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Abstract Systems describing the dynamics of proliferative and quiescent cells are com-
monly used as computational models, for instance for tumor growth and hematopoiesis.
Focusing on the very earliest stages of hematopoiesis, stem cells and early progenitors, the
authors introduce a new method, based on an energy/Lyapunov functional to analyze the
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1 Introduction

Systems describing the dynamics of proliferative and quiescent cells are commonly used as

computational models, for instance for tumor growth and hematopoiesis (see [4, 10, 14–16, 23]).

The typical dynamical system, introduced in the papers of Gyllenberg and Webb [13], describes

the populations nP (t) ≥ 0 (proliferative cells) and nQ(t) ≥ 0 (quiescent cells) with a control by

the total population n(t), as





d

dt
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t), nP (t = 0) = n0

P > 0,

d

dt
nQ(t) = s+(n(t))nP (t)− (s−(n(t)) + δ)nQ(t), nQ(t = 0) = n0

Q > 0,

n(t) := nP (t) + nQ(t).

(1.1)

Here, β > 0 represents the cumulated proliferation rate of proliferative cells, δ > 0 represents

the death rate of quiescent cells, the smooth function s+ > 0, s− ≥ 0 define controls of the
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system. The authors in [13] showed the nonlinear stability of the non-zero steady state using

the Poincaré-Bendixson theorem.

Our purpose is to introduce another argument, based on an energy functional, or Lyapunov

functional in the language of dynamical systems, which leads to an analytical method that can

be extended to more elaborated models. We have in mind two extensions.

Firstly, we consider partial differential systems which take into account spatial extension

and random motion of cells. Consider a smooth and bounded region Ω of Rd, the simplest

system is





∂

∂t
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t) + ∆nP , x ∈ Ω, t > 0,

∂

∂t
nQ(t) = s+(n(t))nP (t)− (s−(n(t)) + δ)nQ(t) + ∆nQ,

n(x, t) := nP (x, t) + nQ(x, t),

∂

∂ν
nP =

∂

∂ν
nQ = 0, x ∈ ∂Ω

with smooth initial data nP (x) > 0, n0
Q(x) > 0. Again our purpose is to study the long term

convergence in this case, using our energy functional.

Secondly, we have in mind to introduce more complex biological content. This is the case

in hematopoiesis where the dynamic (1.1) represents a two stage stem cell population. We

may add a third compartment which corresponds to the early progenitor cells encountered in

hematopoiesis, and written as

C

Figure 1 Diagram of the three compartmental model (1.2).






d

dt
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t) + ηu(t), nP (t = 0) = n0

P > 0,

d

dt
nQ(t) = s+(n(t))nP (t)− [s−(n(t)) + δ]nQ(t), nQ(t = 0) = n0

Q > 0,

d

dt
u(t) = −αu(t) + ǫnP (t), u(t = 0) = u0 > 0,

n(t) := nP (t) + nQ(t).

(1.2)

Here nP (t) and nQ(t) stand for a population of proliferative and quiescent stem cells, respec-

tively, while u(t) represents the corresponding population of early progenitor cells, assumed to

proceed from proliferative stem cells only. Note that we allow a fraction η of progenitor cells to

de-differentiate and go back to the proliferative stem cell compartment, a case that in principle

occurs only in cancer (in particular leukemic) cell populations (see [3]). In this representation,
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we do not consider the whole hematopoietic tree (as done in, e.g., [2, 24]), but only its most im-

mature components. Indeed, having in mind, as in [2, 24], future applications to acute myeloid

leukemia, that emerges from these early stages (see [17]), we believe that this is the right place

in the hematopoietic tree to set the relevant mathematical model and its analysis.

The rest of the paper is organized as follows. In Section 2, we introduce the assumptions

and the energy method and we use it for the system (1.1) in order to prove its global, nonlinear

asymptotic stability. In Section 3, we analyze the PDE system (3.1) and show that the energy

functional can be used to prove again the long time convergence to the homogeneous steady

state. The last section is devoted to the construction of a variant of the energy functional

adapted to the three-compartment system (1.2).

2 Assumptions and the Energy Method

2.1 Assumptions and convergence to the non-zero steady state

Following [13], we consider that the parameters satisfy the following assumptions.

Assumptions for the existence of a unique non-zero steady state

s′+(·) ≥ 0, s′−(·) ≤ 0, s+(∞) = lim
n→∞

s±(n) < ∞, (2.1)

s′+(n)− s′−(n) > 0, ∀n ≥ 0, δs+(0) < β(δ + s−(0)), β(δ + s−(∞)) < δs+(∞). (2.2)

Assumption for global stability

β < s−(n) + s+(n) + δ, ∀n ≥ 0. (2.3)

With the assumptions (2.1)–(2.2), it is well established (see [13]) that there is a unique

non-zero steady state of system (1.1) which is characterized by

δs+(n∞) = β(δ + s−(n∞)), nP,∞ =
δ

β + δ
n∞, nQ,∞ =

β

β + δ
n∞. (2.4)

Additionally, with the assumption (2.3), one can prove that, as t → ∞,

n(t) → n∞, nP (t) → nP,∞, nQ(t) → nQ,∞. (2.5)

2.2 The energy method

For convenience, we change the variables and the time of the system to

g(t) =
nP (t)

n(t)
∈ (0, 1), Σ±(n) =

s±(n)

β + δ
, τ = (β + δ) t. (2.6)

Nonetheless, in what follows we still denote the time by t. In these new variables, the system

reads






d

dt
g(t) = F (g(t), n(t)),

d

dt
n(t) = n(t)(g(t) − g∞), g∞ =

δ

β + δ
,

0 < g(0) = g0 < 1, 0 < n(0) = n0 < ∞.

(2.7)
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The nonlinearity is defined as F (g, n) = −g2 + g[1 − Σ+(n) − Σ−(n)] + Σ−(n), which we also

write as




F (g, n) = −(g − g∞)2 − a(n)(g − g∞) + b(n),

a(n) = Σ+(n) + Σ−(n) + 2g∞ − 1, b(n) = F (g∞, n).
(2.8)

With these notations and the assumptions (2.1)–(2.3), we obtain that a(·), b(·) are smooth

and bounded functions. The properties of a(·), b(·), and the definition of the steady state n∞,

can be written as

b(0) = F (g∞, 0) > 0, b(∞) = F (g∞,∞) < 0, b(n∞) = F (g∞, n∞) = 0, (2.9)

a(n) > 0, b′(n) < 0, ∀n ≥ 0. (2.10)

We introduce the energy of the system

E(t) =
1

2
n(t)2(g − g∞)2 +G(n(t)) (2.11)

with, using assumption (2.9),

G(n) = −

∫ n

n∞

mF (g∞,m) dm = −

∫ n

n∞

mb(m)dm −→
n→∞

∞. (2.12)

Lemma 2.1 With the assumptions (2.9)–(2.10), the energy E(t) defined by (2.11) is de-

creasing and, for (g0, n0) 6= (g∞, n∞), we have

d

dt
E(t) = −n(t)2(g(t)− g∞)2a(n(t)) < 0. (2.13)

Proof We compute

d

dt
E(t) = n(t)2(g(t)− g∞)3 + n(t)2(g(t)− g∞)[F (g(t), n(t))− F (g∞, n(t))]

= n(t)2(g(t)− g∞)2(1− Σ0(n(t)) − Σ1(n(t))− 2g∞).

Then we conclude using the definition of a(·) in (2.8).

2.3 The convergence theorem

We are now ready for our version of the convergence result in [13],

Theorem 2.1 With the assumptions (2.9)–(2.10), the solutions of (2.7) are bounded and,

as t → ∞, g(t) → g∞ and n(t) → n∞.

Proof (i) Because of the energy inequality (2.13), we have E(t) ≤ E(0) and thus G(n(t)) ≤

E(0). We conclude that n(t) is bounded using (2.12).

(ii) Because n and g are bounded, the equation (2.7) shows that n and g are Lipschitz

continuous. Therefore, n(·)2(g(·)− g∞)2 is also bounded and Lipschitz continuous. Since from

the energy dissipation we have
∫ ∞

0

n(t)2(g(t)− g∞)2a(n(t))dt ≤ E0,

we conclude that, as t → ∞, we have

n(t)2(g(t)− g∞)2a(n(t)) → 0.
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Because of assumption (2.10), this implies that

n(t)2(g(t)− g∞)2 → 0.

(iii) Because the energy decays, it has a limit E∞. Combined with the above information,

we conclude that , as t → ∞, we have

G(n(t)) → E∞

and by continuity n(t) has a limit n∞.

(iv) Arguing by contradiction, we assume that n∞ = 0. Then, for t large enough, the

dynamics of g(t) resembles the solution of the Riccati equation

d

dt
g(t) = F (g(t), 0) = −(g(t)− g∞)2 + a(0)(g(t)− g∞) + b(0).

As t → ∞, the solution g(t) of this equation tends to g∞ = g∞+ 1
2

[
−a(0)+

√
a(0)2 + 4b(0)

]
>

g∞. This last inequality holds thanks to the assumptions (2.9)–(2.10). But inserting this infor-

mation in the equation for n(t) shows that n(t) → ∞ which is impossible, this is a contradiction.

Therefore n∞ 6= 0.

(v) As a consequence, from step (ii) we deduce that g(t) → g∞. From the equation for g(t),

we conclude that b(n∞) = 0 which means that n∞ = n∞.

3 Model with Space and Diffusion

The method with the energy/Lyapunov functional presents another advantage which is a

possible extension to the context where spatial distribution is also considered. An example is

the case with spatial diffusion and we now consider distributions nP (x, t), nQ(x, t) with x ∈ Ω

a smooth bounded domain of Rd. We use the equations:





∂

∂t
nP (x, t) = [β − s+(n(x, t))]nP (t) + s−(n(x, t))nQ(x, t) + ∆nP , x ∈ Ω, t > 0,

∂

∂t
nQ(x, t) = s+(n(x, t))nP (x, t)− (s−(n(x, t)) + δ)nQ(x, t) + ∆nQ,

n(x, t) = nP (x, t) + nQ(x, t),

∂

∂ν
nP =

∂

∂ν
nQ = 0, x ∈ ∂Ω.

(3.1)

This system is completed with smooth initial data n0
P (x) > 0, n0

Q(x) > 0. It is of semi-linear

type and global existence is granted because the nonlinearity is Lipschitzian, and solutions are

smooth and positive (see [6, 11, 20, 22]). Solutions are only locally bounded with possibly

exponential growth.

In order to adapt the energy functional E(t) defined by (2.11) to the case at hand, we need

to go back to the unknowns nP , nQ and use

E(nP , nQ) =
1

2
(nP + nQ)

2
( nP

nP + nQ

− g∞

)2

+G(nP + nQ).

We now define the total energy with

E(t) =

∫

Ω

E(nP (x, t), nQ(x, t))dx.

We may now state our result for the system with space. It is of global nature but with a

restriction on the initial data which is limited by the convexity region of the energy E .
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Theorem 3.1 We make the assumptions (2.1)–(2.3) and that max
x

E(n0
P (x), n

0
Q(x)) is small

enough (less than n∞ is enough). Then, there is a smooth solution to the semi-linear parabolic

system (3.1) and it satisfies n(x, t) ≤ n0
M, the total energy E(t) decays and, as t → ∞,

n(x, t) → n∞, g(x, t) → g∞ in L2(Ω).

The end of the section is devoted to prove this theorem.

3.1 Convexity of E

To begin with, we need to study the convexity properties of E . For that purpose, we define

a function which is essential for our study

f(n) = F (g∞, n)− n
∂F

∂n
(g∞, n) = b(n)− nb′(n).

We may calculate the Hessian of E

Hess(E) =




(1 − g∞)2 + f(n) −g∞(1− g∞) + f(n)

−g∞(1 − g∞) + f(n) g2∞ + f(n)





still with n = nP + nQ, g = nP

n
. We can compute

Tr(Hess(E)) = g2∞ + (1− g∞)2 + 2f(n),

det(Hess(E)) = f(n).

Because convexity is equivalent to the non-negativity of these two quantities, it is reduced to

those n such that f(n) ≥ 0. Clearly this is the case for n ≤ n∞ since F (g∞, ·) is positive on

this interval and decreasing (see assumptions (2.9)–(2.10)).

However, we can see that for n large, this condition cannot be fulfilled. Indeed, f(n) ≥ 0

means b(n)− nb′(n) ≥ 0, which would imply that b(n) = F (g∞, n) → −∞ as n → ∞ while we

assume that F is bounded.

3.2 Condition on the initial data

When the Laplacian is considered, it is useful to preserve the convexity zone all along the

dynamics (see e.g. [6, 11, 20, 22]). Therefore, we need a condition on the initial data which we

state as follows. Consider the value n0
M, necessarily larger than n∞, such that

f(n0
M) = 0, f(n) > 0 for n < n0

M. (3.2)

We assume that

E(nP , nQ) ≤ max
x

E(n0
P (x), n

0
Q(x)) ⇒ nP + nQ ≤ n0

M. (3.3)

This somehow abstract condition can be satisfied with more explicit assumptions, for instance

max
x

E(n0
P (x), n

0
Q(x)) ≤ min

0≤g≤1
E(g, n0

M).

This is the precise size condition needed in the statement on Theorem 3.1.
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3.3 Conclusion

We may now conclude the proof of this theorem which relies on very standard tools for

parabolic systems. Therefore, we just indicate the reason why assumption (3.2) is used. We

compute the energy dissipation relation

∂

∂t
E =∆E − (∇nP ,∇nQ).Hess(E).(∇nP ,∇nQ)

− n(x, t)2(g(x, t)− g∞)2a(n(x, t)).

Because initially we have Hess(E(t = 0, x)) ≤ 0 for all x ∈ Ω, we conclude from the maximum

principle that

E(x, t) ≤ max
x

E(n0
P (x), n

0
Q(x)), ∀x ∈ Ω, t ≥ 0.

Therefore the condition (3.3) tells us that n(x, t) ≤ n0
M and the definition (3.2) implies that

E(t, x) remains convex all along the dynamics. Therefore the solution satisfies

n(x, t) ≤ n0
M, ∀x ∈ Ω, t ≥ 0.

Standard use of the energy dissipation leads to the conclusion that (∇nP (x, t),∇nQ(x, t)) be-

longs to L2(R+; Ω). Time compactness follows from the Lions-Aubin Lemma, and thus the

family (∇nP (x, t),∇nQ(x, t)) converges, as t → ∞ to an homogeneous state for large times.

Finally, the reasoning of Subsection 2.3 leads to the conclusion of Theorem 3.1.

4 The 3-Compartment Hematopoiesis System

The flexibility of the energy method for the model with proliferative and quiescent cells can

also be illustrated with a 3 by 3 system. This type of model is used for describing hematopoietic

stem cell dynamic and a third compartment corresponds to the early progenitor cells encoun-

tered in hematopoiesis which are denoted by u(t) in this section. Hematopoiesis is a wide

subject, with several mathematical faces and the interested reader can consult for instance

[1, 9, 21].

4.1 The model equation

The system proposed here is the extension of (1.1) written as





d

dt
nP (t) = [β − s+(n(t))]nP (t) + s−(n(t))nQ(t) + η

n(t)

1 + n(t)
u(t),

d

dt
nQ(t) = s+(n(t))nP (t)− [s−(n(t)) + δ]nQ(t),

d

dt
u(t) = −α

n2(t)

(1 + n(t))2
u(t) +

n(t)

(1 + n(t))2
ǫnP (t),

n(t) = nP (t) + nQ(t),

(4.1)

where we still use the notations and assumptions of Section 2. We consider that the exchanges

between the proliferating hematopoietic stem cells and the early progenitor compartment are

small, i.e., we are going to consider the perturbative regime

ǫη ≪ 1.

We assume here that de-differentiation of the progenitor cells into hematopoietic stem cells

(the passage from u to nP measured by η) is much less important than the maturation of
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hematopoietic stem cells (the converse passage). De-differentiation has been observed in recent

biological studies on cancers (see [5, 12, 25]), and investigated in modelling studies by varying

its rate (see [3, 18]). However, nothing is known for certain concerning its actual rate in different

types and stages of cancers, nor whether it is cause or consequence of cancer emergence, except

the fact that high de-differentiation rates seem to be related to cancer aggressiveness. The case

η ≪ ε is thus relevant, at least in health or in very early cancer initiation.

However a difficulty remains; the energy dissipation −n2a(n)(g − g∞) in (2.13) does not

provide enough coercivity by lack of a term n − n∞. For that technical reason, we have

introduced a modulation of the exchanges with the ratio n(t)2

(1+n(t))2 and the energy modulation

has to be tuned appropriately.

We notice that solutions exist globally because positivity is preserved and the total number

of cells is controlled by

d

dt
[nP (t) + nQ(t) + u(t)] ≤ (β + ε)nP (t) + ηu(t) ≤ max(β + ε, η)[nP (t) + nQ(t) + u(t)]

and the Gronwall lemma controls the solutions with an exponential growth in time.

We perform the same change in unknowns (see equations in (2.6)) as in Section 2. Set

u = εv, and we get





d

dt
g(t) = F̃ (g(t), n(t)) +

ηε

1 + n(t)
(1− g(t))

[
(v(t)− ṽ∞)−

ṽ∞

1 + ñ∞

(n− ñ∞)
]
,

d

dt
n(t) = n(t)(g(t)− g̃∞) + ηε

n(t)

1 + n(t)
(v(t)− ṽ∞)− ηε

ṽ∞

1 + ñ∞

n(t)

1 + n(t)
(n(t)− ñ∞),

d

dt
v(t) = −α

n(t)2

(1 + n(t))2
(v(t)− ṽ∞) +

n(t)2

(1 + n(t))2
(g(t)− g̃∞)

(4.2)

with the following definitions, in particular of the steady state (ñ∞, g̃∞, ṽ∞),

g̃∞ =
δ

β + δ + γ
, γ =

ηǫ

α
·

1

1 + ñ∞

, αṽ∞ = g̃∞,

F̃ (g, n) = g[1− Σ+(n)− Σ−(n)] + Σ−(n)− g2 + ηε
ṽ∞

1 + ñ∞

(1− g), F̃ (g̃∞, ñ∞) = 0.

As before, we can rewrite F̃ (g, n) as

F̃ (g, n) = −(g − g̃∞)2 − (g − g̃∞)ã(n) + b̃(n), ã = Σ+ +Σ− + 2g̃∞ − 1 + ηε
ṽ∞

1 + ñ∞

,

b̃(n) = F̃ (g̃∞, n) = g̃∞(1− g̃∞)− g̃∞Σ+(n) + (1− g̃∞)Σ−(n) + ηε
ṽ∞

1 + ñ∞

(1 − g̃∞),

and the assumptions (2.1)–(2.3) have to be reinforced so as to yield the positivity of ã and the

property b̃(0) > 0, b̃(∞) < 0, then there are a0 and ñ∞ such that

ã(n) ≥ a0 > 0, b̃′ < 0, b̃(ñ∞) = 0. (4.3)

We also define G(·) with

G′(n) = −nb̃(n), G(ñ∞) = 0.
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4.2 The energy functional and long-term convergence

We need to introduce a modulation of the energy functional E(t) in order to take into

account the third component. Now, we define the energy by

Ẽ(t) =
1

2
n(t)2(g(t)− g̃∞)2 +G(n(t)) +

λ

2
(v(t)− ṽ∞)2, (4.4)

where the constant λ is positive and small.

Theorem 4.1 For λ > 0 small enough compared to α, a0 and b(·), and ηε small enough,

we have, for some p ∈ (0, 1),

d

dt
Ẽ(t) ≤ −

1

2
n2a(n)(g − g̃∞)2 − ηεp

n2

(1 + n)2
(n− ñ∞)2 − pα

n2

(1 + n)2
(v − ṽ∞)2.

Therefore, we have the long term convergence

n → ñ∞, g → g̃∞, v → ṽ∞.

In this theorem, the only new difficulty relies on the elaboration of the energy dissipation.

The convergence result then follows exactly as in Section 2 and we skip its proof. In the end of

this section, we concentrate on the dissipation of energy.

4.3 Proof of Theorem 4.1

We may compute

d

dt
Ẽ(t) = −n2a(n)(g − g∞)2 − αλ

n(t)2

(1 + n(t))2
(v − ṽ∞)2 − (n− ñ∞)2A

+ (g − g̃∞)(n− ñ∞)B + (v − ṽ∞)(n− ñ∞)C + (v − ṽ∞)(g − g̃∞)D (4.5)

with A,B, · · · , F determined below.

We obtain only a control on (n− ñ∞)2 of order εη, which is given by

A = ηε
ṽ∞

1 + ñ∞

n2

(1 + n)2
c(n), c(n) := −(1 + n)

b̃(n)− b̃(ñ∞)

n− ñ∞

≥ c0.

Then, the other terms are

B = −ηε
ṽ∞

1 + ñ∞

n2

1 + n
(1− g̃∞), C = −ηε

n2

1 + n

b̃(n)− b̃(ñ∞)

n− ñ∞

,

D = ηε
n2

1 + n
(1− g̃∞) + λ

n2

(1 + n)2
.

Then, we can estimate the terms with products rather simply. We have

|(g − g̃∞)(n− ñ∞)B| ≤ ηε
ṽ∞

ñ∞

n2(1 − g̃∞)(g − g̃∞)2 + ηε
ṽ∞

ñ∞

n2

(1 + n)2
(1− g̃∞)(n− ñ∞)2,

which, for ηε small enough compared to c0 and a0, and the two terms are absorbed by negative

terms coming from A and from the first negative term in the energy dissipation (4.5).

The next term is

|(v − ṽ∞)(n− ñ∞)C| ≤ ηεb1
n2

(1 + n)2
[(n− ñ∞)2 + (v − ṽ∞)2],
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which again, for ηε small enough compared to c0, α and 1
b1
, contribution is absorbed by the

negative terms. Here we have used

b1 = sup
n≥0

(1 + n)
∣∣∣
b̃(n)− b̃(ñ∞)

n− ñ∞

∣∣∣.

The last term (v − ṽ∞)(g − g̃∞)D, can be treated in the same way and, there, we require

that λ is small enough compared to a0.

4.4 Simulations

We illustrate the behaviour of the 3 ∗ 3 system (4.1) with some numerical simulations. We

have used the parameters

α = 0.06, β = 0.2, δ = 0.15, ǫ = 0.1,

and the functions





Σ+(n) =

a ∗ ng

Kg + ng
, Σ−(n) =

b

Lh + nh
,

a = 0.9, g = 2, K = 1000, b = 0.1, h = 2, L = 1000.

Figure 2 displays the solution with three values of the de-differentiation parameter η,

η = 0, η = 0.01, η = 0.05.
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Figure 2 Numerical solution of the 3 ∗ 3 system (4.1) with three values of the de-differentiation

parameter. Left: η = 0. Center: η = 0.01. Right: η = 0.05.
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5 Conclusion and Perspectives

In this study, we have considered a new method, of the energy/Lyapunov type, to analyze

the asymptotic behavior of a stem/progenitor cell population model representing the very early

stages of cell lineage maturation in health and cancer. Knowing the very low level of division

in stem cells (as low as once a year for hematopoietic stem cells, as measured in [7–8]), it has

appeared relevant since the studies of Gyllenberg and Webb [13] (and earlier, of Mackey and

followers [19], using age-structured models) to represent the stem cell population as compart-

mentalized between proliferative (cells that are engaged in the division cycle) and quiescent

cells (those that are not). We have adpted this point of view here as well, with the adjunction

of another maturation state, early progenitor cells, for which, for the sake of simplicity, we do

not distinguish between proliferative and quiescent states.

Taking advantage of recent biological observations (see [5, 12, 25]), we have introduced the

possibility of de-differentiation from this early progenitor state to stem cell state. As briefly

sketched in the text, not much is known about the actual rate of de-differentiation in health and

disease, except that it has been observed at high levels in aggressive cancers. We have assumed

in our proofs low levels of this rate, meaning that its rigorous relevance may be limited to health

settings or initiating cancers. Nevertheless, numerical studies in other modelling contexts (see

[3, 18]) have shown that increasing its level increases the severity of the cancer at stake, and

its evolution towards insensitivity to therapy, i.e., drug resistance.

Last but not least, the method we have developed in this analytical study, of the ener-

gy/Lyapunov type, allowed us to extend previous studies, initiated by Gyllenberg and Webb

(see [13]), who took advantage of the Poincaré-Bendixson theorem for plane analysis, to higher-

dimensional analysis on the one hand, and to a 2-dimensional spatial model with diffusion on

the other hand. We believe that both these extensions open new directions of research in the

study of proliferative-quiescent cell population models.
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Lehrbücher, Birkhäuser, Basel, 2007.

[23] Ribba, B., Saut, O., Colin, T., et al., A multiscale mathematical model of avascular tumor growth to
investigate the therapeutic benefit of anti-invasive agents, J. Theoret. Biol., 243(4), 2006, 532–541.

[24] Stiehl, T., Baran, N., Ho, A. D. and Marciniak-Czochra, A., Clonal selection and therapy resistance
in acute leukaemias: Mathematical modelling explains different proliferation patterns at diagnosis and
relapse, Journal of The Royal Society Interface, 11(94), 2014, DOI: 10.1098/rsif.2014.0079.

[25] Yamada, Y., Haga, H. and Yamada, Y., Concise review: Dedifferentiation meets cancer development:
Proof of concept for epigenetic cancer, Stem Cells Translational Medicine, 3, 2014, 1182–1187.


