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Abstract The authors study the following Dirichlet problem of a system involving frac-
tional (p, q)-Laplacian operators:























(−∆)spu = λa(x)|u|p−2
u+ λb(x)|u|α−2|v|βu+

µ(x)

αδ
|u|γ−2|v|δu in Ω,

(−∆)sqv = λc(x)|v|q−2
v + λb(x)|u|α|v|β−2

v +
µ(x)

βγ
|u|γ |v|δ−2

v in Ω,

u = v = 0 on R
N\Ω,

where λ > 0 is a real parameter, Ω is a bounded domain in R
N , with boundary ∂Ω Lipschitz

continuous, s ∈ (0, 1), 1 < p ≤ q < ∞, sq < N , while (−∆)spu is the fractional p-Laplacian
operator of u and, similarly, (−∆)sqv is the fractional q-Laplacian operator of v. Since
possibly p 6= q, the classical definitions of the Nehari manifold for systems and of the
Fibering mapping are not suitable. In this paper, the authors modify these definitions to
solve the Dirichlet problem above. Then, by virtue of the properties of the first eigenvalue
λ1 for a related system, they prove that there exists a positive solution for the problem
when λ < λ1 by the modified definitions. Moreover, the authors obtain the bifurcation
property when λ → λ−

1
. Finally, thanks to the Picone identity, a nonexistence result is

also obtained when λ ≥ λ1.
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1 Introduction

Recently, fractional p-Laplacian equations have been greatly studied, since they model sev-

eral problems in Physics, Biology, Economics and so on. Thus, the research in this field has
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received a wide attention. Franzina and Palatucci [1] considered an eigenvalue problem associ-

ated with the fractional p-Laplacian operator (−∆)sp. In particular, they obtained some useful

properties of the first eigenvalue. Later, Iannizzotto and Squassina [2] established the Weyl

type estimates for the asymptotic behavior of variational eigenvalues.

A classical method to solve the existence and multiplicity of solutions for the elliptic equa-

tions is the Nehari manifold technique, which has received great attention. In [3] Brown and

Zhang considered the following Dirichlet problem:

{
−∆u = λa(x)u + b(x)|u|ν−1u in Ω,
u = 0 on ∂Ω.

Using the Nehari manifold and the Fibering mapping, defined by

Λλ = {u : 〈I ′λ(u), u〉 = 0}, Φλ,u(t) = Iλ(tu), (1.1)

they obtained the existence and the bifurcation via the Nehari manifold method in the scalar

case.

Recently, Chen and Deng [4] yielded with the following fractional p-Laplacian system:





(−∆)spu = λ|u|q−2u+
2α

α+ β
|u|α−2u|v|β in Ω,

(−∆)spv = µ|u|q−2u+
2β

α+ β
|u|α|v|β−2v in Ω,

u = v = 0 in R
N\Ω,

where (−∆)spu is the fractional p-Laplacian operator of u. They defined the Nehari manifold

and the Fibering mapping by

Λλ = {(u, v) : 〈I ′λ(u, v), (u, v)〉 = 0}, Φλ,u,v(t) = Iλ(tu, tv) (1.2)

and obtained the multiplicity of the solutions.

In [5], Zhang, Liu and Liu applied the same method to the (p, q)-Laplacian system:





−∆pu = λa(x)|u|p−2u+ λb(x)|u|α−2|v|βu+
µ(x)

αδ
|u|γ−2|v|δu in Ω,

−∆qv = λc(x)|v|q−2v + λb(x)|u|α|v|β−2v +
µ(x)

βγ
|u|γ |v|δ−2v in Ω,

u = v = 0 on ∂Ω

(1.3)

using the same definitions in (1.2). However, since in general p 6= q, the definitions in (1.2) are

not suitable for problem (1.3) and there are some bugs in [5]. In this paper, we fix these bugs

by modifying the definitions of the Nehari manifold and the Fibering mapping in (1.2), and

furthermore we generalize the results to the fractional setting.

More specifically, we consider the problem






(−∆)spu = λa(x)|u|p−2u+ λb(x)|u|α−2|v|βu+
µ(x)

αδ
|u|γ−2|v|δu in Ω,

(−∆)sqv = λc(x)|v|q−2v + λb(x)|u|α|v|β−2v +
µ(x)

βγ
|u|γ |v|δ−2v in Ω,

u = v = 0 in R
N\Ω,

(1.4)
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where λ > 0 is a real parameter, Ω is a bounded domain in R
N , with boundary ∂Ω Lipschitz

continuous, 1 < p ≤ q <∞, sq < N , (−∆)spu is the fractional p-Laplacian of u, that is,

(−∆)spu(x) = 2 lim
ε→0+

∫

RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy,

where Bε(x) is the ball of RN centered at x and of radius ε > 0. Of course, the fractional

q-Laplacian (−∆)sqv of v is defined in a similar way, simply replacing p by q. Initially, we study

the associated eigenvalue problem:





(−∆)spu = λa(x)|u|p−2u+ λb(x)|u|α−2|v|βu in Ω,
(−∆)sqv = λc(x)|v|q−2v + λb(x)|u|α|v|β−2v in Ω,
u = v = 0 in R

N\Ω

and obtain some properties of the first eigenvalue λ1 of problem (1.5).

In this paper, we solve the question on the correct definitions in (1.2), since they are not

suitable for the case p 6= q in (1.4). We define the Nehari manifold and the Fibering mapping

as

Λλ =
{
(u, v) :

〈
I ′λ(u, v),

(u
p
,
v

q

)〉
= 0

}
, Φλ,u,v(t) = Iλ(t

1
p u, t

1
q v). (1.5)

Then, we use Λλ in (1.5) related to (1.4), and prove that there exists a nonnegative nontrivial

solution of (1.4) for all λ, with 0 < λ < λ1, under the natural conditions.

(H1) The positive numbers α, β, γ and δ satisfy α
p
+ β

q
= 1, 1 < p < γ, 1 < q < δ, γ

p∗

s
+ δ

q∗s
<

1, 1
αδ

+ 1
βγ

< 1, where p∗s, q
∗
s are the fractional Sobolev critical exponents p∗s = Np

N−sp
, q∗s = Nq

N−sq
.

(H2) The functions a, b and c are nonnegative, smooth and of class L∞(Ω); moreover the

sets Ω+
1 = {x ∈ Ω : a(x) > 0}, Ω+

2 = {x ∈ Ω : c(x) > 0} have positive Lebesgue measure, that

is |Ω+
1 | > 0 and |Ω+

2 | > 0, where | · | denotes the Lebesgue measure of a measurable set of RN ;

(H3) The measurable function µ may change sign in Ω and µ ∈ L∞(Ω).

The natural solution space of (1.4) and (1.5) is X = W p × W q, where W p and W q are

the closed subspaces of W s,p(RN ) and W s,q(RN ), respectively, consisting of all functions in

W s,p(RN ) and W s,q(RN ), respectively, which vanish in R
N\Ω. More details on X are given in

Section 2.

In the second part of the paper, we assume the further condition

∫

RN

µ(x)uγ1v
δ
1dx > 0, (1.6)

where µ is the function given in (H3), while (u1, v1) ∈ X is a normalized positive eigenfunction

of (1.5) associated to the first eigenvalue λ1 of (1.5). Then, we obtain the bifurcation property

for (1.4) as λ → λ−1 . Thanks to the Picone identity, we finally get a nonexistence result for

(1.4) when λ ≥ λ1, provided that µ is nonnegative in Ω.

In addition to the papers already cited, the fractional (p, q)-Laplacian systems, mostly with

the same p = q, have been widely studied. We refer to [5–7] and the references therein.

In the scalar case, for Dirichlet problems involving general integro-differential operator,

with the structure of the fractional p-Laplacian, we cite [8], in which existence of unique weak

solutions is proved by the direct method of the calculus of variations. Operators of the type

treated in [8] can be used also in our context. We do not perform this extension here, and refer

the interested reader to the general systems as explained in all details in Section 5 of [7].
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The paper is so organized. In Section 2, we state some notations and preliminary results.

In Section 3, we determine useful properties for the first eigenvalue λ1 of (1.5). In Section 4, we

prove the existence of solutions of (1.4) for all λ, with 0 < λ < λ1 and the bifurcation property

for (1.4) as λ→ λ−1 . In Section 5, we establish a nonexistence result for (1.4) when λ ≥ λ1.

2 Notations and Preliminaries

Let us introduce for clarity some classical notations, referring to [4, 9] for further details.

Let

W s,p(RN ) =
{
u ∈ Lp(RN ) :

∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy <∞

}
,

W s,q(RN ) =
{
u ∈ Lq(RN ) :

∫∫

R2N

|u(x)− u(y)|q

|x− y|N+sq
dxdy <∞

}

denote the standard fractional Sobolev spaces, endowed with the norms

‖u‖W s,p(RN ) =
(
‖u‖p

Lp(RN )
+

∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

,

‖u‖W s,q(RN ) =
(
‖u‖q

Lq(RN )
+

∫∫

R2N

|u(x)− u(y)|q

|x− y|N+sq
dxdy

) 1
q

.

The subspaces W p = {u ∈ W s,p(RN ) : u|RN\Ω ≡ 0}, W q = {u ∈ W s,q(RN ) : u|RN\Ω ≡ 0} of

W s,p(RN ) and W s,q(RN ), respectively, are clearly closed and the norms

‖u‖p =
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

, ‖u‖q =
(∫∫

R2N

|u(x)− u(y)|q

|x− y|N+sq
dxdy

) 1
p

on W p and W q, respectively, are equivalent to ‖ · ‖W s,p(RN ) and ‖ · ‖W s,q(RN ), since ∂Ω is

Lipschitz continuous (see [10, Theorem 1.4.2.2]). The solution space X = W p ×W q, given in

the Introduction, is equipped with the norm ‖(u, v)‖X = ‖u‖p+‖v‖q. For the proof of the next

lemma we refer to [4, 9, 11].

Lemma 2.1 (1) The embeddings W q →֒ W p →֒ Lν(RN ) are continuous for any ν ∈ [1, p∗s]

and the latter is compact, whenever ν ∈ [1, p∗s), since 1 < p ≤ q and sq < N .

(2) X = (X, ‖ · ‖X) is a real reflexive Banach space, while W p = (W p, ‖ · ‖p) and W q =

(W q, ‖ · ‖q) are real uniformly convex Banach spaces.

For convenience, for all (u, v) ∈ X we introduce the linear functionals Bp(u, ·) : W p → R

and Bq(v, ·) : W q → R, defined by

Bp(u, φ) =

∫∫

R2N

|u(x)− u(y)|p−2(u(x) − u(y))

|x− y|N+sp
(φ(x) − φ(y)) dxdy,

Bq(v, ψ) =

∫∫

R2N

|v(x) − v(y)|q−2(v(x) − v(y))

|x− y|N+sq
(ψ(x) − ψ(y)) dxdy

for all φ ∈W p and all ψ ∈W q, respectively.

Thanks to the main assumptions (H1)–(H3), given in the Introduction, the next two defini-

tions make sense.

Definition 2.1 We say that (u, v) ∈ X is a (weak) solution of problem (1.4), if

α

p
Bp(u, φ) +

β

q
Bq(v, ψ) =

α

p
λ
( ∫

RN

a|u|p−2uφdx+

∫

RN

b|u|α−2|v|βuφdx
)
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+
β

q
λ
(∫

RN

c|v|q−2vψ dx+

∫

RN

b|u|α|v|β−2vψ dx
)

+
1

pδ

∫

RN

µ|u|γ−2|v|δuφdx+
1

qγ

∫

RN

µ|u|γ |v|δ−2vψ dx

for any (φ, ψ) ∈ X.

Definition 2.2 We say that (u, v) ∈ X is an eigenfunction associated to λ for problem

(1.5), if

α

p
Bp(u, φ) +

β

q
Bq(v, ψ) =

α

p
λ
( ∫

RN

a|u|p−2uφdx+

∫

RN

b|u|α−2|v|βuφdx
)

+
β

q
λ
( ∫

RN

c|v|q−2vψ dx+

∫

RN

b|u|α|v|β−2vψ dx
)

for any (φ, ψ) ∈ X.

It is well known that problem (1.4) has a variational structure, i.e., (weak) solutions of

problem (1.4) are exactly the critical points of the associated functional

Iλ(u, v) = J(u, v)− λK(u, v)−M(u, v)

from X into R, where

J(u, v) =
α

p
‖u‖pp +

β

q
‖v‖qq,

K(u, v) =
α

p

∫

RN

a(x)|u|p dx+
β

q

∫

RN

c(x)|v|q dx+

∫

RN

b(x)|u|α|v|β dx,

M(u, v) =
1

γδ

∫

RN

µ(x)|u|γ |v|δ dx.

Lemma 2.2 The functional J : X → R is weakly lower semicontinuous in X, and K, and

M are compact in X.

Proof The weak lower semicontinuity of J in X is obtained from the weak lower semicon-

tinuity in X of the norms ‖ · ‖p and ‖ · ‖q. Indeed, if (un, vn) ⇀ (u, v) in X as n → ∞, then

un ⇀ u in W p and vn ⇀ v in W q as n→ ∞, so that

J(u, v) ≤
α

p
lim inf
n→∞

‖un‖
p
p +

β

q
lim inf
n→∞

‖vn‖
q
q

≤ lim inf
n→∞

(α
p
‖un‖

p
p +

β

q
‖vn‖

q
q

)
= lim inf

n→∞
J(un, vn).

We refer to [12, Lemma 2.1] for a proof of the fact that K and M are compact in X , since the

changes are obvious.

3 Some Properties of the First Eigenvalue

Assume that u ≥ 0 and v > 0. Put

R(u, v) = |∇x
yu|

p −∇x
y

( up

vp−1

)
|∇x

yv|
p−2∇x

yv,

where

∇x
yu = u(x)− u(y).

Before getting the main result of this section, we give a lemma.
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Lemma 3.1 Assume that λ > 0 and that (u1, v1) ∈ X is a positive vector function in Ω,

such that for any (φ, ψ) ∈ X,

Bp(u1, φ) ≤ λ
( ∫

RN

a|u1|
p−2u1φdx+

∫

RN

b|u1|
α−2|v1|

βu1φdx
)
,

Bq(v1, ψ) ≤ λ
( ∫

RN

c|v1|
q−2v1ψ dx+

∫

RN

b|u1|
α|v1|

β−2v1ψ dx
)
,

u1 = v1 = 0 in R
N\Ω.

Then for any (u2, v2) ∈ X, which is positive in Ω and satisfies the inequalities

Bp(u2, φ) ≥ λ
( ∫

RN

a|u2|
p−2u2φdx+

∫

RN

b|u2|
α−2|v2|

βu2φdx
)
,

Bq(v2, ψ) ≥ λ
( ∫

RN

c|v2|
q−2v2ψ dx+

∫

RN

b|u2|
α|v2|

β−2v2ψ dx
)
,

u2 = v2 = 0 in R
N\Ω

for any (φ, ψ) ∈ X, there exists a constant C > 0 such that (u2, v2) = (C
1
p u1, C

1
q v1).

Proof By the Picone identity (see [13, Theorem 6.2]) we get

0 ≤

∫∫

R2N

R(u1, u2)

|x− y|N+sp
dxdy = ‖u1‖

p
p −Bp

(
u2,

up1
up−1
2

)

≤ ‖u1‖
p
p − λ

∫

RN

up1
up−1
2

(aup−1
2 + buα−1

2 vβ2 ) dx

≤ λ

∫

RN

b(uα1 v
β
1 − up1u

α−p
2 vβ2 ) dx. (3.1)

Using the same method, we have

0 ≤ λ

∫

RN

b(uα1 v
β
1 − vq1u

α
2 v

β−q
2 ) dx. (3.2)

Therefore, multiplying (3.1) by α
p
and (3.2) by β

q
and adding them, we get

0 ≤

∫

RN

b
(
uα1 v

β
1 −

α

p
up1u

α−p
2 vβ2 −

β

q
vq1u

α
2 v

β−q
2

)
dx, (3.3)

since α
p
+ β

q
= 1 by (H1) and λ > 0. Now, put θ1 = αβ

q
and θ2 = αβ

p
, then

uα1 v
β
1 = uα1u

−θ1
2 vθ22 × vβ1 u

θ1
2 v

−θ2
2

≤
α

p
up1u

−
pθ1
α

2 v
pθ2
α

2 +
β

q
vq1u

qθ1
β

2 v
−

qθ2
β

2

=
α

p
up1u

α−p
2 vβ2 +

β

q
vq1u

α
2 v

β−q
2

by the Young inequality, since α
p
+ β

q
= 1 by (H1). Hence the integral in (3.3) is zero and so, in

particular by (3.1)–(3.2),

0 ≤
α

p

∫

RN

b(uα1 v
β
1 − up1u

α−p
2 vβ2 ) dx =

β

q

∫

RN

b(vq1u
α
2 v

β−q
2 − uα1 v

β
1 ) dx ≤ 0.
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In other words, up1u
α−p
2 vβ2 = vq1u

α
2 v

β−q
2 = uα1 v

β
1 . In conclusion,

(u1
u2

)p

=
(v1
v2

)q

=
(u1
u2

)α

·
(v1
v2

)β

= C > 0

and in turn (u2, v2) = (C
1
pu1, C

1
q v1).

Theorem 3.1 Let λ1 = inf
K(u,v)=1

J(u, v). Then

(1) λ1 > 0;

(2) there exists (u1, v1) ∈ X which is the eigenfunction associated to λ1 of the problem (1.5)

and (u1, v1) is positive in Ω;

(3) the eigenspace associated to λ1 is simple, that is, the first eigenspace

E1 = {(u, v) ∈ X : there exists C > 0 such that (u, v) = (C
1
p u1, C

1
q v1)}

has dimension 1;

(4) λ1 is the only eigenvalue of problem (1.5) whose eigenfunctions are positive in Ω.

Proof (1) It is easy to see that

λ1 = inf
(u,v)∈X

(u,v) 6=(0,0)

α

p
‖u‖pp +

β

q
‖v‖qq

α

p

∫

RN

a|u|p dx+
β

q

∫

RN

c|v|q dx+

∫

RN

b|u|α|v|β dx

= inf
(u,v)∈X

(u,v) 6=(0,0)

J(u, v)

K(u, v)
(3.4)

and

K(u, v) ≤
α

p
‖a‖L∞‖u‖pLp +

β

q
‖c‖L∞‖v‖qLq + ‖b‖L∞‖u‖αLp‖v‖

β
Lq

≤
α

p
(‖a‖L∞ + ‖b‖L∞)‖u‖pLp +

β

q
(‖c‖L∞ + ‖b‖L∞)‖v‖qLq

≤ max{(‖a‖L∞ + ‖b‖L∞)Sp, (‖b‖L∞ + ‖c‖L∞)Sq}J(u, v).

Thus, we have

λ1 ≥
1

max{(‖a‖L∞ + ‖b‖L∞)Sp, (‖b‖L∞ + ‖c‖L∞)Sq}
> 0,

where Sp, Sq are the best constants of the Sobolev embeddings from W p into Lp(RN ) and from

W q into Lq(RN ), respectively.

(2) Assume that {(Un, Vn)}n is a sequence in X such that K(Un, Vn) = 1 for all n in

N and J(Un, Vn) → λ1 as n → ∞. Then {(Un, Vn)}n is bounded in X , so that, without

loss of generality, we may assume that (Un, Vn) ⇀ (u1, v1) in X for some (u1, v1) of X . In

particular, K(u1, v1) = lim
n→∞

K(Un, Vn) = 1, and J(u1, v1) ≤ lim inf
n→∞

J(Un, Vn) = λ1 by virtue

of Lemma 2.2. Hence, J(u1, v1) = λ1.

On the other hand, (u1, v1) is a conditional extremum of J , so that by the Lagrange multi-

plier method we have

L′
(u,v)(u1, v1, λ) = 〈J ′(u1, v1)− λK ′(u1, v1), (φ, ψ)〉 = 0
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for all (φ, ψ) ∈ X , where

L(u, v, λ) = J(u, v)− λ[K(u, v)− 1].

Let (φ, ψ) =
(
u1

p
, v1

q

)
, then λ = λ1. Furthermore, (u1, v1) ∈ X is the eigenfunction associated

to λ1 of the eigenvalue problem (1.5). Since J(|u|, |v|) = J(u, v), K(|u|, |v|) = K(u, v) for all

(u, v) ∈ X, (u1, v1) must be nonnegative. Since (−∆)spu1 ≥ 0 and (−∆)sqv1 ≥ 0 in Ω, with

u1 = v1 = 0 in R
N\Ω, thanks to the strong maximum principle, as given in [14, Lemma 2.3]

and in [15, Theorem 1.2], we get that either u1 > 0 or u1 ≡ 0 in Ω and either v1 > 0 or v1 ≡ 0

in Ω. Thus, the only possible case is that (u1, v1) is positive in X by symmetry.

(3) Applying Lemma 3.1 to (u1, v1) of part (2), with λ = λ1, we obtain that for any

eigenfunction (u2, v2) ∈ X associated to λ1 which is positive in Ω, there exists a constant C > 0

such that (u2, v2) = (C
1
p u1, C

1
q v1).

(4) Assume that (u2, v2) is an eigenfunction associated to λ̃ which is positive in X . If λ̃ ≥ λ1,

then, according to Lemma 3.1, there exists a constant C > 0 such that (u2, v2) = (C
1
p u1, C

1
q v1),

that is, λ̃ = λ1 by part (3). Similarly, for the case λ̃ ≤ λ1, we get λ̃ = λ1.

4 The Case 0 < λ < λ1

In this section, we use the Nehari manifold method to prove the existence and bifurcation

of the solutions for problem (1.4). First, put

Λλ =
{
(u, v) ∈ X :

〈
I ′λ(u, v),

(u
p
,
v

q

)〉
= 0

}
.

Clearly, Λλ is a closed subset of X , and all critical points of Iλ are in Λλ. We continue to call

Λλ a Nehari manifold even if Λλ may not be a manifold. It is easy to see that (u, v) ∈ Λλ if

and only if

J(u, v)− λK(u, v)−
(γ
p
+
δ

q

)
M(u, v) = 0. (4.1)

Hence, for (u, v) ∈ Λλ,

Iλ(u, v) =
(γ
p
+
δ

q
− 1

)
M(u, v).

The Nehari manifold Λλ can be described by the Fibering mapping, defined for all t > 0 by

Φλ,u,v(t) = Iλ(t
1
p u, t

1
q v)

= t[J(u, v)− λK(u, v)]− t
γ
p
+ δ

qM(u, v). (4.2)

Therefore, for all t > 0,

Φ′
λ,u,v(t) = J(u, v)− λK(u, v)−

(γ
p
+
δ

q
− 1

)
t
γ
p
+ δ

q
−1M(u, v).

With this starting we are now in a position to prove the following lemma.

Lemma 4.1 If (u, v) ∈ X\{(0, 0)} and t > 0, then (t
1
p u, t

1
q v) ∈ Λλ if and only if Φ′

λ,u,v(t) =

0.

Proof The result is an immediate consequence of the fact that

Φ′
λ,u,v(t) =

〈
I ′λ(t

1
p u, t

1
q v),

(
t
1
p
u

p
, t

1
q
v

q

)〉
,

since 1
p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1.
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Remark 4.1 From Φ′
λ,u,v(t) = 0, we obtain at once

tλ,u,v = t =
(J(u, v)− λK(u, v)(

γ
p
+ δ

q

)
M(u, v)

) 1
γ
p

+ δ
q
−1 .

Hence, if (u, v) ∈ X\{(0, 0)} and tλ,u,v > 0, then (t
1
p

λ,u,vu, t
1
q

λ,u,vv) ∈ Λλ by Lemma 4.1.

The elements of Λλ correspond to the stationary points of the maps Φλ,u,v(1) by Lemma 4.1,

i.e.,

(u, v) ∈ Λλ if and only if Φ′
λ,u,v(1) = 0.

Hence it is natural to divide Λλ into three subsets Λ+
λ , Λ

−
λ and Λ0

λ corresponding to the local

minima, the local maxima and the saddle points of the fibering mapping. In other words,

Λ+
λ = {(u, v) ∈ Λλ : Φ′′

λ,u,v(1) > 0},

Λ−
λ = {(u, v) ∈ Λλ : Φ′′

λ,u,v(1) < 0},

Λ0
λ = {(u, v) ∈ Λλ : Φ′′

λ,u,v(1) = 0}.

Now

Φ′′
λ,u,v(1) =

(γ
p
+
δ

q

)(
1−

γ

p
−
δ

q

)
M(u, v).

Consequently, since γ
p
+ δ

q
> 1 by (H1),

Λ+
λ = {(u, v) ∈ Λλ : M(u, v) < 0},

Λ−
λ = {(u, v) ∈ Λλ : M(u, v) > 0},

Λ0
λ = {(u, v) ∈ Λλ : M(u, v) = 0}.

We shall prove the existence of solutions of problem (1.4) by investigating the existence of

minimizers of the functional Iλ on Λλ. Although Λλ is a small subset of X , we shall see that

local minimizers on the Nehari manifold Λλ are the usual critical points of Iλ in X . Indeed, we

have the following result.

Lemma 4.2 If (u0, v0) is a local minimizer of Iλ on Λλ and (u0, v0) /∈ Λ0
λ, then (u0, v0) is

a critical point of Iλ in X.

Proof It is enough to use the same method used in the proof of [4, Lemma 2.2] to obtain

the desired conclusion, with obvious changes.

To achieve a detailed characterization of the sets Λ+
λ , Λ

−
λ and Λ0

λ, we start by proving a

lemma.

Lemma 4.3 For any λ, with 0 < λ < λ1, there exists a constant µλ > 0 such that

J(u, v)− λK(u, v) ≥ µλ

∫

RN

(|u|p + |v|q) dx (4.3)

for all (u, v) ∈ X\{(0, 0)}.

Proof Otherwise, for any n ∈ N there exists (un, vn) ∈ X\{(0, 0)} such that

J(un, vn)− λK(un, vn) <
1

n

∫

RN

(|un|
p + |vn|

q) dx.
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Let Cn = ‖un‖pp + ‖vn‖qq, ũn = C
− 1

p
n un, ṽn = C

− 1
q

n vn, which is possible, since Cn > 0. Thus,

‖ũn‖pp + ‖ṽn‖qq = 1 for all n ∈ N. Then, up to a subsequence, still denoted by {(ũn, ṽn)}n,

we get that (ũn, ṽn) ⇀ (ũ0, ṽ0) in X for some (ũ0, ṽ0) of X . Therefore, ũn → ũ0 in Lp(RN ),

ṽn → ṽ0 in Lq(RN ) by Lemma 2.1(1).

On the other hand, putting S = max{Sp, Sq}, where Sp, Sq are the best constants of the

Sobolev embeddings from W p into Lp(RN ) and from W q into Lq(RN ), respectively, we have

S

n
≥

1

n

∫ N

R

(|ũn|
p + |ṽn|

q) dx

> J(ũn, ṽn)− λK(ũn, ṽn)

=
λ

λ1

[λ1
λ
J(ũn, ṽn)− λ1K(ũn, ṽn)

]

=
λ

λ1

[(λ1
λ

− 1
)
J(ũn, ṽn) + J(ũn, ṽn)− λ1K(ũn, ṽn)

]

≥
λ

λ1

(λ1
λ

− 1
)
min

{α
p
,
β

q

}
.

Letting n→ ∞, we get

0 ≥
λ

λ1

(λ1
λ

− 1
)
min

{α
p
,
β

q

}
> 0,

which is the required contradiction.

Now, if λ ∈ (0, λ1) Lemma 4.3 ensures that Λ+
λ = ∅ and Λ0

λ = {(0, 0)} by (4.1) and (4.3).

Therefore, Λλ = Λ−
λ ∪ {(0, 0)}, and Iλ(u, v) > 0 for all (u, v) ∈ Λ−

λ . Hence, inf
Λ−

λ

Iλ(u, v) ≥ 0.

Lemma 4.4 If 0 < λ < λ1, then Iλ is coercive on Λλ.

Proof Fix λ ∈ (0, λ1). For all (u, v) ∈ Λλ, using (4.1) and (4.3), we have

(γ
p
+
δ

q

)
M(u, v) ≥ µλ

∫

RN

(|u|p + |v|q) dx,

so that, since γ
p
+ δ

q
> 1 by (H1), we get

Iλ(u, v) =
(γ
p
+
δ

q
− 1

)
M(u, v) =

(γ
p
+
δ

q

)(
1−

1
γ
p
+ δ

q

)
M(u, v)

≥
(
1−

1
γ
p
+ δ

q

)
µλ

∫

RN

(|u|p + |v|q) dx.

The Hölder inequality gives

α

p
‖u‖pp +

β

q
‖v‖qq =

(α
p
λ

∫

RN

a|u|p dx+
β

q
λ

∫

RN

c|v|q dx+

∫

RN

b|u|α|v|β dx
)

+
(γ
p
+
δ

q

)
M(u, v)

≤ λmax
{α
p
(‖a‖L∞ + ‖b‖L∞),

β

q
(‖b‖L∞ + ‖c‖L∞)

}∫

RN

(|u|p + |v|q) dx

+

γ
p
+ δ

q

γ
p
+ δ

q
− 1

Iλ(u, v)
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≤ Cp,q Iλ(u, v),

where

Cp,q =

γ
p
+ δ

q

γ
p
+ δ

q
− 1

( λ

µλ

max
{α
p
(‖a‖L∞ + ‖b‖L∞),

β

q
(‖b‖L∞ + ‖c‖L∞)

}
+ 1

)
> 0.

Hence Iλ is coercive on Λλ.

Theorem 4.1 Assume that (H1)–(H3) hold and let 0 < λ < λ1. Then there exists a positive

solution of problem (1.4).

Proof Let {(un, vn)}n ⊂ Λ−
λ be a minimizing sequence of Iλ in Λ−

λ , i.e.,

lim
n→∞

Iλ(un, vn) = inf
Λ−

λ

Iλ(u, v).

Since Iλ is coercive in Λλ = Λ−
λ ∪ {(0, 0)} by Lemma 4.4, {(un, vn)}n is bounded in X . Thus,

passing if necessary to a subsequence still denoted by {(un, vn)}n, we get (un, vn)⇀ (u0, v0) in

X for some (u0, v0) ∈ X . Again un → u0 in Lp(RN ) and vn → v0 in Lq(RN ) by Lemma 2.1(1).

Passing if necessary to another subsequence, we assume that

‖(u0, v0)‖X ≤ lim
n→∞

‖(un, vn)‖X .

Hence, in particular,

‖u0‖p ≤ lim
n→∞

‖un‖p, ‖v0‖q ≤ lim
n→∞

‖vn‖q. (4.4)

First, we assert that inf
Λ−

λ

Iλ(u, v) > 0. Indeed, suppose inf
Λ−

λ

Iλ(u, v) = 0, i.e.,

Iλ(un, vn) → 0, M(un, vn) =

∫

RN

µ(x)|un|
γ |vn|

δ dx→ 0

as n→ ∞. By (4.1) and Lemma 2.2, we have

0 ≤ J(u0, v0)− λK(u0, v0) ≤ lim inf
n→∞

J(un, vn)− λ lim
n→∞

K(un, vn) = 0.

Hence (u0, v0) = (0, 0). Consequently, using also (4.4), we have

0 = J(0, 0) = J(u0, v0) =
α

p
lim
n→∞

‖un‖
p
p +

β

q
lim
n→∞

‖vn‖
q
q.

Therefore, (un, vn) → (0, 0) in X by Lemma 2.1(2).

Let Cn = ‖un‖pp + ‖vn‖qq, ũn = C
− 1

p
n un, ṽn = C

− 1
q

n vn, so that ‖ũn‖pp + ‖ṽn‖qq = 1 for all

n ∈ N. We may assume that (ũn, ṽn) ⇀ (ũ0, ṽ0) in X as n → ∞ for some (ũ0, ṽ0) ∈ X . Put

θ = γ
p∗

s
+ δ

q∗s
∈ (0, 1) by (H1). Hence, θp

∗
s > p and θq∗s > q, so that

C−1
n M(un, vn) ≤

‖µ‖L∞‖un‖
γ
θp∗

s
‖vn‖δθq∗s

‖un‖
p
p + ‖vn‖

q
q

≤ ‖µ‖L∞(S
γ
p

θp∗

s
‖un‖

γ−p
p + S

δ
q

θq∗s
‖vn‖

δ−q
q )

→ 0
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as n→ ∞, since 1 < p < γ and 1 < q < δ by (H1). By (4.1), we get

J(ũn, ṽn)− λK(ũn, ṽn) =
(γ
p
+
δ

q

) 1

Cn

M(un, vn) → 0 (4.5)

as n→ ∞. Therefore,

0 ≤ J(ũ0, ṽ0)− λK(ũ0, ṽ0) ≤ lim
n→∞

(J(ũn, ṽn)− λK(ũn, ṽn)) = 0,

and so (ũ0, ṽ0) = (0, 0). Combining with the compactness of K, given in Lemma 2.2, we obtain

that J(ũn, ṽn) → 0 as n → ∞. Therefore, (ũn, ṽn) → (ũ0, ṽ0) = (0, 0) in X . This contradicts

the fact that ‖ũn‖pp + ‖ṽn‖qq = 1 for all n ∈ N and shows the assertion inf
Λ−

λ

Iλ(u, v) > 0.

Now we prove that (un, vn) → (u0, v0) in X as n → ∞. We claim that the limit (u0, v0) 6=

(0, 0). Otherwise,

J(un, vn) = λK(un, vn) +
(γ
p
+
δ

q

)
M(un, vn) → 0

as n → ∞. This contradicts that inf
Λ−

λ

I(u, v) > 0. By Remark 4.1, there exists t0 > 0 such that

(t
1
p

0 u0, t
1
q

0 v0) ∈ Λ−
λ .

If (un, vn) 9 (u0, v0) as n → ∞, then in (4.4) at least one inequality should hold with the

strict sign. Otherwise, if both limits in (4.4) are valid with the equality sign, then by Lemma

2.1(2) this would imply that (un, vn) → (u0, v0) in X as n→ ∞. Hence

lim inf
n→∞

Φ′
λ,un,vn

(t0) = lim inf
n→∞

[
J(un, vn)− λK(un, vn)−

(γ
p
+
δ

q
− 1

)
t
γ
p
+ δ

q
−1

0 M(un, vn)
]

> J(u0, v0)− λK(u0, v0)−
(γ
p
+
δ

q
− 1

)
t
γ
p
+ δ

q
−1

0 M(u0, v0)

= Φ′
λ,u0,v0

(t0) = 0

by Lemma 2.2. That is, Φ′
λ,un,vn

(t0) > 0 for n large enough. Since (un, vn) ∈ Λ−
λ for all n, one

has Φ′′
λ,un,vn

(t) < 0 for all t > 0, and Φ′
λ,un,vn

(1) = 0 for all n. Thus we must have 0 < t0 < 1.

On the other hand, since Φ′
λ,un,vn

(t) > 0 for all t ∈ (0, 1), we have Φλ,un,vn(t0) < Φλ,un,vn(1),

and so

Φλ,u0,v0(t0) < lim inf
n→∞

Φλ,un,vn(t0) ≤ lim inf
n→∞

Φλ,un,vn(1),

in other words,

Iλ(t
1
p

0 u0, t
1
q

0 v0) < lim inf
n→∞

Iλ(un, vn) = inf
Λ−

λ

Iλ(u, v),

which is a contradiction. Consequently, (un, vn) → (u0, v0) in X as n→ ∞.

Lemma 4.3 implies that (u0, v0) is a critical point of Iλ(u, v) inX . Since Iλ(|u|, |v|) = Iλ(u, v)

for all (u, v) ∈ X , the solution (u0, v0) must be nonnegative in Ω. Again, as explained in the

proof of Theorem 3.1, the strong maximum principle, given in [14, Lemma 2.3] and in [15,

Theorem 1.2], ensures that actually (u0, v0) is a positive solution of (1.4) in Ω by symmetry.

Theorem 4.2 Assume that (H1)–(H3) and condition (1.6) hold. If λn → λ−1 as n → ∞,

then

(1) lim
n→∞

inf
Λ−

λn

Iλn
(u, v) = 0;

(2) if (un, vn) ∈ X is a minimizer for Iλ on Λλn
, then (un, vn) → (0, 0) as n→ ∞.
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Proof (1) For (u1, v1) ∈ X , by Remark 4.1, there exists tn, with

tn = tλn,u1,v1 =
(J(u1, v1)− λnK(u1, v1)

γ
p
+ δ

q

M(u1, v1)
) 1

γ
p

+ δ
q
−1 > 0

such that (t
1
p
nu1, t

1
q
nv1) ∈ Λ−

λ . Hence, by (4.2),

inf
Λ−

λn

Iλn
(u, v) ≤ Iλn

(t
1
p
nu1, t

1
q
nv1)

= tn[J(u1, v1)− λnK(u1, v1)]− t
γ
p
+ δ

q
n M(u1, v1)

= tn

(
1−

1
γ
p
+ δ

q

)
[J(u1, v1)− λnK(u1, v1)]

= (λ1 − λn)tn

(
1−

1
γ
p
+ δ

q

)
K(u1, v1).

Then lim
n→∞

inf
Λ−

λn

Iλn
(u, v) = 0, as desired.

(2) Let us first show that {(un, vn)}n is a bounded sequence in X . Otherwise, we may

assume either ‖un‖p → ∞ or ‖vn‖q → ∞ as n → ∞. Put Cn = ‖un‖pp + ‖vn‖qq, ũn = C
− 1

p
n un,

ṽn = C
− 1

q
n vn, so that ‖ũn‖pp + ‖ṽn‖qq = 1 for all n ∈ N and Cn → ∞ as n → ∞. Hence, up

to a subsequence, (ũn, ṽn) ⇀ (ũ0, ṽ0) in X as n → ∞ for some (ũ0, ṽ0) ∈ X . Then, since

Iλn
(un, vn) → 0 by part (1), we obtain

M(un, vn) =

∫

RN

µ(x)|un|
γ |vn|

δ dx→ 0

as n→ ∞. Hence

0 ≤ J(un, vn)− λnK(un, vn) =
(γ
p
+
δ

q

)
M(un, vn) → 0

as n→ ∞. Multiplying both sides by C−1
n , we get

J(ũn, ṽn)− λnK(ũn, ṽn) → 0, C
γ
p
+ δ

q
−1

n

∫

RN

µ(x)|ũn|
γ |ṽn|

δ dx→ 0

as n→ ∞. Since Cn → ∞ as n→ ∞ and γ
p
+ δ

q
> 1 by (H1),

∫

RN

µ(x)|ũ0|
γ |ṽ0|

δ dx = lim
n→∞

∫

RN

µ(x)|ũn|
γ |ṽn|

δ dx = 0

as n→ ∞.

Now we claim that (ũn, ṽn) → (ũ0, ṽ0) in X as n → ∞. Otherwise, as in the proof of

Theorem 4.1, passing if necessary to a subsequence, we have

‖(ũ0, ṽ0)‖X ≤ lim
n→∞

‖(ũn, ṽn)‖X .

Hence, in particular,

‖ũ0‖p ≤ lim
n→∞

‖ũn‖p, ‖ṽ0‖q ≤ lim
n→∞

‖ṽn‖q. (4.6)
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Therefore, in (4.6) at least one inequality should hold with the strict sign by Lemma 2.1(2).

Thus,

J(ũ0, ṽ0)− λ1K(ũ0, ṽ0) < lim inf
n→∞

J(ũn, ṽn)− lim
n→∞

λnK(ũn, ṽn) = 0

by Lemma 2.2. On the other hand,

J(ũ0, ṽ0)− λ1K(ũ0, ṽ0) = J(ũ0, ṽ0)− lim
n→∞

λnK(ũ0, ṽ0) ≥ 0.

This contradiction implies the claim and so (ũn, ṽn) → (ũ0, ṽ0) in X as n→ ∞. Therefore, we

immediately obtain

J(ũ0, ṽ0)− λ1K(ũ0, ṽ0) = lim
n→∞

[J(ũn, ṽn)− λnK(ũn, ṽn)] = 0.

Hence (ũ0, ṽ0) is a eigenfunction associated with λ1 for problem (1.5), and there exists a constant

C > 0 such that ũ0 = C
1
pu1, ṽ0 = C

1
q v1 by Theorem 3.1(3). As

∫

RN

µ(x)|ũ0|
γ |ṽ0|

δ dx = 0,

it follows that C = 0. But ‖ũn‖pp + ‖ṽn‖qq = 1 for all n ∈ N. This is clearly impossible.

Consequently, the sequence {(un, vn)}n is bounded in X , as claimed.

Therefore, eventually up to a subsequence, (un, vn) ⇀ (u0, v0) in X as n → ∞. Hence,

applying to {(un, vn)}n the same argument used for {(ũn, ṽn)}n, we show that (un, vn) → (0, 0)

as n→ ∞. This completes the proof.

5 The Case λ ≥ λ1

In this section, we prove a nonexistence result for problem (1.4) via the Picone identity. We

shall assume

(H3)
′ µ ∈ L∞(Ω) is a nonnegative function in Ω.

Theorem 5.1 Assume that (H1)–(H2) and (H3)
′ hold. Then problem (1.4) has no nonneg-

ative nontrivial solutions for every λ ≥ λ1.

Proof Suppose on the contrary that the assertion is not true and let (u, v) ∈ X\{(0, 0)}

be a nonnegative nontrivial solution of (1.4) corresponding to some λ > λ1.

Let un, vn ∈ C∞
0 (Ω), with un, vn > 0 in Ω, such that the sequence {(un, vn)}n converges to

some (u, v) in X . Fix ε > 0. Applying the Picone identity to the functions un, u + ε and vn,

v + ε, we obtain

‖un‖
p
p −Bp

(
u,

upn
(u+ ε)p−1

)
≥ 0, ‖vn‖

q
q −Bq

(
u,

vqn
(v + ε)q−1

)
≥ 0.

Using Definition 2.2 and the fact that α
p
+ β

q
= 1 by (H1), we have

α

p
‖un‖

p
p +

β

q
‖vn‖

q
q −

α

p
λ

∫

RN

aup−1 upn
(u + ε)p−1

dx−
β

q
λ

∫

RN

cvq−1 vqn
(v + ε)q−1

dx

≥
α

p
λ

∫

RN

cuα−1vβ
upn

(u + ε)p−1
dx+

β

q
λ

∫

RN

buαvβ−1 vqn
(v + ε)q−1

dx

+
1

pδ

∫

RN

µuγ−1vδ
upn

(u+ ε)p−1
dx+

1

qγ

∫

RN

µuγvδ−1 vqn
(v + ε)q−1

dx.
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Letting ε→ 0+, we obtain

α

p
‖un‖

p
p +

β

q
‖vn‖

q
q −

α

p
λ

∫

RN

aupn dx−
β

q
λ

∫

RN

cvqn dx

≥
α

p
λ

∫

RN

buα−pvβupn dx+
β

q
λ

∫

RN

buαvβ−qvqn dx

+
1

pδ

∫

RN

µuγ−pvδupn dx+
1

qγ

∫

RN

µuγvδ−qvqn dx. (5.1)

Now put θ1 = αβ
q

and θ2 = αβ
p
. Since α

p
+ β

q
= 1 by (H1), the Young inequality yields

uαnv
β
n = uαnu

−θ1vθ2 × vβnu
θ1v−θ2

≤
α

p
upnu

−
pθ1
α v

pθ2
α +

β

q
vqnu

qθ1
β v−

qθ2
β

=
α

p
upnu

α−pvβ +
β

q
vqnu

αvβ−q.

Moreover, λ > 0 and b ≥ 0 in Ω by (H2), so that

λ

∫

RN

buαnv
β
n dx ≤

α

p
λ

∫

RN

buα−pvβupn dx+
β

q
λ

∫

RN

buαvβ−qvqn dx. (5.2)

Similarly, since γ
p
+ δ

q
> 1 by (H1),

uγnv
δ
n <

γ

p
upnu

γ−pvδ +
δ

q
vqnu

γvδ−q .

Now, µ ≥ 0 in Ω by (H3)
′ implies

1

pδ

∫

RN

µuγ−pvδupn dx+
1

qγ

∫

RN

µuγvδ−qvqn dx

=
1

δγ

(γ
p

∫

RN

µuγ−pvδupn dx+
δ

q

∫

RN

µuγvδ−qvqn dx
)

≥
1

δγ

∫

RN

µuγnv
δ
n dx. (5.3)

Combining (5.1)–(5.3), we get

α

p
‖un‖

p
p +

β

q
‖vn‖

q
q −

α

p
λ

∫

RN

aupn dx−
β

q
λ

∫

RN

cvqn dx

≥ λ

∫

RN

buαnv
β
n dx+

1

δγ

∫

RN

µuγnv
δ
n dx,

that is,

J(un, vn)− λK(un, vn) ≥M(un, vn).

Since {(un, vn)}n converges to (u, v) in X ,

J(un, vn)− λK(un, vn) → J(u, v)− λK(u, v), M(un, vn) →M(u, v)

as n→ ∞. Hence

J(u, v)− λK(u, v) ≥M(u, v) > 0,
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that is λ < λ1. This is impossible since λ ≥ λ1 by assumption. The proof is now complete.
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