ω,

⇒ ϕ1 = 0 in Ω.

(3.5)

From the first line of (3.5) we may assume that λ > 0 (since every eigenvalue of the Laplace

operator with Dirichlet boundary conditions is positive). We multiply the first line of (3.5) by

d22 and the second line of (3.5) by d11, and we subtract the result. We obtain that

d11

∫

Ω

a12(ξ, x)ϕ
1(ξ)dξ − d11

∫

Ω

a22(ξ, x)ϕ
1(t, ξ)dξ = λ(d22 − d11)ϕ

1. (3.6)

We apply the Laplace operator to this equation, we use the symmetry of the coefficients

a12, a22 and we perform some integrations by parts. We obtain that

d11

∫

Ω

a12(ξ, x)∆ϕ1(ξ)dξ − d11

∫

Ω

a22(ξ, x)ϕ
1(t, ξ)dξ = λ(d22 − d11)∆ϕ1.

Now, we replace ∆ϕ1 thanks to the first line of (3.5) and we obtain

−λd11

∫

Ω

a12(ξ, x)ϕ
1(ξ)dξ + λd11

∫

Ω

a22(ξ, x)ϕ
1(t, ξ)dξ = λ2(d22 − d11)ϕ

1. (3.7)

Multiplying (3.6) by λ and using (3.7) lead to ϕ1 = 0 since λ 6= 0 and d11 6= d22, so that we

also have ϕ2 = 0 by the third line of (3.4).
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