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Abstract A recent joint paper with Doina Cioranescu and Julia Orlik was concerned
with the homogenization of a linearized elasticity problem with inclusions and cracks (see
[Cioranescu, D., Damlamian, A. and Orlik, J., Homogenization via unfolding in periodic
elasticity with contact on closed and open cracks, Asymptotic Analysis, 82, 2013, 201–
232]). It required uniform estimates with respect to the homogenization parameter. A
Korn inequality was used which involves unilateral terms on the boundaries where a no-
penetration condition is imposed. In this paper, the author presents a general method to
obtain many diverse Korn inequalities including the unilateral inequalities used in [Cio-
ranescu, D., Damlamian, A. and Orlik, J., Homogenization via unfolding in periodic elas-
ticity with contact on closed and open cracks, Asymptotic Analysis, 82, 2013, 201–232]. A
preliminary version was presented in [Damlamian, A., Some unilateral Korn inequalities
with application to a contact problem with inclusions, C. R. Acad. Sci. Paris, Ser. I,
350, 2012, 861–865].
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1 Introduction

In the joint paper with Doina Cioranescu and Julia Orlik [2], the homogenization of static

linearized elasticity problems in the presence of cracks and inclusions was studied. This can be

reduced to minimizing a convex functional but its coerciveness is not straightforward, mainly

because of the presence of (infinitesimal) rigid motions. In the homogenization process, the

first difficulty is to obtain uniform estimates. These are intimately connected with the uniform

coerciveness of the convex functionals involved.

There are multiple “classical” results on unilateral contact. Many works of Gaetano Fichera

[5–8] are the first concerning the existence of solutions for such problems. More recently, the

following books consider this problem: Hlaváček, I., Haslinger, J., Nečas, J. and Lov́ıček, J. [11]

(1982), Kikuchi, N. and Oden, J. T. [12] (1988), Eck, C., Jarušek, J. and Krbec, M. [4] (2005).

All these results give conditions under which a solution exists, but none give explicit esti-

mates which, in the case of homogenization, would be uniform with respect to the homogeniza-

tion parameter. Furthermore, none seem to treat the case of Tresca friction for inclusions or

cracks. In [2], the problem was solved by first proving a unilateral Korn inequality adapted to

inclusions.
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Section 2 of this paper presents some definitions related to the classical Korn inequalities.

In Section 3, we give a procedure to construct Korn inequalities starting from “semi-norm-like

functions” on the space of rigid motions. Section 4 gives examples. For simplicity, they are set

in the natural space R
3 but extensions to higher dimensions are straightforward.

Notations Let v be a vector field on a domain of R
3 and S an orientable surface

therein1;

• a choice of unit normal vector to the surface S is denoted ν (the other would be −ν),

the scalar normal component of v on S is v · ν, denoted vν , its tangential component v− vνν is

denoted vτ ;

• ∇v is the gradient of v, defined as the matrix field:

(∇v)ij
.
=

∂vi

∂xj

, ∀(i, j) ∈ {1, 2, 3}2;

• e(v) is the strain tensor (symmetric gradient) of v, defined as the symmetric matrix field:

e(v)ij
.
=

1

2

( ∂vi

∂xj

+
∂vj

∂xi

)

, ∀(i, j) ∈ {1, 2, 3}2;

• R is the kernel of e in connected domains, i.e., the space of infinitesimal rigid motions:

R = {x 7→ a+Bx, a ∈ R
3, B a skew-symmetric matrix};

In the case of R3 (or an open connected subdomain in R
3), this is also

R .
= {x 7→ va,b(x) = a+ b ∧ x; a and b ∈ R

3}, (1.1)

where ∧ indicates the vector product (i.e., cross product or wedge product) in R
3;

• in estimates, C is a generic constant (function of the domain only);

• for a given domain O of R3, the spaces of scalar fields, vector fields and matrix fields

L2(O;R), L2(O;R3) and L2(O;R9), will all be referred to as L2(O) (there will be no ambiguity

from the context). Similarly, the spaces of scalar fields and vector fieldsH1(O;R) andH1(O;R3)

will often be denoted simply H1(O). The latter is endowed with the norm

‖u‖2H1(O)
.
= ‖u‖2L2(O) +

3
∑

i,j=1

∥

∥

∥

∂ui

∂xj

∥

∥

∥

2

L2(O)
.

2 Korn Domains and Korn-Wirtinger Domains

Korn inequalities are inequalities bounding the L2-norm of the gradient of a vector field in

a domain (or its H1-norm) by that of its symmetric gradient together with some extra terms,

if necessary.

The first Korn inequality is classical for the space H1
0 of any domain.

Proposition 2.1 Let O be an open set in R
3. Then for every u in H1

0 (O),

2‖e(u)‖|2L2(O) = ‖∇u‖2L2(O) + ‖div u‖2L2(O).

1All surfaces in this paper are assumed to be orientable.
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Consequently

‖∇u‖L2(O) ≤
√
2‖e(u)‖L2(O), (2.1)

and if the Poincaré inequality holds in O with the constant CP (O) (e.g., O is bounded in one

direction)

‖u‖H1

0
(O) ≤

√
2CP (O)‖e(u)‖L2(O). (2.2)

Proof Using the summation convention and the Stokes formula (for the cross terms)

4

∫

O

|e(u)|2 dx =

∫

O

( ∂ui

∂xj

+
∂uj

∂xi

)2

dx

=

∫

O

( ∂ui

∂xj

2

+
∂uj

∂xi

2

+ 2
∂ui

∂xj

∂uj

∂xi

)

dx

=

∫

O

( ∂ui

∂xj

2

+
∂uj

∂xi

2

+ 2
∂ui

∂xi

∂uj

∂xj

)

dx

=

∫

O

(2|∇u|2 + 2|div u|2) dx.

Definition 2.1 A domain O is a Korn domain if the second Korn inequality holds for

H1(O), i.e., there exists a constant CK(= CK(O)) such that

∀v ∈ H1(O), ‖v‖H1(O) ≤ CK(‖v‖L2(O) + ‖e(v)‖L2(O)). (2.3)

In 1962, Gobert [9] gave the first proof that a bounded domain with Lipschitz boundary is

a Korn domain. More recent proofs (none of them straightforward) can be found in the book

[13] of Oleinik, Shamaev and Yosifian and the paper [1] of P. Ciarlet and P. G. Ciarlet.

It is obvious that the union of a finite number of Korn domains is a Korn domain. This is

the case of domains with a finite number of Lipschitz cracks provided the cracks which touch

the boundary are not tangent to it.

The following is the analogue for vector fields of the Poincar?-Wirtinger inequality for scalar

functions.

Definition 2.2 A bounded connected open domain O is a Korn-Wirtinger domain if there

exists a constant CKW(= CKW(O)) such that for every v in H1(O) there is an r(v) in R with

‖v − r(v)‖H1(O) ≤ CKW‖e(v)‖L2(O). (2.4)

Obviously, r(v) can be chosen as the orthonormal projection of v on R in the Hilbert space

H1(O) so that r is linear and v − r(v) is orthogonal to R.

Remark 2.1 It is straightforward to check that the Poincar?-Wirtinger for scalar functions

holds in H1(O) when O is a Korn-Wirtinger domain (it suffices to consider vector fields with

only one non-zero component). The converse seems open.2

The following proposition gives examples of Korn-Wirtinger domains.

2The converse for certain weighted norms is a consequence of Theorem 2.3 of [10].
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Proposition 2.2 Suppose that O is a connected and bounded Korn domain. If the natural

injection from H1(O) to L2(O) is compact, then, O is a Korn-Wirtinger domain. This is true

in particular as soon as the boundary of O is Lipschitz.

The proof is classical but we give it for the sake of completeness.

Proof By contradiction, if (2.4) holds for no constant CKW, then one can construct a

sequence {un}n∈N in the orthogonal complement of R in H1(O) such that

n‖e(un)‖L2(O) ≤ ‖un‖H1(O) ≤ CK(‖un‖L2(O) + ‖e(un)‖L2(O)).

By scaling, one can assume that ‖un‖L2(O) ≡ 1.

It then follows that ‖e(un)‖L2(O) ≤ CK

n−CK

→ 0 so that ‖un‖H1(O) is bounded. Thus, {un}n
admits weak limit points in H1(O). Let v be one such weak limit point. By weak lower semi-

continuity, e(v) = 0 so that v belongs to R. On the other hand, v is orthogonal to R since all

the un’s are. Therefore v = 0. But, by the compact injection of H1(O) to L2(O), ‖v‖L2(O) = 1,

a contradiction.

Remark 2.2 As is expected in a proof by contradiction, the constant C is not explicit.

The same is true for every statement below.

Here is a way to obtain more Korn-Wirtinger domains.

Proposition 2.3 The union of two Korn-Wirtinger domains whose intersection is not emp-

ty is a Korn-Wirtinger domain. The same holds true for two Korn-Wirtinger domains whose

boundaries intersect along a subset which contains a portion of a Lipschitz hypersurface with

non-zero superficial measure. This can be generalized to a finite union of Korn-Wirtinger do-

mains.

Proof Let u be in H1(O) with O = O1 ∪ O2. The hypotheses imply that there exist two

rigid motions r1 and r2 such that

‖u− ri‖H1(Oi) ≤ C‖e(u)‖L2(O), i = 1, 2.

In particular,

‖u− ri‖H1(O1∩O2) ≤ C‖e(u)‖L2(O), i = 1, 2,

and consequently,

‖r1 − r2‖H1(O1∩O2) ≤ 2C‖e(u)‖L2(O).

Since all the norms are equivalent on the finite dimensional space R, it is also true that

‖r1 − r2‖H1(O2) ≤ 2CC′‖e(u)‖L2(O).

Consequently,

‖u− r1‖H1(O2) ≤ C(1 + 2C′)‖e(u)‖L2(O)

and

‖u− r1‖H1(O) ≤ 2C(1 + C′)‖e(u)‖L2(O).

In the second case denoting Σ a part of the common boundary which is included in a Lipschitz

hypersurface and with finite measure, the proof is the same but makes use of the trace theorem

from H1(Oi), i = 1, 2, to L2(Σ) (instead of the restriction from H1(Oi)) to H1(O1 ∩O2)).
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3 Construction of Korn Inequalities

The point of Korn inequalities is that there is no single one which can be applied in every

problem. Each problem requires an adapted Korn inequality. Here is a method to generate

Korn inequalities on Korn-Wirtinger domains. The constants exist but are not very easy to

track. Sharper estimates of the constant in each case may be of interest but is out of the scope

of this paper.

Theorem 3.1 Let O be a Korn-Wirtinger domain. If F : H1(O)) → R is a Lipschitz map

whose restriction to the subspace R of rigid motions is bounded below by a norm on R. Then

there exists a constant C such that

∀u ∈ H1(O), ‖u‖H1(O) ≤ C(F (u) + ‖e(u)‖L2(O)). (3.1)

Proof Let u be in H1(O) and r(u) be an element in R such that (2.4) holds. By the

hypothesis on F , it follows that

‖r(u)‖R ≤ F (r(u)) ≤ F (u) + C‖u− r(u)‖H1(O) ≤ F (u) + C‖e(u)‖L2(O).

Since all norms are equivalent on R, this implies

‖r(u)‖H1(O) ≤ F (u) + C‖e(u)‖L2(O)

and going back to (2.4) completes the proof.

4 Some Examples

4.1 Some standard Korn inequalities

Proposition 4.1 Let O be a Korn-Wirtinger domain. Let ω be a non-empty open subset of

O or an open subset of the boundary of a Lipschitz subdomain of O. Then, there is a constant

C such that

∀u ∈ H1(O), ‖u‖H1(O) ≤ C(‖u(x)‖L1(ω) + ‖e(u)‖L2(O)).

In particular,

∀u ∈ H1(O) such that u|ω ≡ 0,

then

‖u‖H1(O) ≤ C‖e(u)‖L2(O).

Proof Set

F (u)
.
= ‖u‖L1(ω).

Clearly, F is Lipschitz on H1(O) by injection into L2(O) (resp. by a trace theorem into L2(ω))

and F|R is a semi-norm on R. Furthermore, F (r) = 0 implies that r vanishes at every point of

ω. Since ω is open (resp. is open in a Lipschitz surface), it contains at least three non-aligned

points where r vanishes. One concludes that r vanishes everywhere in R
3 (one easy argument

is to use the equi-projectivity of every rigid motion).

This Korn inequality applies for example when the vector field u satisfies a homogeneous or

non-homogeneous Dirichlet condition on a non-empty open subset of the boundary ∂O.
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Remark 4.1 The previous result can be extended to the case where the norm on ω is taken

in L2(ω;µ) where µ is a non zero-measure of finite energy (i.e., in the dual space of H1(O)).

4.2 Some non-standard Korn inequalities

This section starts with a trivial remark concerning rigid motions: Every rigid motion is

divergence-free.

Proposition 4.2 Let ω be a bounded open set with Lipschitz boundary in R
3. Then the

map r 7→ ‖r+ν ‖L1(∂ω) is a semi-norm on R. Its kernel consists of all the rigid motions which

are tangent to ∂ω.

Proof By the Stokes theorem applied in ω, and since div r = 0, it follows that
∫

∂ω
rν dσ = 0.

Consequently,

‖(rν)−‖L1(∂ω) = ‖(rν)+‖L1(∂ω) =
1

2
‖rν‖L1(∂ω). (4.1)

The conclusions follow.

We discuss now under which conditions this map is a norm on R.

Definition 4.1 (Locked Domains) Let ω be a bounded open domain with Lipschitz bound-

ary in R
3. It is said to be locked if the map r 7→ ‖(rν)+‖L1(∂ω) is a norm on R. Because of

(4.1), a domain is locked if and only if the only rigid motion tangent to its boundary is 0. Mak-

ing use of the exponential map one can see that a domain is locked if and only if its isometry

group is discrete.

Consequently, the only domains which are not locked in R
3 are euclidean balls, zones between

two concentric euclidean spheres (the isometry group is SO3), and domains of revolution around

an axis (the isometry group is isomorphic to S1). For a domain ω, Rω will denote the set of

rigid motions which are tangent to ∂ω. It is reduced to zero for locked domains.

Since the boundary of a domain ω can have several connected components, for ω to be

locked, it is enough that one of these components not be of revolution. This component then

locks the domain (e.g., the complement of a small ball in a larger cube). It may also be that

several components are needed to lock the domain (e.g., the zone between two non intersecting

spheres is not locked if the spheres are concentric, but is locked if they are not).

We now introduce notations for the classical moments of a vector field.

Definition 4.2 (Moments) Let ω be a bounded open subset of R
3 (resp. of a Lipschitz

surface in R
3). Let z be a point in R

3 and d a unit vector in R
3. For a vector field ϕ in L1(ω)

its (vector) moment Mz
ω(ϕ) at the point z and its (scalar) moment Mz,d

ω (ϕ) with respect to the

axis with direction d going through z are

Mz
ω(ϕ) =

∫

ω

(x− z) ∧ ϕ(x) dµ, Mz,d
ω (ϕ) =

∫

ω

d · [(x − z) ∧ ϕ(x)] dµ,

where µ is the Lebesgue measure on ω (resp. the superficial measure on ω). When z is the

origin, it will be omitted in the notation of the moments.
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These functions are clearly linear continuous on the space L1(ω), hence on the space H1(O)

as soon as O contains ω as a subdomain (resp. when ω is an open subset of the boundary of a

Lipschitz subdomain of O).

One can also use a measure different from the Lebesgue measure in ω (resp. the superficial

measure on ω) provided it is also of finite energy (i.e., in the dual space of H1(Ω)) so that the

moments are continuous on H1(O). In particular, one can use a density measure ρ(x)dx with

ρ non-negative and in L2(O).

Note that if ω is an open subset of a sphere of center z and radius R, Mz
ω(ϕ) is bounded

in norm by R ‖ϕτ‖L1(ω) (recall that ϕτ is the tangential component of ϕ), and if it is an open

subset of a surface of revolution of radius R around the axis going through z with direction d,

the absolute value of Mz,d
ω (ϕ) is bounded by R ‖d ∧ ϕτ‖L1(ω) (d ∧ ϕτ is the podal component

of ϕ).

Moments are a source of semi-norms on R.

Lemma 4.1 (Norms and Semi-norms on R)

Locked domains Let O be a locked domain and Σ(O) a union of connected components

of ∂O which locks O. Then,

r 7→ ‖r‖l .
= ‖(rν)+‖L1(Σ(O)) is a norm on R. (4.2)

For non-locked domains this map is only a semi-norm on R.

Domains with spherical symmetry Let Σ be an euclidean sphere centered at the origin

(i.e., a connected component of the boundary of a domain with spherical symmetry with respect

to the origin). Then, there is a constant C and a linear map b from R to R
3 such that

‖r − b(r) ∧ Id ‖R ≤ C ‖(rν)+‖L1(Σ). (4.3)

Furthermore, if ω is a bounded open subset of R3 (resp. of a Lipschitz surface in R
3), then

r 7→ ‖r‖S .
= ‖(rν)+‖L1(Σ) + |Mω(r1ω)| is a norm on R. (4.4)

Domains of cylindrical revolution Let O be an open domain of revolution around an

axis going through the origin and with direction d. Let Σ be a Lipschitz connected component

of its boundary. Then, there is a constant C and a linear map ℓ from R to R such that

‖r − ℓ(r)d ∧ Id ‖R ≤ C ‖(rν)+‖L1(Σ). (4.5)

Furthermore, if ω is a bounded open subset of R3 (resp. of a Lipschitz surface in R
3), then

r 7→ ‖r‖C .
= ‖(rν)+‖L1(Σ) + |Md

ω(r1ω)| is a norm on R. (4.6)

Proof Locked domains First remark that every connected component of the boundary of

(any domain) O is the boundary of a bounded domain (its “interior”). Therefore Proposition

4.2 applies for each component and ‖ · ‖l is a semi-norm on R. If ‖r‖l = 0, it implies that

r|Σ(O) is tangent on every component of Σ(O). Since the latter is not globally of revolution,

this implies that r = 0, so that ‖ · ‖l is a norm.

Domains with spherical symmetry Let Σ be a sphere centered at the origin. Here

also, the map ‖ · ‖l is a semi-norm on R whose kernel consists of all the rigid motions which



342 A. Damlamian

are tangent to Σ, namely RΣ
.
= {b ∧ Id | b ∈ R

3}. Therefore, it is a norm on an orthogonal of

RΣ in R (for this, any scalar product on the finite dimensional space R will do), and b ∧ Id is

simply the orthogonal projection on RΣ.

The map ‖ · ‖S of formula (4.4) is also a semi norm. But if r is in its kernel, it is both

tangent to Σ, hence of the form b ∧ Id and with vanishing moment on ω. This condition reads

∫

ω

x ∧ (b ∧ x)dx = 0,

hence
∫

ω

b · (x ∧ (b ∧ x))dx = 0.

Now b · (x∧ (b∧x)) = |x|2|b|2− (b ·x)2 which is non-negative and can only vanish for x collinear

with b if the latter is not zero. But this cannot hold for every x in ω (because it is of dimension

at least 2). Therefore, b has to be 0 and the kernel is reduced to 0.

Domains with cylindrical symmetry The reasoning is the same here. The elements of

RO are the rigid motions of the form {kd ∧ Id | k ∈ R}. Imposing further that the moment

with respect to d at the origin vanish reads

O =

∫

ω

d · [x ∧ (k d ∧ x)]dx = k

∫

ω

[|d|2|x|2 − (d · x)2]dx,

but, as above, the last integral vanishing implies d = 0.

The maps ‖ · ‖l, ‖ · ‖S and ‖ · ‖C extends in the obvious way (and with the same notations)

to the space H1(O) as Lipschitz functions, leading to simple corollaries of Theorem 3.1 which

give some unilateral Korn inequalities.

Corollary 4.1 Let O be a Korn-Wirtinger domain which is locked by a subset Σ of its

boundary. Let ν be a choice of unit normal to Σ. Then, there exists a constant C such that the

following generalized Korn inequality holds3:

∀v ∈ H1(O), ‖v‖H1(O) ≤ C(‖e(v)‖L2(O) + ‖(vν)+‖L1(Σ)). (4.7)

Corollary 4.2 Let O be a Korn-Wirtinger domain and Σ a spherical connected component

of its boundary (for simplicity, centered at the origin). Then, there exists a constant C and a

continuous linear map b : H1(O) → R
3 such that

∀v ∈ H1(O), ‖v − b(v) ∧ Id ‖H1(O) ≤ C(‖e(v)‖L2(O) + ‖(vν)+‖L1(Σ)). (4.8)

Moreover, if ω is a bounded open subset of O (resp. of the boundary of a Lipschitz subdomain

of O), then there exists a constant C′ such that

∀v ∈ H1(O), ‖v‖H1(O) ≤ C′(‖e(v)‖L2(O) + ‖(vν)+‖L1(Σ) + ‖Mω(v)‖). (4.9)

Corollary 4.3 Let O be a Korn-Wirtinger domain and Σ a connected component of it-

s boundary invariant under the rotations around the axis with unit vector d (for simplicity,

3Since there are 2k choices of ν (where k is the number of distinct connected components making up Σ) there
are as many distinct inequalities!
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through the origin). Then, there exists a constant C and a continuous linear map ℓℓ : H1(O) → R

such that

‖v − ℓℓ(v)d ∧ Id ‖H1(O) ≤ C(‖e(v)‖L2(O) + ‖(vν)+‖L1(Σ)). (4.10)

Moreover, if ω is a bounded open subset of O (resp. of a Lipschitz surface in O), then there

exists a constant C′ such that

∀v ∈ H1(O), ‖v‖H1(O) ≤ C′(‖e(v)‖L2(O) + ‖(vν)+‖L1(Σ) + ‖Md

ω(v)‖). (4.11)

Proof of Corollary 4.1 Theorem 3.1 applies with F (u)
.
= ‖u‖l which is Lipschitz contin-

uous on H1(O).

Proof of Corollary 4.2 The second part follows in the same way as above from the fact

that the map F (u)
.
= ‖u‖S extends the map defined in (4.4) and is Lipschitz continuous on

H1(O).

The proof of the first part goes as follows. Given u in H1(O) and using the definition of a

Korn-Wirtinger domain, there is a r(u) in R with inequality (2.4). Applying the map b given

in (4.3) to r(u) then gives (recall that all norms are equivalent on R)

‖u− b
(

r(u)
)

∧ Id ‖ ≤ CKW‖e(u)‖L2(O) + C ‖(r(u)ν)+‖L1(Σ).

From (2.4) again, and using the trace theorem on Σ,

‖(r(u)ν)+‖L1(Σ) ≤ ‖(uν)
+‖L1(Σ) + CKW‖e(u)‖L2(O).

Combining these two inequalities gives inequality (4.8).

The proof of Corollary 4.3 is similar.
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