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Abstract In recent years, a family of numerical algorithms to solve problems in real

algebraic and semialgebraic geometry has been slowly growing. Unlike their counterparts

in symbolic computation they are numerically stable. But their complexity analysis, based

on the condition of the data, is radically different from the usual complexity analysis in

symbolic computation as these numerical algorithms may run forever on a thin set of

ill-posed inputs.
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1 Putting in Context

The primary objects of study of real algebraic geometry are real algebraic sets. These are

subsets of Rn defined as zero sets of finite sets of polynomials. A naturally occurring class of

sets, in the context of this study, is that of semialgebraic sets. These are subsets of Rn defined as

Boolean combinations (i.e., unions and intersections) of polynomial equalities and inequalities.

Two classic books on real algebraic and semialgebraic geometry are [6, 10].

The fact that polynomials are easy to describe (by, for instance, their degree and the list

of their coefficients), together with their ubiquity in computational problems, motivated the

blossoming of a subject, within symbolic computation (a.k.a. computer algebra), devoted to

problems involving semialgebraic sets. A comprehensive monograph on this subject is [5]; a

recent survey is [3].

Central to this subject was the issue of computational complexity. Assume that the problem

at hand takes as input a collection of s polynomials in n variables, of degrees d1, · · · , ds,
respectively. Then the size of this input is the number of coefficients used to describe this

collection. That is, this size is

N :=

s∑

i=1

(
n+ di
n

)
.

This quantity is in general exponentially large in n but it does not need to be so. For instance,

in the case of systems of quadratic polynomials, N = O(sn2).
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Complexity considerations were not always at the forefront in the algorithmics of semialge-

braic geometry. One of the first remarkable algorithms in the subject was created by Alfred

Tarski in the late 1930’s (see [45]1). This algorithm takes as input an expression of the form

Q1x1Q2x2 · · ·Qnxn ψ(P1, · · · , Ps), (1.1)

where P1, · · · , Ps are polynomials in R[x1, · · · , xn], ψ(P1, · · · , Ps) is any Boolean combination

of these polynomials, and Qjxj is a quantification either existential — ∃xj — or universal

—∀xj . The fact that all variables are quantified implies that such an expression is either true

or false. Tarski’s algorithm thus returns the truth value of (1.1). The focus at that time was

on (theoretical) computability and Tarski’s result showed that a number of problems (which

ultimately can be reduced to deciding the truth of statements as (1.1)) could be, in theory,

solved. In practice the situation was bleaker. The complexity of Tarski’s algorithm is of the

order of

22
2·

·
·
2

}
n times.

In the seventies, Collin [16] and Wüthrich [47] independently devised a method today re-

ferred to as Cylindrical Algebraic Decomposition (CAD for short). We will not describe what

exactly CAD does; suffice it to say that a CAD of the collection {P1, · · · , Ps} allows one to

decide the truth of any sentence of the form (1.1), no matter the prefix of quantifiers. The

complexity of CAD, which is doubly exponential in n,

(sD)2
O(n)

,

is far from practical but nonetheless much better than Tarski’s. Here D = max{d1, · · · , ds}.
A breakthrough was made in the late 1980’s with the introduction of the critical points

method by Grigoriev and Vorobjov [27–28], and its improvements in [4, 34–36] among others.

This method allows one to eliminate quantifiers at a cost which is singly exponential in the

number of variables n and doubly exponential only in the number ℓ of quantifier alternations

in the prefix of (1.1). That is, it is of the order

(sD)n
O(ℓ)

.

The critical points method allowed one to provide single exponential time algorithms for a

number of basic problems in semialgebraic geometry. Indeed, let S be a semialgebraic sets

defined via a collection {P1, · · · , Ps} as above. Then the problems (to mention just a few)

Feasibility, i.e., decide whether S is nonempty;

Dimension, i.e., compute the dimension of S;

Counting, i.e., compute the number of points in S (if finite, otherwise return ∞);

Euler, i.e., compute the Euler characteristic of S

could all be solved within time (sD)n
O(1)

. Among those solvable with CAD but for which no

algorithm has been devised that would work within a time bound single exponential in n stands

out the following:

1The publication of Tarski’s results was delayed by the war.
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Homology, i.e., compute the homology groups of S.

At this point we note that these bounds may be polynomial in the input size N but may be

exponentially large as well, as for the case of families of quadratics polynomials.

In 1989, Blum, Shub and Smale wrote a paper [9] adding a new twist to the complexity

considerations above. They developed a theory of complexity over the reals along the lines of

the (at that time blooming) discrete theory of complexity. In particular, they defined the class

NPR, the real analog of the acclaimed class NP (see [15]), and they showed that Feasibility is

NPR-complete. Shortly said, this means that Feasibility is universal in the class NPR in the

sense that whichever algorithmic improvement (viz complexity) can be found for Feasibility

the same improvement will hold for all problems in this class. Interestingly, this remains true

even when we restrict all polynomials in Feasibility to be quadratic. This foundational paper

gave rise to similar completeness results. In particular, Koiran [29] showed that Dimension is

NPR-complete as well, and in [11] the completeness in #PR (the real analog of the classical

#P ) was shown for both Counting and Euler. Other complexity classes over the reals and a

list of complete problems for them, all involving real polynomials, was shown in [12].

Towards the end of [9], in a list of open problems, Blum, Shub and Smale mention a theme

that was going to occupy a central position in Shub and Smale research (as witnessed by

the Bézout series [39–43] and by Part II in [8]). Quoting from Section 5, it would be useful to

incorporate round-off error, condition numbers and approximate solutions into our development.

The rationale behind this quote is the assumption of infinite precision in the machine model

proposed in [9]: These machines are theoretically capable of store, and operate with, arbitrary

real numbers. In the practice of numerical analysis, in contrast, real numbers are replaced by

floating-point numbers thus giving rise to round-off errors. These errors accumulate during

the computation and the goal of stability analysis is to gauge the quality of an algorithm

regarding this accumulation. Blum, Shub and Smale are thus asking to incorporate stability in

the complexity theory they developed.

Central to any possible extension of this theory (see [18] for one such extension) there is the

notion of condition. A condition number, associated to an input a for a problem P, is, loosely

speaking, a measure of how much the outcome of P is affected by small perturbations of a. It

is independent of the choice of an algorithm for solving P and thus emphasizes the role of a in

the stability analysis. Condition numbers usually take values on the interval [1,∞] and inputs

a for which the condition is ∞ are said to be ill-posed. Those are the inputs for which, no

matter the algorithm used, no matter how fine its precision, there is no hope of a meaningful,

reliable output.

Interestingly, condition numbers play a major role in complexity analysis as well (even

assuming infinite precision). Indeed, it is common in numerical analysis to design iterative

algorithms. These are procedures that, unlike those mentioned above (CAD, critical points

method, · · · ), do not have a complexity bound purely in terms of the input size but may take

arbitrarily long times even when all input’s parameters (e.g., n, s and D above) are fixed.

Instead, it is common, at least within certain subjects, that the number of iterations that these

algorithms perform is bounded by a function on these parameters and the condition number of

the input. In particular, they may loop forever when the input is ill-posed.

Iterative algorithms and their condition-based analysis are the bread and butter of numeri-
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cal linear algebra (see [25, 46]). They made a burst in optimization with the pioneering work

of Renegar [37–38] and eventually found their way in semialgebraic geometry. An early rep-

resentative of this work is [23], where an iterative algorithm for Feasibility is proposed and

studied.

The motivation behind [23] is the observation that the critical points method performs few

operations with large matrices. This is not only costly in time but also unlikely to be numerically

stable. In contrast, an algorithm performing a large number of (independent) operations on

small matrices, while equally costly in time, should at least be numerically stable.

The ideas in [23] were later extended in [19] to the Counting problem, in [22] to the Homology

problem for real projective sets and in [14] to the same problem but for semialgebraic sets. In

the next pages we will describe these ideas and the analyses of the resulting algorithms.

2 Setting the Tools

2.1 Spaces of polynomials

Let d = (d1, · · · , dm) ∈ Nm be such that di ≥ 1 for all i ≤ m. To such a tuple we associate

the linear space Hd[m] of homogeneous polynomial systems f = (f1, · · · , fm) in R[X0, · · · , Xn]

with degree fi = di. We make Hd[m] an inner product space by endowing it with the Weyl

inner product. For g, h homogeneous of degree d in R[X0, · · · , Xn] we define

〈g, h〉 =
∑

|a|=d

gaha

(
d

a

)−1

,

where the a = (α0, · · · , αn) are multiindexes satisfying α0 + · · ·+αn = d, g =
∑

|a|=d

gaX
a (and

similarly for h) and (
d

a

)
=

d!

α0! · · · · · αn!

is the multinomial coefficient. This definition naturally extends to an inner product in Hd[m]

which is no more than the dot product for a weighted monomial basis. The main reason to

consider it is that it is invariant under the action of the orthogonal group O(n + 1). That is,

for all f, g ∈ Hd[m] and all u ∈ O(n + 1), 〈f, g〉 = 〈f ◦ u, g ◦ u〉. This invariance allows for

great simplifications in many arguments. See e.g. [13, §16.1] for details. In all what follows, for

f ∈ Hd[m], the expression ‖f‖ denotes the norm of f induced by the Weyl inner product.

2.2 The condition of a polynomial system at a zero

How much does a zero ξ ∈ Rn+1 of a system f ∈ Hd[m] move when we slightly perturb the

coefficients of f? An answer to this question, the condition µnorm(f, ξ) of f at ξ, was provided

by Shub and Smale in their “Bézout series” of papers [39–43].

Let

Df(ξ) =
( ∂fi
∂xj

(ξ)
)

1≤i≤m,0≤j≤n
: Rn+1 → R

m

be the derivative of f at ξ and

∆(ξ) :=



‖ξ‖d1−1

√
d1

. . .

‖ξ‖dm−1
√
dm
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(we write simply ∆ if ξ belongs to the unit sphere S
n ⊂ R

n+1). Shub and Smale defined

µnorm(f, ξ) := ‖f‖‖Df(ξ)†∆(ξ)‖, (2.1)

when Df(ξ) is surjective and µnorm(f, ξ) := ∞ otherwise. Here Df(ξ)† : Rm → Rn+1 is the

Moore-Penrose inverse of the full-rank matrix Df(ξ), i.e.,

Df(ξ)† = Df(ξ)t(Df(ξ)Df(ξ)t)−1,

where Df(ξ)t is the transpose of Df(ξ). This coincides with the inverse of the restricted linear

map Df(ξ)|(ker Df(ξ))⊥ . Also, the norm in ‖Df(ξ)†∆(ξ)‖ is the spectral norm.

We note that the expression on the right of (2.1) is well-defined for arbitrary points x ∈ Sn,

so we can define µnorm(f, x) for any such point. This property will allow us to define, for each

of the problems in Section 3, a condition number depending only on the considered problem

and the data at hand which uses µnorm as a basic ingredient.

Remark 2.1 For any λ 6= 0 we have µnorm(f, x) = µnorm(f, λx), since when Df(x) is

surjective, Df(λx)† = (ΛDf(x))† = Df(x)†Λ−1 for

Λ =



λd1−1

. . .

λdm−1


 .

Similarly, µnorm(f, ξ) = µnorm(λf, ξ) for all λ 6= 0.

Finally, the following result (see [13, Proposition 19.30]) allows one to estimate µnorm(f, y)

by evaluating µnorm(f, x) at a point x sufficiently close to y.

Proposition 2.1 There exist constants C, ε > 0 such that the following is true. For all

ε ∈ [0, ε], all f ∈ Hd[m], and all x, y ∈ Sn, if D
3
2µnorm(f, y)dS(x, y) ≤ Cε, then

1

1 + ε
µnorm(f, x) ≤ µnorm(f, y) ≤ (1 + ε)µnorm(f, x).

2.3 Probabilities

Recall the class of numerical algorithms we mentioned in the introduction. These are itera-

tive algorithms whose number of iterations are analyzed in terms of the condition of the input

(as well as its size). Because this condition cannot in general be estimated a priori (it is com-

mon that computing the condition of an input is as difficult as solving the problem for which

this input is so) a way of gauging the efficiency of algorithms of this kind is via probabilistic

estimates. To this end, the space of data is endowed with a probability measure M . Then,

cost(a), the cost of an algorithm at a data a, becomes a random variable and, when possible

one attempts to provide bounds for the expectation

E
x∼M

cost(x).

This average case complexity provides, more often than not, a realistic measure of an algorithm’s

efficiency. But it is sometimes overly pessimistic. Indeed, there are examples of algorithms

which are known to be efficient in practice but nonetheless have a large, or even infinite,
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average-case complexity. In a recent paper Amelunxen and Lotz [2] identified as a possible

cause for this discrepancy the existence of an exceptional set of inputs on which the algorithm

runs in superpolynomial time but having a measure that is vanishing exponentially fast when

the dimension grows. A prototype of this phenomenon is the behavior of the power method

to compute a dominant eigenpair of a symmetric matrix. This algorithm is considered efficient

in practice, yet it has been shown that the expectation of the number of iterations performed

by the power method, for matrices drawn from the Gaussian Orthogonal Ensemble (see [32]),

is infinite [30]. Amelunxen and Lotz [2] showed that, conditioned to exclude a set of measure

at most 2−n, this expectation is O(n2) for n × n matrices. The moral of the story is that the

power method is efficient in practice because it is so in theory if we disregard a vanishingly small

set of outliers. This conditional expectation, in the terminology of [2], shows a weak average

polynomial cost for the power method. More generally, we will talk about a complexity bound

being weak when this bound holds out of a set of exponentially small measure.

Our probabilistic analyses in Section 3 rely on a fact observed by Demmel [24] namely, that

condition numbers are often bounded by the normalized inverse of the distance to the nearest

ill-posed problem. For quantities defined in this way, usually referred to as conic condition

numbers, the following result (see [13, Theorem 21.1]) is useful. We rephrased the statement in

terms of the isotropic Gaussian distribution instead of the uniform distribution on the sphere.

The scale invariance of the statement makes both formulations equivalent.

Theorem 2.1 Let Σ ⊆ Rp+1 be contained in a real algebraic hypersurface, given as the zero

set of a homogeneous polynomial of degree d and let a ∈ Rp+1 be a centered isotropic Gaussian

random variable. Then for all t ≥ (2d+ 1)p,

Prob
( ‖a‖
d(a,Σ)

≥ t
)
≤ 11dp

t
.

2.4 Numerical stability for discrete-valued problems

Recall, the machine precision of a finite-precision algorithm is a number εmach ∈ (0, 1) such

that the result x of any operation performed by the algorithm is replaced by another number x̃

satisfying x̃ = x(1+ δ) for some δ with |δ| ≤ εmach. The quantity log2 εmach, basically, indicates

the number of bits in the mantissa of a floating-point representation of real numbers in the

execution of A .

Algorithms computing a continuous function of their input have a standard finite-precision

analysis estimating how much may the error of the output be for a given εmach. But for problems

having only a discrete set of values another form of analysis is necessary. The template result

below is the most common such form.

Template Result Let A denote a (fixed-precision) algorithm that, with infinite precision,

computes a function ϕ : D → Rq. Let A ϕ denote the function computed by A with finite

precision. Finally, let condϕ(a) denote the condition number of an input a ∈ D. If

εmach ≤ 1

g(size(a), condϕ(a))
,

then A ϕ(a) = ϕ(a). Here size(a) denotes the size (given by one or more integers) of data a

and g is a function of this size and the condition of a.
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2.5 Newton’s method and point estimates

Let f : Rn+1 → Rm, m ≤ n+ 1, be analytic. The Moore-Penrose Newton operator of f at

x ∈ Rn+1 is defined (see [1]) as

Nf (x) := x−Df(x)†f(x).

We say that it is well-defined if Df(x) is surjective.

Definition 2.1 Let x ∈ Rn+1. We say that x is an approximate zero of f if the sequence

(xk)k≥0 defined as x0 := x and xk+1 := Nf (xk) for k ≥ 0 is well-defined and there exists a zero

ζ of f such that, for all i ≥ 0,

‖xi − ζ‖ ≤
(1
2

)2i−1

‖x− ζ‖.

The point ζ is said to be the associated zero of x.

Following ideas introduced by Steve Smale [44], the following three quantities are associated

to a point x ∈ Rn+1 (see [43]):

β(f, x) := ‖Df(x)† f(x)‖,

γ(f, x) := max
k>1

∥∥∥Df(x)†
Dkf(x)

k!

∥∥∥
1

k−1

,

α(f, x) := β(f, x)γ(f, x),

when Df(x) is surjective, and α(f, x) = β(f, x) = γ(f, x) = ∞ when Df(x) is not surjective.

The quantity β(f, x) = ‖Nf(x) − x‖ measures the length of the Newton step at x. The value

of γ(f, ξ), at a zero ξ of f , is related to the radius of the neighborhood of points that converge

to the zero ξ of f , and the meaning of α(f, x) is made clear in Theorem 2.2 below.

In this survey we are interested in the theory of point estimates for polynomial map-

s f = (f1, · · · , fm). When the fi are homogeneous, the invariants α, β and γ are them-

selves homogeneous in x. We actually have β(f, λx) = λβ(f, x), γ(f, λx) = λ−1γ(f, x) and

α(f, λx) = α(f, x) for all λ 6= 0. This property motivates the following projective version for

them:

βproj(f, x) := ‖x‖−1‖Df(x)† f(x)‖,

γproj(f, x) := ‖x‖max
k>1

∥∥∥Df(x)†
Dkf(x)

k!

∥∥∥
1

k−1

,

αproj(f, x) := βproj(f, x)γproj(f, x).

These projective versions coincide with the previous expressions when x ∈ Sn and an α-Theorem

for them is easily derived from Theorem 2.2 below. Furthermore, βproj still measures the (scaled)

length of the Newton step, and γproj relates to the condition number via the following bound

(known as the Higher Derivative Estimate),

γproj(f, x) ≤
1

2
D

3
2µnorm(f, x). (2.2)

The proof of this bound is the one of [8, Theorem 2, p. 267] which still holds for m ≤ n and

Df(x)† instead of Df(x)|−1
Tx

.
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The right-hand side in inequality (2.2) is easily computable. We can find similar computable

versions for α and β. Indeed, for x ∈ Sn we define

β(f, x) := µnorm(f, x)
‖f(x)‖
‖f‖ ,

γ(f, x) :=
1

2
D

3
2µnorm(f, x), (2.3)

α(f, x) := β(f, x)γ(f, x) =
1

2
D

3
2µ2

norm(f, x)
‖f(x)‖
‖f‖ .

Inequality (2.2) says that γ(f, x) ≤ γ(f, x). We also observe that β(f, x) ≤ β(f, x) since

β(f, x) = ‖Df(x)†f(x)‖ ≤ ‖Df(x)†‖‖f(x)‖ ≤ ‖f‖‖Df(x)†∆‖‖f(x)‖‖f‖ = β(f, x).

We finally conclude that α(f, x) ≤ α(f, x).

The main theorem in the theory of point estimates, see [22] and [13, Theorem 19.9] for a

proof.

Theorem 2.2 Let f : Rn+1 → Rm, m ≤ n+ 1, be analytic. Set α0 = 0.125. Let x ∈ Rn+1

with α(f, x) < α0. Then x is an approximate zero of f and ‖x − ξ‖ < 2β(f, x) where ξ is the

associated zero of x. Furthermore, if n+ 1 = m and α(f, x) ≤ 0.02, then all points in the ball

in Sn with center x and radius 2β(f, x) are approximate zeros of f with the same associated

zero.

2.6 Grids

Our algorithms work on a grid Gη on Sn, which we construct by projecting onto Sn a grid

on the cube. Let Cn = {y ∈ Rn+1 | ‖y‖∞ = 1} and φ : Cn → Sn given by φ(y) = y
‖y‖ .

Given η := 2−k for some k ≥ 1, we consider the uniform grid Uη of mesh η on C
n. This is

the set of points in C
n whose coordinates are of the form i2−k for i ∈ {−2k,−2k + 1, · · · , 2k}

with at least one coordinate equal to 1 or −1. We denote by Gη its image by φ in Sn. An

argument in elementary geometry shows that for y1, y2 ∈ C
n,

‖φ(y1)− φ(y2)‖ ≤ dS(φ(y1), φ(y2)) ≤
π

2
‖y1 − y2‖ ≤ π

2

√
n ‖y1 − y2‖∞, (2.4)

where dS(x1, x2) := arccos(〈x1, x2〉) ∈ [0, π] denotes the angular distance, for x1, x2 ∈ Sn.

Given ε > 0 and x ∈ Sn, we denote by B(x, ε) := {y ∈ Rn+1 | ‖y − x‖ < ε} the open ball

with respect to the Euclidean distance and by BS(x, ε) = {y ∈ S
n | dS(y, x) < ε} the open ball

with respect to the angular distance dS. We also set from now on

sep(η) := η
√
n. (2.5)

The following lemma is an immediate consequence of (2.4).

Lemma 2.1 The union
⋃

x∈Gη

BS(x, sep(η)) covers the sphere S
n.

In [19, Lemma 3.1] and [13, Lemma 19.22], the following Exclusion Lemma is proved (the

statement there is for n = m but the proof holds for general m).
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Lemma 2.2 (Exclusion Lemma) Let f ∈ Hd[m] and x, y ∈ S
n be such that 0 < dS(x, y) ≤√

2. Then

‖f(x)− f(y)‖ < ‖f‖
√
D dS(x, y).

In particular, if f(x) 6= 0, there is no zero of f in the ball BS

(
x, ‖f(x)‖

‖f‖
√
D

)
.

3 Solving the Problems

3.1 Feasibility

The first problem we consider is the feasibility problem for systems of homogeneous polyno-

mials. This problem was tackled in [23] and our succinct exposition closely follows [13, §19.6].
We want to algorithmically solve the following problem:

Given a system f ∈ Hd[m], does there exist x ∈ Sn such that f(x) = 0?

To analyze our algorithm we will need a notion of condition for the input system. Let ZS(f)

denote the set of zeros of f on the unit sphere Sn. For f ∈ Hd[m] we define

κfeas(f) =






min
ζ∈ZS(f)

µnorm(f, ζ), if ZS(f) 6= ∅,

max
x∈Sn

‖f‖
‖f(x)‖ , otherwise.

We call f well-posed when κfeas(f) < ∞. Note that κfeas(f) = ∞ if and only if f is feasible

and all its zeros are multiple.

The following is a pseudocode for our algorithm solving the feasibility problem.

Algorithm Feasibility

Input: f ∈ Hd[m]

Preconditions: f1, · · · , fm 6= 0

let η := 1
2

repeat
if α(f, x) ≤ α0 for some x ∈ Uη

then return “feasible” and halt
if ‖f(x)‖ > π

2 η
√
nD‖f‖ for all x ∈ Uη

then return “infeasible” and halt
η := η

2

Output: a tag in {feasible, infeasible}
Postconditions: The algorithm halts if κfeas(f) < ∞. In this case the tag is
feasible iff f has a zero in Sn.

Theorem 3.1 Algorithm Feasibility works correctly: With input a well-posed system it

returns “feasible” (resp. “infeasible”) if and only if the system is so. The number of iterations

is bounded by O(log2(Dnκfeas(f))) and the total complexity, i.e., the number of arithmetic

operations performed by the algorithm, by (nDκfeas(f))
O(n).
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Proof The correctness in the feasible case is a trivial consequence of Theorem 2.2 and the

inequality α(f, x) ≤ α(f, x). The correctness in the infeasible case follows from Lemma 2.2

along with the inequalities (2.4).

To see the complexity bound, assume first that f is feasible and let ζ in the cube C
n,

ζ ∈ Z(f), be such that κfeas(f) = µnorm(f, ζ). Let k be such that

η = 2−k ≤ min{4α0, 2C ε}
πD2

√
n κ2feas(f)

.

Here C and ε are the constants in Proposition 2.1. Let x ∈ Uη be such that ‖x − ζ‖∞ ≤ η.

Then, by (2.4),

dS(x, ζ) ≤
min{2α0, C ε}
D2κ2feas(f)

.

Proposition 2.1 applies, and we have

µnorm(f, x) ≤ (1 + ε)µnorm(f, ζ) = (1 + ε)κfeas(f). (3.1)

Also, by Lemma 2.2,

‖f(x)‖ ≤ ‖f‖
√
DdS(x, ζ) ≤ ‖f‖ 2α0

D
3
2 κ2feas(f)

.

We then have

α(f, x) =
D

3
2

2
µ2
norm(f, x)

‖f(x)‖
‖f‖ ≤ D

3
2

2
κ2feas(f)

2α0

D
3
2κ2feas(f)

= α0.

It follows that algorithm Feasibility halts at this point, and therefore the number k of iterations

performed is at most O(log2(Dnκfeas(f))).

Assume finally that f is infeasible and let k be such that

η = 2−k <
2

π
√
nD κfeas(f)

.

Then, at any point y ∈ Uη we have

‖f(x)‖ ≥ ‖f‖
κfeas(f)

>
π

2
η
√
nD‖f‖.

Again, algorithm Feasibility halts for this value of η, and the number k of iterations performed

is also bounded by O(log2(Dnκfeas(f))).

At each iteration there are 2(n + 1)
(
2
η

)n
points in the grid. Hence, the number of points

in the finest grid (the last run of the iteration) is O(n(D2√nκ2feas(f))n). For each such point

x we evaluate µnorm(f, x) and ‖f(x)‖, both with cost O(N). The total complexity is therefore

bounded by

O((log2(Dnκfeas(f)))nN((D2
√
nκ2feas(f))

n) = (nDκfeas(f))
O(n),

where we used that N ≤ m(n+D)n.
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Remark 3.1 A finite-precision version of algorithm Feasibility can be implemented as well

following the template result in Subsection 2.4 (see [23] for details). The running time remains

of the same order and the returned tag is correct. The finest precision required by the algorithm

satisfies

εmach =
1

(Dnκfeas(f))O(1)
.

This shows that the required number of mantissa’s bits to correctly decide feasibility is loga-

rithmic in D,n and the condition κfeas(f). The reason behind this reasonable bounds for an

exponential time algorithm is that the algorithm performs an exponentially large of independent

computations, each of them requiring only polynomial time and having a very simple nature.

3.2 Counting

The second problem we consider is the counting problem for square systems of homogeneous

polynomials. That is, we consider systems in Hd := Hd[n] with n polynomials in n+1 homoge-

neous variables. The zero set of one such system f is a finite set of, say ℓ, lines passing through

the origin in Rn+1. We can see this set as the set of zeros of f in projective space P(Rn+1) and

we note that this set arises from the identification of antipodal points of the zero set ZS(f),

which consists of 2ℓ points. We thus want to algorithmically solve the following problem.

Given a system f ∈ Hd, count the number of points x ∈ P(Rn+1) such that f(x) = 0?

This problem was studied in [19–21] and, again, our exposition closely follows [13, §19.4].
As with the feasibility problem, our first step is to define an appropriate condition number. To

do so now for a system f it is not enough to just consider the condition at its zeros. For points

x ∈ Rn+1 where ‖f(x)‖ is non-zero but small, small perturbations of f can turn x into a new

zero (and thus change its number of zeros). The following definition goes back to [17]:

κ(f, x) :=
‖f‖

{‖f‖2µ−2
norm(f, x) + ‖f(x)‖2} 1

2

, (3.2)

where µnorm(f, x) is defined as in (2.1) for x ∈ Sn, with the convention that ∞−1 = 0 and

0−1 = ∞, and

κ(f) := max
x∈Sn

κ(f, x). (3.3)

We observe that, because of Remark 2.1, κ(λf) = κ(f). We also note that κ(f) = ∞ if and

only if there exists ξ ∈ Sn such that f(ξ) = 0 (i.e., ξ ∈ MS) and Df(ξ) is not surjective, i.e., f

belongs to the set

Σcount := {f ∈ Hd | ∃ ξ ∈ Sn such that f(ξ) = 0 and rank(Df(ξ)) < n}. (3.4)

The following result (see [20] or [13, Theorem 19.3]) relates condition to the distance to ill-

posedness. It is a version, for polynomial systems, of the classical Eckard-Young theorem (see

[26]).

Proposition 3.1 For all f ∈ Hd,

κ(f) =
‖f‖

dist(f,Σcount)
.
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Our algorithm to solve the counting problem (described below) relies on some graph theo-

retical ideas. We consider, as in the previous section, a number η ∈ (0, 1) and the grid Gη. We

associate to this grid the graph Gη defined as follows. We set

A(f) := {x ∈ S
n | α(f, x) < α0}.

The vertices of the graph are the points in Gη ∩A(f). Two vertices x, y ∈ Gη are joined by an

edge if and only if B(x) ∩B(y) 6= ∅, where

B(x) = {z ∈ S
n | dS(x, z) ≤ 2β(f, x)}.

Note that as a simple consequence of Theorem 2.2, we obtain the following lemma.

Lemma 3.1 (a) For each x ∈ A(f) there exists ζx ∈ ZS(f) such that ζx ∈ B(x). Moreover,

for each point z in B(x), the Newton sequence starting at z converges to ζx.

(b) Let x, y ∈ A(f). Then ζx = ζy ⇔ B(x) ∩B(y) 6= ∅.

We define W (Gη) :=
⋃

x∈Gη

B(x) ⊂ Sn, where x ∈ Gη has to be understood as x running over

all the vertices of Gη. Similarly, for a connected component U of Gη, we define

W (U) :=
⋃

x∈U

B(x).

The following lemma implies that the connected components of the graph Gη are of a very

special nature: they are cliques. It also implies that

|ZS(f)| ≥ # connected components of Gη. (3.5)

Lemma 3.2 (a) For each component U of Gη, there is a unique zero ζU ∈ ZS(f) such that

ζU ∈W (U). Moreover, ζU ∈ ⋂
x∈U

B(x).

(b) If U and V are different components of Gη, then ζU 6= ζV .

Proof (a) Let x ∈ U . Since x ∈ A(f), by Lemma 3.1(a) there exists a zero ζx of f in

B(x) ⊆W (U). This shows the existence. For the uniqueness and the second assertion, assume

that there exist zeros ζ and ξ of f in W (U). Let x, y ∈ U be such that ζ ∈ B(x), and ξ ∈ B(y).

Since U is connected, there exist x0 = x, x1, · · · , xk−1, xk := y in A(f) such that (xi, xi+1) is an

edge of Gη for i = 0, · · · , k − 1, that is, B(xi) ∩ B(xi+1) 6= ∅. If ζi and ζi+1 are the associated

zeros of xi and xi+1 in ZS(f) respectively, then by Lemma 3.1(b) we have ζi = ζi+1, and thus

ζ = ξ ∈ B(x) ∩B(y).

(b) Let ζU ∈ B(x) and ζV ∈ B(y) for x ∈ U and y ∈ V . If ζU = ζV , then B(x) ∩B(y) 6= ∅
and x and y are joined by an edge; hence U = V .

If equality holds in (3.5), we can compute |ZS(f)| by computing the number of connected

components of Gη. The reverse inequality in (3.5) amounts to the fact that there are no zeros

of f in Sn that are not in W (Gη). To verify that this is the case, we want to find, for each

point x ∈ Gn \A(f), a ball centered at x such that f 6= 0 on this ball. In addition, we want the

union of these balls to cover Sn \W (Gη).
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These considerations lead to the following algorithm:

Algorithm Zero Counting

Input: f ∈ Hd

Preconditions: f 6= 0

let η := 1
2

repeat
let U1, · · · , Ur be the connected components of Gη

if
(a) for 1 ≤ i < j ≤ r

for all xi ∈ Ui and all xj ∈ Uj

dS(xi, xj) > πη
√
n

and
(b) for all x ∈ Gη \A(f)

‖f(x)‖ > π
4 η

√
nD‖f‖

then return r/2 and halt
else η := η

2

Output: ℓ ∈ N

Postconditions: The algorithm halts if f 6∈ Σcount. In this case f has exactly ℓ
zeros in P(Rn+1).

Theorem 3.2 Given an input f ∈ Hd \ Σcount, Algorithm Zero Counting:

(a) Returns the number of zeros of f in P(Rn+1).

(b) Performs O(log2(nDκ(f))) iterations and has a total cost (number of arithmetic opera-

tions) satisfying

cost(f) ≤ (nDκ(f))O(n).

(c) It can be modified to return, in addition, at the same cost, and for each real zero ζ ∈
P(Rn+1) of f , an approximate zero x of f with associated zero ζ.

(d) Assume Hd is endowed with the standard Gaussian. Then, with probability at least

1− (nD)−n we have cost(f) ≤ (nD)O(n2).

(e) Similarly, with probability at least 1− 2−N we have cost(f) ≤ 2O(N
3
2 ).

Sketch of Proof (a) This part claims the correctness of algorithm Zero Counting. To

prove it, we use some notions of spherical convexity.

Let Hn be an open hemisphere in Sn and x1, · · · , xq ∈ Hn. Recall that the spherical convex

hull of {x1, · · · , xq} is defined by

sconv(x1, · · · , xq) := cone(x1, · · · , xq) ∩ S
n,

where cone(x1, · · · , xq) is the smallest convex cone with vertex at the origin and containing the

points x1, · · · , xq.

Lemma 3.3 Let x1, · · · , xq ∈ Hn ⊂ Rn+1. If
q⋂

i=1

BS(xi, ri) 6= ∅, then sconv(x1, · · · , xq) ⊆
q⋃

i=1

BS(xi, ri).
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Proof Let x ∈ sconv(x1, · · · , xq) and y ∈
q⋂

i=1

BS(xi, ri). We will prove that x ∈ BS(xi, ri)

for some i. Without loss of generality we assume x 6= y. Let H be the open half-space

H := {z ∈ R
n+1 : 〈z, y − x〉 < 0}.

We have

z ∈ H ⇔ 〈z, y − x〉 < 0 ⇔ −〈z, x〉 < −〈z, y〉
⇔ ‖z‖2 + ‖x‖2 − 2〈z, x〉 < ‖z‖2 + ‖y‖2 − 2〈z, y〉
⇔ ‖z − x‖2 < ‖z − y‖2,

the second line following from ‖x‖ = ‖y‖ = 1. Therefore the half-space H is the set of points z

in Rn+1 such that the Euclidean distance ‖z − x‖ is less than ‖z − y‖.
On the other hand, H must contain at least one point of the set {x1, · · · , xq}, since if this

were not the case, the convex set cone(x1, · · · , xq) would be contained in {z : 〈z, y − x〉 ≥ 0},
contradicting x ∈ sconv(x1, · · · , xq). Therefore, there exists i such that xi ∈ H . It follows that

‖x− xi‖ < ‖y − xi‖.

Since the function z 7→ 2 arcsin
(
x
2

)
giving the length of an arc as a function of its chord is

nondecreasing, we obtain

dS(x, xi) < dS(y, xi) ≤ ri.

We can now proceed. Assume that Algorithm Zero Countinghalts. We want to show that

if r equals the number of connected components of Gη, then #R(f) = #ZS(f)/2 = r
2 . We

already know by Lemma 3.2 that each connected component U of Gη determines uniquely a

zero ζU ∈ ZS(f). Thus it is enough to prove that ZS(f) ⊆W (Gη). This would prove the reverse

inequality in (3.5).

Assume, by way of contradiction, that there is a zero ζ of f in Sn such that ζ is not in

W (Gη). Let B∞(φ−1(ζ), η) := {y ∈ Uη | ‖y − φ−1(ζ)‖∞ ≤ η} = {y1, · · · , yq}, the set of all

neighbors of φ−1(ζ) in Uη, and let xi = φ(yi), i = 1, · · · , q. Clearly, φ−1(ζ) is in the cone

spanned by {y1, · · · , yq}, and hence ζ ∈ sconv(x1, · · · , xq).
We claim that there exists j ≤ q such that xj 6∈ A(f). Indeed, assume that this is not the

case. We consider two cases.

(i) All the xi belong to the same connected component U of Gη. In this case Lemma 3.2

ensures that there exists a unique zero ζU ∈ Sn of f in W (U) and ζU ∈ ⋂
i

B(xi). Since

x1, · · · , xq lie in an open half-space of Rn+1, we may apply Lemma 3.3 to deduce that

sconv(x1, · · · , xq) ⊆ ∪B(xi).

It follows that for some i ∈ {1, · · · , q}, ζ ∈ B(xi) ⊆W (U), contradicting that ζ 6∈W (Gη).

(ii) There exist ℓ 6= s and 1 ≤ j < k ≤ r such that xℓ ∈ Uj and xs ∈ Uk. Since condition

(a) in the algorithm is satisfied, dS(xℓ, xs) > πη
√
n. But by the bounds (2.4),

dS(xℓ, xs) ≤
π

2

√
n‖yℓ − ys‖∞
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≤ π

2

√
n(‖yℓ − φ−1(ζ)‖∞ + ‖φ−1(ζ) − ys‖∞) ≤ πη

√
n,

a contradiction.

We have thus proved the claim. Let then 1 ≤ j ≤ q be such that xj 6∈ A(f). Then, using

Lemma 2.2,

‖f(xj)‖ = ‖f(xj)− f(ζ)‖ ≤ ‖f‖
√
DdS(xj , ζ) ≤

π

2
η
√
nD‖f‖.

This is in contradiction with condition (b) in the algorithm being satisfied.

(b) We next prove the claimed bound for the cost. The idea is to show that when η becomes

small enough, as a function of κ(f), n,N and D, then conditions (a) and (b) in algorithm

Zero Counting are satisfied. To do so, we rely on the following result (see [13, Lemma 19.26]).

Lemma 3.4 Let x1, x2 ∈ Gη with associated zeros ζ1 6= ζ2. If

η ≤ 0.08

D
3
2πκ(f)

√
n
,

then dS(x1, x2) > πη
√
n.

Lemma 3.5 Let x ∈ Sn be such that x 6∈ A(f). Suppose η ≤ α0

nD2κ(f)2 . Then ‖f(x)‖ >
π
4 η

√
nD‖f‖.

Proof Since x 6∈ A(f), we have α(f, x) ≥ α0. Also, κ(f) ≥ κ(f, x) which implies, by (3.2),

κ(f)−2 ≤ 2max
{
µnorm(f, x)

−2,
‖f(x)‖2
‖f‖2

}
.

We accordingly divide the proof into two cases.

Assume firstly that max
{
µnorm(f, x)

−2, ‖f(x)‖
2

‖f‖2

}
= ‖f(x)‖2

‖f‖2 .

In this case

η ≤ α0

nD2κ(f)2
≤ 2α0‖f(x)‖2

nD2‖f‖2 ,

which implies

‖f(x)‖ ≥
√
η
√
nD‖f‖√
2α0

>
π

4
η
√
nD‖f‖,

the second inequality since η ≤ 1
2 <

8D
π2α0

.

Now assume instead that max
{
µnorm(f, x)

−2, ‖f(x)‖
2

‖f‖2

}
= µnorm(f, x)

−2.

In this case

η ≤ α0

nD2κ(f)2
≤ 2α0

nD2µnorm(f, x)2
,

which implies α0 ≥ 1
2ηnD

2µnorm(f, x)
2. Also

α0 ≤ α(f, x) =
1

2
β(f, x)µnorm(f, x)D

3
2 ≤ 1

2‖f‖µnorm(f, x)
2D

3
2 ‖f(x)‖.

Putting both inequalities together, we obtain

1

2
ηnD2µnorm(f, x)

2 ≤ 1

2‖f‖µnorm(f, x)
2D

3
2 ‖f(x)‖,
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which implies

‖f(x)‖ ≥ ηnD
1
2 ‖f‖ > π

4
η
√
nD‖f‖.

We can now conclude the proof of part (b). Assume

η ≤ η0 := min
{ 0.08

πD
3
2
√
nκ(f)

,
α0

nD2κ(f)2

}
.

Then the hypotheses of Lemmas 3.4–3.5 hold. The first of these lemmas ensures that condition

(a) in algorithm Zero Counting is satisfied, the second, that condition (b) is satisfied as well.

Therefore, the algorithm halts as soon as η ≤ η0. This gives a bound of O(log2(nDκ(f))) for

the number of iterations.

At each iteration there are K := 2(n + 1)
(
2
η

)n
points in the grid. For each such point x

we evaluate µnorm(f, x) and ‖f(x)‖, both with cost O(N). We can therefore decide with cost

O(KN) which of these points are vertices of Gη and for those points x compute the radius

2β(f, x) of the ball Bf (x). Therefore, with cost O(K2N) we can compute the edges of Gη. The

number of connected components of Gη is then computed with O(K2N) operations as well by

standard algorithms in graph theory (see the Notes for references).

Since dS is computed with O(n) operations, the total cost of verifying condition (a) is at

most O(K2n), and the additional cost of verifying (b) is O(K). It follows that the cost of

each iteration is O(K2N). Furthermore, since at these iterations η ≥ η0, we have K ≤ (C(n+

1)D2κ(f)2)n+1. Using this estimate in the O(K2N) cost of each iteration and multiplying by

the bound O(log2(nDκ(f))) for the number of iterations, the claimed bound for the total cost

follows.

(c) To prove this part just note that for i = 1, · · · , r, any vertex xi of Ui is an approximate

zero of the only zero of f in W (Ui).

(d) The probabilistic analysis relies, among other results, on understanding the nature of a

particular complex algebraic set. For q ≤ n+ 1 let

ΣC

d
[q] := {F ∈ HC

d
[q] | ∃x ∈ P(Cn+1) F (x) = 0, rankDF (x)|Tx

< q}.

Here HC

d
[q] denotes the linear space of q-tuples of complex homogeneous polynomials in n + 1

variables with degree pattern d and P(Cn+1) the complex projective space of dimension n. The

following result (see [14, Proposition 4.20]) tells us some basic features of ΣC

d
[q].

Proposition 3.2 For any q ≤ n + 1, the set ΣC

d
[q] ⊆ HC

d
[q] is an algebraic hypersurface

defined by an irreducible polynomial with integer coefficients of degree at most n2nDn.

We now note that Σcount ⊂ ΣC

d
[n] ∩ RN where N = dimR Hd = dimC HC

d
. Therefore, by

the proposition above, Σcount is included in a real algebraic surface given as the zero set of

a polynomial of degree at most n2nDn. An immediate application of Proposition 3.1 and

Theorem 2.1 yields

Prob
f∼N(0,Id)

(κ(f) ≥ t) = Prob
f∼N(0,Id)

( ‖f‖
d(f,Σcount)

≥ t
)
≤ 11n2nDnN

t
.

By taking t = (nD)cn for a constant c large enough we have

Prob
f∼N(0,Id)

(
κ(f) ≥ (nD)cn

)
≤ 11n2nDnN

(nD)cn
≤ (nD)−n.
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Hence, using part (b), for c large enough, we have

Prob
f∼N(0,Id)

(
cost(f) ≥ (nD)O(n2)

)
≤ (nD)−n.

(e) We now take t = 2cN with a constant c large enough and use that N ≥ n2

2 (as we may

assume that there is at least one polynomial of degree 2).

Remark 3.2 As with algorithm Feasibility, a finite-precision version of algorithm

Zero Counting, has been analyzed in [19]. Again, the running time remains of the same order

and the returned value is the number of zeros of the input f in P(Rn+1) as long as the round-off

unit satisfies

εmach ≤ 1

O(D2n
5
2κ(f)3(log2N + n

3
2D2κ(f)2))

.

We note now that the probability tail for κ(f) implies that, with probability at least 1 −
(nD)−n the number of mantissa’s bits necessary to ensure correctness of the computed result

is O(log(nD)).

3.3 Homology

The last problem we consider is the computation of the homology of basic semialgebraic

sets. These are subsets of Rn defined by a system of equalities and inequalities

f1(x) = · · · = fq(x) = 0 and g1(x) ≻ 0, · · · , gs(x) ≻ 0, (3.6)

where F = (f1, · · · , fq) and G = (g1, · · · , gs) are tuples of polynomials with real coefficients

and the expression g(x) ≻ 0 stands for either g(x) ≥ 0 or g(x) > 0 (we use this notation

to emphasize the fact that our main result does not depend on whether the inequalities in

(3.6) are strict). Let W (F,G) denote the solution set of the semialgebraic system (3.6), for a

vector d = (d1, · · · , dq+s) of q+ s positive integers, let Pd (or Pd[q; s] to emphasize the number

of components) denote the linear space of the (q + s)-tuples of real polynomials in n variables

of degree d1, · · · , dq+s, respectively. Our (clearly more ambitious) goal now is the following:

Given (F,G) ∈ Pd[q; s], compute the homology groups of W (F,G).

A numerical algorithm solving this problem was recently given in [14]. Our exposition

follows this paper.

A first remark is that the set W (F,G) may be unbounded and hence, not suitable for our

grid methods. The obvious solution is to “fit it” into a sphere via homogeneization. Given a

degree pattern d = (d1, · · · , dq+s), the homogeneization of polynomials (with respect to that

pattern) yields an isomorphism of linear spaces

Pd[q; s] → Hd[q; s], ψ = (F,G) 7→ ψhm = (F hm, Ghm),

where F h denotes the homogeneization of F with homogeneizing variable X0. The Weyl inner

product on Hd[q; s] induces an inner product on Pd[q; s] such that the above map is isometric.

The set W (F,G) ⊆ R
n is diffeomorphic to the subset of Sn defined by F hm = 0, Ghm ≻ 0

and X0 > 0 and we can therefore focus on computing the homology of the latter. As it

happens, we can further relax the inequalities in this system. But to justify this we need to

understand condition.
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A (closed) homogeneous semialgebraic system has the form

f1(x) = 0, · · · , fq(x) = 0 and g1(x) ≥ 0, · · · , gs(x) ≥ 0, (3.7)

where fi and gj are homogeneous polynomials in R[X0, X1, · · · , Xn]. The system is therefore

an element (F,G) ∈ Hd[q; s]. The set of solutions x ∈ Sn of system (3.7), which we will denote

by S(F,G), is a spherical basic semialgebraic set. To such a system (F,G) we associate the

condition number κ∗(F,G) as follows. For a subtuple L = (gj1 , · · · , gjℓ) of G, we denote by FL

the system obtained from F by appending the polynomials from L, that is,

FL := (f1, · · · , fq, gj1 , · · · , gjℓ) ∈ Hd[q + ℓ],

where now d denotes the appropriate degree pattern in Nq+ℓ. Abusing notation, we will fre-

quently use set notations L ⊆ G or g ∈ G to denote subtuples or coefficients of G.

Definition 3.1 Let q ≤ n+1, (F,G) ∈ Hd[q; s]. The condition number of the homogeneous

semialgebraic system (F,G) is defined as

κ∗(F,G) := max
L⊆G

q+|L|≤n+1

κ(FL).

We define Σ∗ as the set of all (F,G) ∈ Hd[q; s] such that κ∗(F,G) = ∞.

Clearly, Σ∗ is semialgebraic and invariant under scaling of the q + s components.

The next result, Proposition 4.14 in [14], shows that we can relax inequalities.

Proposition 3.3 Let (F,G) ∈ Hd[q; s] be such that κ∗(F,G) < ∞. Put S := S(F,G), let

r ≤ s, and let S′ ⊆ S be the solution set in Sn of the semialgebraic system

f1 = · · · = fq = 0, g1 ≥ 0, · · · , gr ≥ 0, gr+1 > 0, · · · , gs > 0.

Moreover, let ∂S denote the boundary of S in S(F,∅). Then S\∂S ⊆ S′ and S′ is homotopically

equivalent to S.

We have thus reduced our problem to the computation of the homology of the set S(H(F,G))

where H(F,G) denotes the homogeneous semialgebraic system

F hm = 0, Ghm ≥ 0, ‖(F,G)‖X0 ≥ 0.

Note the coefficient ‖(F,G)‖ in the last polynomial. This coefficient does not change the solution

set in S
n but allows us to control the condition (by avoiding artificial differences in the scaling

of the polynomials of H(F,G)). Indeed, for ψ = (F,G) ∈ Pd[q; s], we define

κaff∗ (ψ) := κ∗(H(ψ))

and call Σaff
∗ := H−1(Σ∗) the set of ill-posed affine semialgebraic systems. In summary, if

κaff∗ (F,G) <∞, then the spherical set S(H(F,G)) is homotopically equivalent to W (F,G).

Furthermore, we have the following result [14, Proposition 4.16], extending Proposition 3.1.

Proposition 3.4 For any nonzero ψ ∈ Pd[q; s],

κaff∗ (ψ) ≤ 4D‖ψ‖
d(ψ,Σaff

∗ )
.
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3.3.1 The reach of a closed set

Let E be a real Euclidean space of finite dimension. For a nonempty subset W ⊆ E and

x ∈ E, we denote by dW (x) := inf
p∈W

‖x− p‖ the distance of x to W .

Definition 3.2 Let W ⊆ E be a nonempty closed subset. The medial axis of W is defined

as the closure of the set

∆W := {x ∈ E | ∃p, q ∈W, p 6= q and ‖x− p‖ = ‖x− q‖ = dW (x)}.

The reach (or local feature size) of W at a point p ∈ W is defined as τ(W, p) := d∆W
(p). The

(global) reach of W is defined as τ(W ) := inf
p∈W

τ(W, p). We also set τ(∅) := +∞.

By the (open) neighborhood of radius r ≥ 0 around a nonempty set S ⊆ E we understand

the set

U(S, r) := {p ∈ E | dS(p) < r}.

In [33, Proposition 7.1], Niyogi, Smale and Weinberger gave an answer to the following

question: Given a compact submanifold S ⊆ E, a finite set X ⊂ E and ε > 0, which conditions

do we need to ensure that S is a deformation retract of U(X , ε)?
Theorem 3.3 below (see [14, §2.2] for a proof) gives an extension to their result to any

compact subsets S,X provided S has positive reach τ(S).

Recall that the Hausdorff distance between two nonempty closed subsets A,B ⊆ E is defined

as

dH(A,B) := max
(
sup
a∈A

dB(a), sup
b∈B

dA(b)
)
.

Theorem 3.3 Let S and X be nonempty compact subsets of E. The set S is a deformation

retract of U(X , ǫ) for any ǫ such that 3 dH(S,X ) < ǫ < 1
2 τ(S).

Theorem 3.3 is the main stepping stone towards computing the homology groups of

S(H(F,G)). The reach τ(S(H(F,G))) of this set, however, is not easily computable. The

following result, Theorem 4.12 in [14], shows a simple bound for it in terms of κ∗.

Theorem 3.4 For any homogeneous semialgebraic system (F,G) defining a semialgebraic

set S := S(F,G) ⊆ Sn, if κ∗(F,G) <∞, then

D
3
2 τ(S)κ∗(F,G) ≥ 1

7 .

3.3.2 Tubes and relaxations

For a subset A ⊆ Sn we denote by

US(A, r) := {x ∈ S | dS(x,A) < r}

the open r-neighborhood of A with respect to the geodesic distance dS on the sphere Sn. Also,

for a homogeneous system (F,G) ∈ Hd[q; s] and r > 0, we define the r-relaxation of S(F,G):

Approx(F,G, r) := {x ∈ S
n | ∀f ∈ F, |f(x)| < ‖f‖r and ∀g ∈ G, g(x) > −‖g‖r}.
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It is clear that S(F,G) ⊆ Approx(F,G, r) for any r > 0. Also, it is easy to see that

Approx(F,G, r) converges to S with respect to the Hausdorff distance, when r → 0. The

next two results (see [14, §4.2]) quantify more precisely this behaviour in terms of the condition

number κ∗(F,G). Recall that D denotes the maximum degree of the components of F and G.

Proposition 3.5 For any r > 0,

US(S(F,G), D
− 1

2 r) ⊆ Approx(F,G, r).

Theorem 3.5 Let q ≤ n+ 1. For any positive number r < (13D
3
2 κ2∗)

−1 we have

Approx(F,G, r) ⊆ US(S(F,G), 3κ∗r).

3.3.3 Algorithms and analyses

We can now describe an algorithm computing a covering for S(F,G), with (F,G) ∈ Hd[q; s],

as in Theorem 3.3.

Algorithm Covering

Input: (F,G) ∈ Hd[q; s]

Preconditions: q ≤ n

η := 1
repeat

η := η
2

r = sep(η)
K∗ := max{κ(FL, x) | x ∈ Gη and L ⊆ G such that |L| ≤ n− q + 1}

until 71D
5
2K2

∗r < 1

return the set X := Gη ∩ Approx(F,G,D
1
2 r) and ε := 5DK∗r

Output: A finite subset X of Sn and an ǫ > 0.

Postconditions: The algorithm halts if (F,G) 6∈ Σ∗. In this case U(X , ǫ) is
homotopically equivalent to S(F,G).

Proposition 3.6 On input F and G, algorithm covering outputs a finite set X and an ε > 0

such that U(X , ε) is homotopically equivalent to S(F,G). Moreover, the computation performs

((s+ n)Dκ∗)O(n) arithmetic operations, where s = |G| and κ∗ = κ∗(F,G), and the number |X |
of points in X is (nDκ∗)O(n).

Proof Let κ∗ := κ∗(F,G), S := S(F,G) and let η, r, and K∗ be the values of the corre-

sponding variables after the repeat loop terminates in algorithm covering. By design,

1

2
< 71D

5
2K2

∗r < 1. (3.8)

We will first show that

κ∗ ≤
(
1 +

1

100

)
K∗. (3.9)

Let L ⊆ G and y ∈ Sn be such that κ∗ = κ(FL) = κ(FL, y). Because of Lemma 2.1 there is

some x ∈ Gη such that dS(x, y) < r, and κ(FL, x) ≤ K∗ by the definition of K∗. Since the map
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x 7→ 1
κ(FL,x) is D-Lipschitz continuous (see [14, Proposition 4.7]), we have

κ∗ = κ(FL, y) ≤ κ(FL, x)

1−Dκ(FL, x)r
≤ K∗

1−DK∗r
.

Inequality (3.8) shows that

DK∗r <
1

71D
3
2K∗

≤ 1

101
,

the last as D ≥ 2 and K∗ ≥ 1, and Inequality (3.9) follows.

Let X := Gη ∩ Approx(F,G,D
1
2 r) and ǫ := 5DK∗r, that is, the finite set and the real

number output by the algorithm. We will now prove that U(X , ǫ) is homotopically equivalent

to S. By Theorem 3.3, it is enough to prove the inequalities

3dH(X , S) < ǫ <
1

2
τ(S). (3.10)

The second inequality follows from Inequalities (3.8)–(3.9) and Theorem 3.4:

ε = 5DK∗r <
5

71

1

D
3
2K∗

≤ 505

7100

1

D
3
2κ∗

≤ 3535

7100
τ(S) ≤ 1

2
τ(S).

Concerning the inequality 3dH(X , S) < ǫ, let x ∈ S. Because of Lemma 2.1, there is some y ∈ Gη

with dS(x, y) < r. Hence y lies in Approx(F,G,D
1
2 r), by Proposition 3.5. Thus y ∈ X

and d(x,X ) < dS(x, y) < r < 1
3ε.

Next, let x ∈ X . Then, x ∈ Approx(F,G,D
1
2 r) and

13D
3
2 κ2∗r < 13 · 4D 5

2κ2∗r < 1,

the last by Inequality (3.8). Hence, Theorem 3.5 applies and shows that

d(x, S) ≤ 3κ∗r ≤
(
3 +

3

100

)
K∗r <

1

3
ǫ,

where we used D ≥ 2 for the last inequality. Thus we have shown that dH(X , S) < 1
3ǫ. This

concludes the proof of (3.10) and of the homotopy equivalence.

Lastly, we deal with the complexity analysis. We can approximate κ(FL, x) within a factor

of 2 in O(N + n3) operations (see [31, §2.5]) and this is enough for our needs. For simplicity,

we will do as if we could compute κ exactly.

The repeat loop performs O(log(Dκ∗)) iterations. Each iteration can be done in

O(|Gη|M(N + n3)) operations, where M =
n+1−q∑
i=0

(
s
i

)
≤ (s + 1)n+1−q. Moreover, |X | ≤ |Gη| =

(nDκ∗)O(n) and N + n3 = (nD)O(n). Therefore, the total number of operations is bounded by

((s+ n)Dκ∗)O(n).

Once in the possession of a pair (X , ε) such that S is a deformation retract of U(X , ε), the
computation of the homology groups of S is a known process. One computes the nerve N of

the covering {B(x, ε) | x ∈ X}
(
this is a simplicial complex whose elements are the subsets N

of X such that
⋂

x∈N

B(x, ε) is not empty
)
and from it, its homology groups Hk(N ). Since the

intersections of any collection of balls is convex, the Nerve Theorem (see, e.g., [7, Theorem

10.7]) ensures that

Hk(N ) ≃ Hk(U(X , ε)) ≃ Hk(S),

the last because S is a deformation retract of U(X , ε). The process is described in detail in [22,

§4] where the proof for the following result can be found.
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Proposition 3.7 Given a finite set X ⊆ R
n+1 and a positive real number ǫ, one can

compute the homology of
⋃

x∈X
B(x, ǫ) with |X |O(n) operations.

We finally can put all the ingredients together in our main result.

Theorem 3.6 There is an algorithm Homology, working over the reals and numerically

stable that, given a system (F,G) ∈ Pd with q ≤ n equalities and s inequalities, computes the

homology groups of W (F,G). Moreover, the number of arithmetic operations in R performed

by Homology on input (F,G), denoted cost(F,G), satisfies

(a) cost(F,G) = ((s+ n)Dδ−1)O(n2) where δ is the distance of 1
‖(F,G)‖(F,G) to Σaff

∗ .

Furthermore, if (F,G) is drawn from the Gaussian measure on Pd, then

(b) cost(F,G) ≤ ((s+ n)D)O(n3) with probability at least 1− ((s+ n)D)−n,

(c) cost(F,G) ≤ 2O(N2) with probability at least 1− 2−N .

Sketch of Proof Following our previous stream of thoughts we consider the following

algorithm:

Algorithm Homology

Input: (F,G) ∈ Pd[q; s]

Preconditions: q ≤ n, κaff∗ (f) <∞

(X , ε) := Covering(H(F,G))
compute the nerve N of U(X , ε)
return the homology groups of N

Output: A description of a finite set of groups.

Postconditions: The algorithm halts if (F,G) 6∈ Σaff
∗ . In this case the groups

returned are the homology groups of W (F,G).

Proposition 3.6 shows that (X , ε) is computed with cost ((s+ n)Dκ∗(F,G)))O(n) and that

|X | = (nDκ∗(F,G))O(n). Proposition 3.7 shows that we can further compute the homology

of
⋃

x∈X
B(x, ε) with cost |X |O(n) = (nDκ∗(F,G))O(n2). This homology coincides with that of

S(H(F,G)) which in turn coincides, we have already argued, with that of W (F,G). This,

together with Proposition 3.4, shows part (a).

Parts (b) and (c) are proved as parts (d) and (e) in Theorem 3.2 using that Σaff
∗ is included in

a union of at most (s+1)n+1−q sets, each of them having the form ΣC

d
[m]∩RM for appropriate

values of m ≤ n+ 1 and M ≤ N .

Remark 3.3 (i) As with algorithms Feasibility and Zero Counting, a finite-precision version

of Homology can be implemented. This has not been done but would follow the same steps as

in the other two cases and ensure that the computed homology groups (i.e., the Betti numbers

and torsion coefficients corresponding to these groups) are correct as long as

εmach ≤ 1

(Dnκ∗(F,G))O(1)
.

A discussion of this theme is in [22, §7].
(ii) It is immediate to check that κfeas(f) ≤ κ∗(f). Hence, the probabilistic analysis for the

latter gives bounds for the former as well. But the fact that the codimension of Σfeas := {f |
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κfeas(f) = ∞} is much greater than that of Σcount (which is equal to one) suggests that one

might obtain substantially better bounds. There are no results as of today, however, supporting

this suggestion.
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