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1 Introduction

The aim of this work was to establish the modeling of a thin elastic beam made of elastic

inclusions periodically distributed along its length. More precisely let δ and ε be two smal-

l parameters respectively the thickness of the beam and the size of the inclusions, and both

are supposed to vanish. Several works have shown how to derive rigorously the reduced one-

dimensional models of elastic beams, starting from the three-dimensional equilibrium equations

and letting the size δ of the cross-section tend to zero (just to mention some of the pioneer

papers for plates and rods (see [2, 13])); on the other hand the limit model of structures made

of periodically heterogeneous elastic material has been established by the homogenization ap-

proach, when the number of inclusions tends to infinity, i.e., ε tends to zero (just to mention

some of the pioneer papers in elasticity (see [1, 11])). In this paper we let both parameter-

s tend to zero simultaneously, which gives rise to three different one-dimensional models of

homogeneous beams depending upon the limit of the ratio lim
(ε,δ)→(0,0)

δ
ε
.

In the classical Euclidean space the Cartesian coordinate system attached to the beam is

denoted Ox1x2x3 and we associate an orthonormal basis (e1, e2, e3) (this will be defined more

precisely later). The three-dimensional body is thin in the direction e1, e2; let δ be a small

parameter which takes into account the thinness of the beam. The scaled cross-section of the

beam occupies the bounded domain (with Lipschitz boundary) ω ⊂ R2. Hence the straight

beam occupies the cylinder Ωδ ⊂ R3, Ωδ = ωδ×]0, L[ of length L and section ωδ = δω. A

generic point in Ωδ is denoted by x = (x1, x2, x3) with (x1, x2) ∈ ωδ, x3 ∈ (0, L), and therefore(
x1

δ
, x2

δ

)
∈ ω.
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Let1 u = (ui) be the three-dimensional displacement field attached to an elastic solid under

the action of applied body forces; it can be decomposed as the sum of a displacement field

Ue = (Uei) (rigid in the cross-sections) and a warping u = (ui) (see (2.5)). The elementary

displacement field Ue is the sum of a Bernoulli-Navier displacement described by a vector

U = (Uα, 0) and a scalar Θ and a contribution u = (ui) to complete the centerline displacement

U (see (2.11)):





u(x) = Ue(x) + u(x),

Ue(x) = U(x3) + u(x3) +




−
dU2

dx3
(x3)

+
dU1

dx3
(x3)

Θ(x3)




∧ (x1e1 + x2e2)
for a.e. x ∈ Ωδ.

The structure is clamped on a part Γ0,δ = ωδ × {0} of the boundary ∂Ωδ.

In Section 2 we begin to recall Korn’s type inequalities (2.13) for thin beams (see [7, 10]):





‖Θ‖L2(0,L) +
∥∥∥dUα

dx3

∥∥∥
L2(0,L)

≤
CL

δ2
‖e(u)‖[L2(Ωδ)]3×3 ,

‖U‖[H2(0,L)]2 ≤
CL2

δ2
‖e(u)‖[L2(Ωδ)]3×3 ,

∥∥∥ du

dx3

∥∥∥
[L2(0,L)]3

≤
C

δ
‖e(u)‖[L2(Ωδ)]3×3 , ‖u‖[L2(0,L)]3 ≤

CL

δ
‖e(u)‖[L2(Ωδ)]3×3 ,

where e(u) represents the linear strain tensor.

Under the action of applied volume force Fδ, the beam, made of an elastic material char-

acterized by its elastic tensor aδ, undergoes a displacement field uδ solution to the variational

problem (the regularities of aδ and Fδ are detailed later):

Find uδ ∈ V (Ωδ) = {v ∈ [H1(Ωδ)]
3 | v = 0 on Γδ,0} such that2

∫

Ωδ

aδ e(uδ) : e(v)dx =

∫

Ωδ

Fδ · v dx, ∀v ∈ V (Ωδ).

We assume that the applied forces have a specific dependence (2.14) with respect to δ, so that

the strain tensor ‖e(uδ)‖[L2(Ωδ)]3×3 is of order δ2 (see (2.18)), thus we are in a position to infer

that the sequence uδ converges in an appropriate space.

In Section 3 we introduce the second small parameter ε which is also supposed to tend to

zero. We describe the thin beam as made of an heterogeneous material whose elasticity tensor

aε,δ depends also upon ε; the heterogeneities are distributed along the e3 axis with periodicity ε.

In order to study the displacement field, now denoted uε,δ, we introduce the unfolding operator

Tε,δ; for all p ∈ [1,+∞] and ϕ ∈ Lp(Ωδ) it associates a function Tε,δ(ϕ) ∈ Lp((0, L) × Y )

where Ω
.
= (0, L)× ω is the dilated domain and Y

.
= ω × (0, 1) is the unit cell occupied by the

heterogeneities. In Section 4 we state the existence of a unique limit displacement field Ue and

1Greak indices or exponents, except ε and δ, take their values in the set {1, 2}, Latin indices (except e and y)
take their values in the set {1, 2, 3}. The Einstein summation convention of repeated indices is applied.

2The “dot” notation is for vector product and the “colon” notation is for the tensor product:

AE : F = AijklEijFkl,

where A = (Aijkl) is a symmetric fourth-order tensor and E = (Eij), F = (Fij) are two second-order symmetric
tensors.
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a displacement corrector Ûe and we establish a weak convergence result (4.3),

1

δ
Tε,δ(e(U

ε,δ
e ))⇀ E(Ue) + Ey3

(Ûe) in [L2((0, L)× Y )]3×3,

where the symmetric third-order tensors3 E and Ey3
are the strain tensors (3.4), (4.1) (the

functional spaces are completely described in Section 3).

In Section 5 we show that the convergence of the second part of the strain tensor 1
δ
Tε,δ(e(u

ε,δ))

depends upon the ratio
δ

ε
and we study the three possibilities taken by θ = lim

(ε,δ)→(0,0)

δ
ε
. More

precisely we establish the existence of limit fields u and û in appropriate spaces such that the

following weak convergences take place:




θ = +∞,
1

δ
Tε,δ(e(u

ε,δ)) ⇀ ey′(u) + e∞y3
(û

∞

) in [L2((0, L)× Y )]3×3,

θ finite,
1

δ
Tε,δ(e(u

ε,δ)) ⇀ ey′(u) + eθy(û
θ
) in [L2((0, L)× Y )]3×3,

θ = 0,
1

δ
Tε,δ(e(u

ε,δ)) ⇀ ey′(u) + e0y′(û
0
) in [L2((0, L)× Y )]3×3,

where the limit strain tensors are given in (3.5), (5.5), (5.7) and (5.9). In Section 6 we study the

convergence of the sequence {uε,δ}(ε,δ)→(0,0) in the three cases: θ = +∞, θ is finite and θ = 0.

However, it could be of interest to compute a lower dimensional approximation of the “real

displacement field”, i.e., with a finite value of the small (but not “equal to zero”) parameters

ε and δ; this is done in Section 7 where the first terms of an asymptotic expansion of uε,δ (see

(7.1)) are given.

Finally we mention the continuity of the function θ → uθ in an appropriate functional space.

2 Displacement Field in a Thin Structure

Let δ be a small parameter which takes into account the thinness of a straight beam. The

beam occupies the cylinder Ωδ ⊂ R3,Ωδ = ωδ×]0, L[ of length L and section ωδ = δω (where

ω is a bounded domain of R2 with Lipschitz boundary). The Cartesian coordinate system

attached to ω has the gravity center of the structure for origin and the direction of its main

inertia axes as the orthonormal basis (e1, e2), i.e.,
∫

ω

xα dx1dx2 =

∫

ω

x1x2 dx1dx2 = 0, Iα =

∫

ω

(xα)
2
dx1dx2, (2.1)

and I1, I2 are the two principal moments of inertia.

The beam is supposed to be fixed on its extremity Γδ,0 = ωδ × {0}.

The structure is made of a material characterized by its elasticity tensor aδ = (aijkl,δ) with

the classical properties of symmetry, boundedness and coercivity, i.e., for all symmetric second

order tensor e there exist two positive constants c, C such that

aijkl,δ = ajikl,δ = aklij,δ , c eijeij ≤ aδe : e = aijkl,δeijekl ≤ C eijeij . (2.2)

Under the action of applied volume forces Fδ the beam undergoes a displacement field

uδ ∈ V (Ωδ) solution to the variational problem
∫

Ωδ

aδ e(uδ) : e(v) dx =

∫

Ωδ

Fδ · v dx, ∀v ∈ V (Ωδ),

3The subscript y stands for derivative with respect to (y1, y2, y3), the subscript y′ is for derivative with
respect to (y1, y2), and the subscript y3 is for derivative with respect to y3.
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posed in the functional space

V (Ωδ)
.
= {v ∈ [H1(Ωδ)]

3 | v = 0 on Γδ,0}. (2.3)

In this space the classical Korn’s inequality reads: For all v ∈ V (Ωδ), there exists a positive

constant C(Ωδ) which depends upon the domain Ωδ such that

‖∇v‖L2(Ωδ) + ‖v‖L2(Ωδ) ≤ C(Ωδ)‖e(v)‖L2(Ωδ). (2.4)

Hence, for Fδ ∈ [L2(Ωδ)]
3 and aδ ∈ [L∞(Ωδ)]

3×3×3×3, we can apply Lax-Milgram theorem to

obtain the existence and uniqueness of the solution uδ ∈ V (Ωδ).

2.1 Decomposition of the displacement field in a cylinder

In order to study the behavior of the sequence {uδ}δ when δ goes to zero it is of interest

to introduce the fixed bi-dimensional domain ω ⊂ R2 (the reference cross-section of the beam),

hence ωδ = δω, and the three-dimensional cylinder Ω = ω× (0, L). We also consider the decom-

position 4 of any displacement field u ∈ [L1(Ωδ)]
3 as the sum of an elementary displacement

field Ue ∈ [L1(Ωδ)]
3 and a warping u ∈ [L1(Ωδ)]

3 (see [5, 12]):

u(x) = Ue(x) + u(x) for a.e. x ∈ Ωδ, (2.5)

where u satisfies




∫

ωδ

u(x) dx1dx2 = 0,

∫

ωδ

xαu3(x) dx1dx2 = 0,
∫

ωδ

(x1u2(x) − x2u1(x)) dx1dx2 = 0
for a.e.x3 ∈ (0, L). (2.6)

The last equality above means that the warping u does not capture the couple of torsion forces

(see Section 2.4). The same approach was considered for plates (see [8]). The elementary

displacement Ue is given by the displacement of the middle line U ∈ [L1(0, L)]3 and the small

rotation along the vector R ∈ [L1(0, L)]3:

Ue(x) = U(x3) +R(x3) ∧ (x1e1 + x2e2) for a.e. x ∈ Ωδ. (2.7)

We recall here the Definitions 2–3 of [9–10].




U(x3) =
1

|ωδ|

∫

ωδ

u(x) dx1dx2 =
1

δ2|ω|

∫

ωδ

u(x) dx1dx2,

R1(x3) =
1

I2δ4

∫

ωδ

x2u3(x) dx1dx2,

R2(x3) = −
1

I1δ4

∫

ωδ

x1u3(x)dx1dx2,

R3(x3) = Θ(x3) =
1

(I1 + I2)δ4

∫

ωδ

(x1u2(x) − x2u1(x)) dx1dx2,

(2.8)

where the two principal moments of inertia I1, I2 are given by (2.1).

Remark 2.1 From now on, we assume the displacements to be in V (Ωδ). As a consequence,

for every u ∈ V (Ωδ), the terms U and R of the decomposition belong to [H1(0, L)]3, while the

warping u belongs to V (Ωδ). The terms of the decomposition also satisfy the boundary clamping

condition

U(0) = R(0) = 0, u(x1, x2, 0) = 0 for a.e. (x1, x2) ∈ ωδ.

4The case of a curved beam was consider in [7].
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We recall the bounds on the displacement fields given in [10, Theorem 3.1, p. 206].

For all u ∈ H1(Ωδ;R
3) and δ ≤ L, we have





‖∇u‖L2(Ωδ) ≤ C‖e(u)‖L2(Ωδ), ‖u‖L2(Ωδ) ≤ Cδ‖e(u)‖L2(Ωδ),

δ
∥∥∥ dR

dx3

∥∥∥
L2(0,L)

+
∥∥∥ dU

dx3
−R ∧ e3

∥∥∥
L2(Ωδ)

≤
C

δ
‖e(u)‖L2(Ωδ),

where the positive constant C depends neither on δ nor on the length L of the beam.

Corollary of [10, Theorem 3.1] (Korn’s Inequality with Boundary Conditions) For all

v ∈ V (Ωδ), we have

‖∇v‖L2(Ωδ) + ‖v‖L2(Ωδ) ≤
C

δ
‖e(v)‖L2(Ωδ). (2.9)

We note that in this expression of Korn’s inequality the bound depends explicitly on the thickness

of the thin beam (compare to (2.4)). More precisely, one has




‖uα‖L2(Ωδ) ≤
C

δ
‖e(u)‖L2(Ωδ), ‖u3‖L2(Ωδ) ≤ C‖e(u)‖L2(Ωδ),

‖∇u‖L2(Ωδ) ≤
C

δ
‖e(u)‖L2(Ωδ).

(2.10)

The constant C is independent of δ.

2.2 Introduction of a new decomposition

We introduce a new decomposition of the elementary displacement part Ue, in order to

simplify the expression of the strain tensor e(Ue) =
1
2 (∇Ue +∇TUe),

e(Ue) =
1

2




0 | 0 |
dU1

dx3
−R2 − x2

dΘ

dx3
| |

0 | 0 |
dU2

dx3
+R1 + x1

dΘ

dx3
| |

dU1

dx3
−R2 − x2

dΘ

dx3
|

dU2

dx3
+R1 + x1

dΘ

dx3
| 2

(dU3

dx3
+ x2

dR1

dx3
− x1

dR2

dx3

)




.

More precisely let (U, u) be the new functions defined by

U(x3) =

∫ x3

0

R(t) ∧ e3 dt, u(x3) = U(x3)− U(x3) for a.e. x3 ∈ (0, L).

Then we can eliminate the first two components of the rotation and get




dR2

dx3
=

d2U1

dx23
, −

dR1

dx3
=

d2U2

dx23
,

dU1

dx3
−R2 =

d(U1 − U1)

dx3
=

du1
dx3

,
dU2

dx3
+R1 =

d(U2 − U2)

dx3
=

du2
dx3

,

and U3 ≡ 0. From now on, we denote Θ = R3 the third component of the rotation; therefore

we have a new decomposition of the field Ue:

Ue(x) = U(x3) + u(x3) +




−
dU2

dx3
(x3)

+
dU1

dx3
(x3)

Θ(x3)




∧ (x1e1 + x2e2) for a.e. x ∈ Ωδ
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or component-wise

Ue(x) =




U1(x3) + u1(x3)− x2Θ(x3)
U2(x3) + u2(x3) + x1Θ(x3)

u3(x3)− x1
dU1

dx3
(x3)− x2

dU2

dx3
(x3)


 . (2.11)

This decomposition yields the new expression of the strain tensor as

e(Ue) =
1

2




0 | 0 |
du1
dx3

− x2
dΘ

dx3
| |

0 | 0 |
du2
dx3

+ x1
dΘ

dx3
| |

du1
dx3

− x2
dΘ

dx3
|

du2
dx3

+ x1
dΘ

dx3
| 2

(du3
dx3

− x2
d2U2

dx23
− x1

d2U1

dx23

)




.

We note that the clamping condition u = 0 on Γ0,δ implies boundary conditions on the decom-

position:

u(0) = U(0) =
dU

dx3
(0) = Θ(0) = 0, u(x) = 0 for a.e. x ∈ Γ0,δ = ωδ × {0}. (2.12)

We also note that, since Rα ∈ H1(0, L), one has Uα ∈ H2(0, L).

2.3 First bounds

In the sequel C represents any positive constant which depends neither on δ nor on the

length L of the beam.

When u belongs to V (Ωδ) then, taking into account the boundary conditions (2.12), one

obtains the bounds on the new fields (Uα, ui,Θ):





‖Θ‖L2(0,L) +
∥∥∥dUα

dx3

∥∥∥
L2(0,L)

≤
CL

δ2
‖e(u)‖[L2(Ωδ)]3×3 ,

‖U‖[H2(0,L)]2 ≤
CL2

δ2
‖e(u)‖[L2(Ωδ)]3×3 ,

∥∥∥ du

dx3

∥∥∥
[L2(0,L)]3

≤
C

δ
‖e(u)‖[L2(Ωδ)]3×3 , ‖u‖[L2(0,L)]3 ≤

CL

δ
‖e(u)‖[L2(Ωδ)]3×3 .

(2.13)

2.4 Assumption on the applied volume forces

Let v be a general elastic displacement field belonging to V (Ωδ) decomposed as follows:

v = Ve + v,

Ve(x) = V(x3) + v(x3) +




−
dV2

dx3
(x3)

+
dV1

dx3
(x3)

Ψ(x3)




∧ (x1e1 + x2e2) for a.e. x ∈ Ωδ.

We rely on the bounds (2.13) and (2.10) and we consider, for simplicity, the scaled forces and

moments.
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(1) Influence of a volume force fδ(x3) = (δ2f1(x3), δ
2f2(x3), δf3(x3)) :

∫

Ωδ

fδ · Ve dx = |ω|

∫ L

0

(δ4fα(Vα + vα) + δ3f3v3) dx3.

(2) Influence of a moment fM,δ(x) = (−x2fT (x3), x1fT (x3), x1g1(x3) + x2g2(x3)):

∫

Ωδ

fM,δ · Ve dx = δ4
∫ L

0

((I1 + I2)fTΨ − I1g1V
′

1 − I2g2V
′

2) dx3.

The quantity −x2fT (x3)e1 + x1fT (x3)e2 represents the torsion forces acting on the beam.

(3) Influence of f
δ
(x) =

(
δf

1
(x3), δf2(x3),

1
δ
f
3
(x)

)
, f

3
(x) = x1g1(x3) + x2g2(x3) with g

α

given by the solution of the ODE, where Iα is given by (2.1):

Iα
dg

α

dx3
+ |ω|f

α
= 0 in (0, L), g

α
(L) = 0, no summation on α = 1, 2,

∫

Ωδ

f
δ
· Ve dx =

∫ L

0

(δ3|ω|f
α
(Vα + vα)− δ3(I1g1V

′

1 + I2g2V
′

2)) dx3

= |ω|δ3
∫ L

0

(f
α
(Vα + vα)− f

α
Vα) dx3 = |ω|δ3

∫ L

0

f
α
vα dx3.

Now let us combine all those elementary forces to define the global one

Fδ = fδ + fM,δ + f
δ

or component-wise

Fδ(x) =




δ2f1(x3) + δf
1
(x3)− x2fT (x3)

δ2f2(x3) + δf
2
(x3) + x1fT (x3)

δf3(x3) + x1g1(x3) + x2g2(x3) +
1

δ
(x1g1(x3) + x2g2(x3))


 . (2.14)

Note that, due to the definition (2.6) of v, one has
∫
Ω
Fδ · v dx = 0. With the decomposition

(2.11) of the displacement field and assumption (2.14) on the forces we get the expression of

the potential energy

∫

Ωδ

Fδ · v dx = δ4
∫ L

0

(|ω|fα(Vα + vα) + (I1 + I2)fTΨ− (I1g1V
′

1 + I2g2V
′

2)) dx3

+ δ3
∫ L

0

|ω|(f
α
vα + f3v3) dx3, (2.15)

and the bound follows:
∣∣∣
∫

Ω

Fδ · v dx
∣∣∣

≤ Cδ2(‖f‖[L2(0,L)]3 + ‖f‖[H1(0,L)]3 + ‖fT ‖L2(0,L) + ‖g‖[L2(0,L)]2)‖e(v)‖L2(Ωδ)

≤ Cδ2‖e(v)‖L2(Ωδ) for all v ∈ V (Ωδ). (2.16)

Remark 2.2 The specific choice (2.14) is made so that every component of the force

contributes equally to the total elastic energy as we can see in (2.16) and, consequently, will

appear through (6.2) in the expression of the limit models.
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The variational problem: Find uδ ∈ V (Ωδ).
∫

Ωδ

aδ e(uδ) : e(v)dx =

∫

Ωδ

Fδ · v dx, ∀v ∈ V (Ωδ) (2.17)

has a unique solution and the a priori bound on the strain tensor e(uδ) can be derived from

(2.16):

c‖e(uδ)‖2L2(Ωδ)

≤

∫

Ωδ

aδ e(uδ) : e(uδ)dx =

∫

Ω

Fδ · u
δ dx

≤ Cδ2(‖f‖[L2(0,L)]3 + ‖f‖[H1(0,L)]3 + ‖fT‖L2(0,L) + ‖g‖[L2(0,L)]2)‖e(u
δ)‖L2(Ωδ)

≤ Cδ2‖e(uδ)‖[L2(Ωδ)]3×3 ,

which in turns yields

‖e(uδ)‖[L2(Ωδ)]3×3 ≤ Cδ2, (2.18)

where the constant C > 0 does not depend upon δ.

2.5 A priori estimates

Any displacement field uδ satisfying (2.18) can be decomposed as presented in the previous

subsections. Therefore, the appropriate choice of the applied forces and moments (2.14) leads

to the following bounds on the different fields (uδ,Uδ, uδ,Θδ, uδ) associated to (2.13):

(1) Bound on the total displacement uδ:

‖uδα‖L2(Ωδ) ≤
C

δ
‖e(uδ)‖L2(Ωδ) ≤ Cδ,

‖uδ3‖L2(Ωδ) ≤ C‖e(uδ)‖L2(Ωδ) ≤ Cδ2.

(2) Bound on the principal flexion Uδ:

‖Uδ‖[H2(0,L)]2 ≤
CL2

δ2
‖e(uδ)‖L2(Ωδ) ≤ C.

(3) Bound on the stretching or complementary flexion uδ:

‖uδ‖[H1(0,L)]3 ≤
CL

δ
‖e(uδ)‖L2(Ωδ) ≤ Cδ.

(4) Bound on the angle of torsion of the sections (around the middle straight line) Θδ:

‖Θδ‖H1(0,L) ≤
CL

δ2
‖e(uδ)‖L2(Ωδ) ≤ C.

(5) Bound on the warping uδ:

‖uδ‖[L2(Ωδ)]3 ≤ Cδ‖e(uδ)‖L2(Ωδ) ≤ Cδ3,

‖∇uδ‖[L2(Ωδ)]9 ≤ C‖e(uδ)‖L2(Ωδ) ≤ Cδ2.

To sum up, we get

‖Θδ‖H1(0,L) + ‖Uδ‖[H2(0,L)]2 ≤ C, ‖uδ‖[H1(0,L)]3 ≤ Cδ,

‖uδ‖[L2(Ωδ)]3 ≤ Cδ3, ‖∇uδ‖L2(Ωδ) ≤ Cδ2.
(2.19)
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In the sequel, we consider periodically heterogeneous thin beams: More precisely, the material

is described by an elasticity tensor aε,δ ∈ [L∞(Ωδ)]
3×3×3×3 (with the same kind of coercivity

and symmetry properties as in (2.2)) whose components are periodic along the e3 direction and

depend, now, upon two small parameters δ and ε (the applied forces are independent of ε). The

variational problem: Find uε,δ ∈ V (Ωδ) such that

∫

Ωδ

aε,δ e(uε,δ) : e(v)dx =

∫

Ωδ

Fδ · v dx, ∀v ∈ V (Ωδ)

has a unique solution uε,δ. This paper aims at studying the behaviour of the sequence of

solutions {uε,δ}ε,δ when both parameters ε and δ go to zero independently.

3 Introduction of Another Small Parameter: The Size ε of the
Inclusions

3.1 The unfolding operator Tε, definition and first properties

The beam is made of periodic cells distributed along the direction e3, in such a manner that

each of these identical cells occupies a domain of thin section ωδ and of small length ε. In order

to simplify the presentation we assume that the macroscopic domain (0, L) is covered by an

integer number of elementary cells5: ε = L/N , N ∈ N∗.

We define the unique decomposition of almost every real number z ∈ R as the sum of its

integer part [z] (also called the “slow” evolving part) and the remainder {z} (also called the

“fast” evolving part) which belongs to the microscopic domain (0, 1)):

z = [z] + {z}, [z] ∈ Z, {z} ∈ (0, 1).

The unfolding operator Tε maps Lp(0, L) into Lp((0, L)× (0, 1)) for all p ∈ [1,+∞]:

∀ϕ ∈ Lp(0, L), Tε(ϕ)(x, y) = ϕ
(
ε
[x
ε

]
+ εy

)
for a.e. (x, y) ∈ (0, L)× (0, 1).

An immediate property of this linear operator is that for all functions ϕ, φ ∈ L1(0, L) we have

∫ L

0

ϕ(x)dx =

∫ L

0

dx

∫ 1

0

Tε(ϕ)(x, y)dy, Tε(ϕφ) = Tε(ϕ)Tε(φ).

Let us introduce the spaces

H1
per(0, 1) =

{
ψ ∈ H1(0, 1) | ψ(·, 0) = ψ(·, 1),

∫ 1

0

ψ(y)dy = 0
}
,

H2
per(0, 1) = {ψ ∈ H2(0, 1) ∩H1

per(0, 1) | ψ
′(·, 0) = ψ′(·, 1)}.

In the sequel we will make use of important results of convergence gathered in the following

three theorems (see [3, p. 1599, p. 1603]), in which the variable x lies in (0, L) and y in (0, 1).

5The domain Ωδ does not depend upon ε.
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Theorem 3.1 Let {vε}ε be a sequence in L2(0, L) satisfying ‖vε‖L2(0,L) ≤ C. There exists

a subsequence, still denoted {ε}, and limits v ∈ L2(0, L) and v̂ ∈ L2((0, L)× (0, 1)) such that




vε ⇀ v weakly in L2(0, L),

Tε(vε)⇀ v + v̂ weakly in L2((0, L)× (0, 1)),

∫ 1

0

v̂(·, y)dy = 0.

Moreover, if
∥∥dvε

dx

∥∥
L2(0,L)

≤ C
ε
, then v̂ ∈ L2(0, L;H1

per(0, 1)) and

∂Tε(vε)

∂y
≡ εTε

(dvε
dx

)
⇀

∂v̂

∂y
weakly in L2((0, L)× (0, 1)).

Theorem 3.2 Let {vε}ε be a sequence in H1(0, L) satisfying ‖vε‖H1(0,L) ≤ C. There exists

a subsequence, still denoted {ε}, v ∈ H1(0, L) and v̂ ∈ L2(0, L;H1
per(0, 1)) such that





vε ⇀ v weakly in H1(0, L),

Tε(vε) → v strongly in L2(0, L;H1(0, 1)),

Tε

(dvε
dx

)
⇀

dv

dx
+
∂v̂

∂y
weakly in L2((0, L)× (0, 1)).

Theorem 3.3 Let {vε}ε be a sequence in H2(0, L) satisfying ‖vε‖H2(0,L) ≤ C. There exists

a subsequence, still denoted {ε}, v ∈ H2(0, L) and v̂ ∈ L2(0, L;H2
per(0, 1)) such that





vε ⇀ v weakly in H2(0, L),

Tε(vε) → v strongly in L2(0, L;H2(0, 1)),

Tε

(dvε
dx

)
→

dv

dx
strongly in L2(0, L;H1(0, 1)),

Tε

(d2vε
dx2

)
⇀

d2v

dx2
+
∂2v̂

∂y2
weakly in L2((0, L)× (0, 1)).

We are then in a position to extend these results to the study of sequences {wε,δ}ε,δ according

to the limit of the ratio δ
ε
when both the two small parameters converge to zero.

In the lemma below, we consider a sequence {(ε, δ)} converging to (0, 0).

Lemma 3.1 Let {wε,δ}ε,δ be a sequence converging weakly to w in L2(0, L) and satisfying

δ
∥∥∥dw

ε,δ

dx

∥∥∥
L2(0,L)

≤ C.

If δ
ε
→ 0 then there exists ŵ in L2((0, L) × (0, 1)) satisfying

∫ 1

0 ŵ(·, y)dy = 0 such that the

following convergences hold:




(i) Tε(w
ε,δ)⇀ w + ŵ weakly in L2(0, L;H1(0, 1)),

(ii) δTε

(dwε,δ

dx

)
⇀ 0 weakly in L2((0, L)× (0, 1)).

If δ
ε
→ +∞ then there exists ŵ in L2(0, L;H1

per(0, 1)) such that the following convergences hold:




(iii) Tε(w
ε,δ)⇀ w weakly in L2(0, L;H1(0, 1)),

(iv) δTε

(dwε,δ

dx

)
⇀

∂ŵ

∂y
weakly in L2((0, L)× (0, 1)).
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Proof We begin with the obvious estimates

‖Tε
(
wε,δ

)
‖L2((0,L)×(0,1)) ≤ C,

∥∥∥∂Tε(w
ε,δ)

∂y

∥∥∥
L2((0,L)×(0,1))

= ε
∥∥∥dw

ε,δ

dx

∥∥∥
L2(0,L)

≤ C
ε

δ
.

Step 1 We prove (i) and (ii). Convergence (i) is an immediate consequence of the first part

of Theorem 3.1. Since the sequence δ
ε
is bounded from above we get

∥∥∥δ
ε
Tε
(
wε,δ

)∥∥∥
L2((0,L)×(0,1))

≤ C
δ

ε
,

∥∥∥δ
ε
Tε
(
wε,δ

)∥∥∥
L2(0,L;H1(0,1))

≤ C.

From the above estimates and the fact that δ
ε
→ 0 we deduce

δ

ε
Tε(w

ε,δ)⇀ 0 weakly in L2(0, L;H1(0, 1)).

And
δ

ε

∂Tε(w
ε,δ)

∂y
= δTε

(dwε,δ

dx

)

gives convergence (ii).

Step 2 We prove (iii) and (iv). In this second case, since ε
δ
is bounded from above, from

Theorem 3.1, up to a subsequence, there exists W ∈ L2(0, L;H1
per(0, 1)) such that

Tε(w
ε,δ)⇀ w +W weakly in L2(0, L;H1(0, 1)).

Taking into account the fact that ε
δ
→ 0, we get ∂W

∂y
= 0, then W is independent of y. And

∫ 1

0
W (x, y)dy = 0 for a.e. x ∈ (0, L) gives W = 0 and convergence (iii).

Applying Theorem 3.2 to the sequence {δwε,δ}ε,δ, which is uniformly bounded in H1(0, L),

and weakly convergent to 0 in H1(0, L), we obtain a function ŵ in L2(0, L;H1
per(0, 1)) such that

(up to a subsequence)

Tε

(d(δwε,δ)

dx

)
⇀

∂ŵ

∂y
weakly in L2((0, L)× (0, 1)),

whence convergence (iv).

3.2 The dilation operator Πδ and the unfolding operator Tε,δ

Associated to the scaled domain Ωδ we introduce another unfolding operator Πδ : L2(Ωδ) →

L2(Ω) defined for all φ ∈ L2(Ωδ) by

Πδ(φ)(x3, y1, y2) = φ(δy1, δy2, x3), (x3, y1, y2) ∈ Ω,

and we note that

‖Πδ(φ)‖L2(Ω) =
1

δ
‖φ‖L2(Ωδ). (3.1)

Moreover, for every ϕ ∈ H1(Ωδ) one has

Πδ

( ∂ϕ

∂xα

)
=

1

δ

∂

∂yα
(Πδ(ϕ)), Πδ

( ∂ϕ
∂x3

)
=

∂

∂x3
(Πδ(ϕ)). (3.2)
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Next, we combine the two previous scalings due to the thinness of the geometry and the peri-

odicity of the elasticity tensor and we introduce the third unfolded operator

Tε,δ = Tε ◦Πδ = Πδ ◦ Tε.

From now on, the reference microscopic domain is denoted Y = ω × (0, 1) and we get the

definition

Tε,δ : ϕ ∈ L1(Ωδ) → Tε,δ(ϕ) ∈ L1((0, L)× Y ),

Tε,δ(ϕ)(x3, y) = ϕ
(
ε
[x3
ε

]
e3 + δy1e1 + δy2e2 + εy3e3

)

and the main properties





Tε,δ(ϕφ) = Tε,δ(ϕ)Tε,δ(φ) for all (ϕ, φ) ∈ L1(Ωδ)× L1(Ωδ),
∫

Ωδ

ϕ dx = δ2
∫

(0,L)×Y

Tε,δ(ϕ) dy dx3 for all ϕ ∈ L1(Ωδ),

∫

Ωδ

|ϕ|2dx = δ2
∫

(0,L)×Y

|Tε,δ(ϕ)|
2 dy dx3 for all ϕ ∈ L2(Ωδ).

Remark 3.1 Let us observe that when dealing with the operator Tε, only the variable x3 is

unfolded (ω is just a set of parameters), when dealing with the operator Πδ, only the variables

x1, x2 are unfolded, while with the operator Tε,δ the three variables (x1, x2, x3) are unfolded.

3.3 The periodically heterogeneous beam

In order to take into account the periodicity of the elasticity tensor aε,δ we assume that there

exists a tensor A ∈ L∞(Y )3×3×3×3 (with the classical properties of symmetry, boundedness and

coercivity) such that

aijkl,ε,δ(x) = Aijkl
(x1
δ
,
x2
δ
,
{x3
ε

})
a.e. in Ωδ.

This yields

Tε,δ(a
ε,δ)(x3, y) = A(y) for a.e. (x3, y) ∈ (0, L)× Y. (3.3)

The problem we have to solve now is to find the limit of the sequence {uε,δ}ε,δ whose elements

are solution to the variational problem: Find uε,δ ∈ V (Ωδ),

∫

Ωδ

aε,δ e(uε,δ) : e(v)dx =

∫

Ωδ

Fδ · v dx, ∀v ∈ V (Ωδ).

As in (2.5), (2.11) we have the decomposition





uε,δ(x) = Uε,δ
e (x) + uε,δ(x),

Uε,δ
e (x) =




U
ε,δ
1 (x3) + uε,δ1 (x3)− x2Θ

ε,δ(x3)

U
ε,δ
2 (x3) + uε,δ2 (x3) + x1Θ

ε,δ(x3)

uε,δ3 (x3)− x1
dUε,δ

1

dx3
(x3)− x2

dUε,δ
2

dx3
(x3)



.
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3.4 First convergences

Let us introduce the following vector spaces:

VM
.
=

{
(V,Ψ, v) ∈ [H2(0, L)]2 ×H1(0, L)× [H1(0, L)]3 | V(0) =

dV

dx3
(0) = Ψ(0) = v(0) = 0

}
,

V
.
=

{
v ∈ [L2(0, L;H1(ω))]3

∣∣∣
∫

ω

vi(x3, y1, y2)dy1dy2 =

∫

ω

yαv3(x3, y1, y2)dy1dy2 = 0,

∫

ω

(
y1v2(x3, y1, y2)− y2v1(x3, y1, y2)

)
dy1dy2 = 0 for a.e. x3 ∈ (0, L)

}
.

For every (V,Ψ, v) ∈ VM, we define the symmetric tensor E by

E(V,Ψ, v) =




0 0
1

2

(dv1
dx3

− y2
dΨ

dx3

)

0 0
1

2

(dv2
dx3

+ y1
dΨ

dx3

)

1

2

(dv1
dx3

− y2
dΨ

dx3

) 1

2

(dv2
dx3

+ y1
dΨ

dx3

) dv3
dx3

− y1
d2V1

dx23
− y2

d2V2

dx23



, (3.4)

and for every v ∈ V, we define the symmetric tensor ey′ by

ey′(v) =




e11,y′(v) e12,y′(v)
1

2

∂v3
∂y1

e12,y′(v) e22,y′(v)
1

2

∂v3
∂y2

1

2

∂v3
∂y1

1

2

∂v3
∂y2

0



, (3.5)

where the subscript y′ emphasizes the derivation with respect to variables (y1, y2) only.

Then we can state the first convergence result.

Lemma 3.2 There exists a subsequence of (ε, δ), still denoted (ε, δ), and limit displacement

fields

(U,Θ, u) ∈ VM, u ∈ V (3.6)

such that





Uε,δ
α ⇀ Uα weakly in [H2(0, L)]2,

1

δ
uε,δ ⇀ u weakly in [H1(0, L)]3,

Θε,δ ⇀ Θ weakly in H1(0, L),

1

δ2
Πδ(u

ε,δ)⇀ u weakly in V,

1

δ

∂Πδ(u
ε,δ)

∂x3
⇀ 0 weakly in [L2((0, L)× ω)]3.

(3.7)
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Moreover, one has





Πδ(u
ε,δ
α )⇀ Uα weakly in L2(0, L;H1(ω)),

1

δ
Πδ(u

ε,δ
3 )⇀ u3 − y1

dU1

dx3
− y2

dU2

dx3
weakly in L2(0, L;H1(ω)),

1

δ
Πδ(e(U

ε,δ
e ))⇀ E(U,Θ, u) weakly in [L2(Ω)]3×3,

1

δ
Πδ(e(u

ε,δ))⇀ ey′(u) weakly in [L2(Ω)]3×3,

(3.8)

where the limit symmetric tensors E(U,Θ, u) and ey′(u) are given by (3.4) and (3.5).

Proof The convergences (3.7) and the boundary conditions (3.6) are the immediate conse-

quences of the estimates (2.19), (3.1)–(3.2) and the boundary conditions satisfied by the terms

of the decomposition of uε,δ. Moreover, since the field uε,δ verifies the equalities (2.6); dividing

them by δ2, then transforming with Πδ and passing to the limit show that the limit field u

belongs to V. Then the convergences (3.8)1 and (3.8)2 are the consequence of the convergences

in (3.7) and the decomposition of uε,δ.

A straightforward computation yields the symmetric tensor6

1

δ
Πδ(e(U

ε,δ
e )) =




0 | 0 |
1

2

[
− y2

dΘε,δ

dx3
+

1

δ

duε,δ1

dx3

]

| |

∗ | 0 |
1

2

[
+ y1

dΘε,δ

dx3
+

1

δ

duε,δ2

dx3

]

| |

∗ | ∗ |
[
− y1

d2Uε,δ
1

dx23
− y2

d2Uε,δ
2

dx23
+

1

δ

duε,δ3

dx3

]




.

Then (3.8)3 is the consequence of the convergences in (3.7)1,2,3.

A similar computation yields

1

δ
Πδ

(
e(uε,δ)

)

=
1

δ2




∂Πδ(u
ε,δ
1 )

∂y1

1

2

(∂Πδ(u
ε,δ
1 )

∂y2
+
∂Πδ(u

ε,δ
2 )

∂y1

) 1

2

∂Πδ(u
ε,δ
3 )

∂y1

∗
∂Πδ(u

ε,δ
2 )

∂y2

1

2

∂Πδ(u
ε,δ
3 )

∂y2
∗ ∗ 0




+
1

δ




0 0
1

2

∂Πδ(u
ε,δ
1 )

∂x3

∗ 0
1

2

∂Πδ(u
ε,δ
2 )

∂x3

∗ ∗
∂Πδ(u

ε,δ
3 )

∂x3




.

Then (3.8)4 is the consequence of the convergences in (3.7)4,5.

In the next sections we study separately the two components of the complete unfolded strain

tensor

Tε,δ(e(u
ε,δ)) = Tε,δ(e(U

ε,δ
e )) + Tε,δ(e(u

ε,δ
e )).

6To save space, the star ∗ indicates a symmetric term.
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4 Expression of the Unfolded Strain Tensor Tε,δ(e(U
ε,δ
e )) and

Convergence Result

Let

V̂per
.
=

{
(V̂, Ψ̂, v̂) ∈ L2(0, L; [H2

per(0, 1)]
2 ×H1

per(0, 1)× [H1
per(0, 1)]

3)
∣∣∣

∫ 1

0

V̂(·, y3)dy3 = 0,

∫ 1

0

Ψ̂(·, y3)dy3 = 0,

∫ 1

0

v̂(·, y3)dy3 = 0
}
,

and for every (V̂, Ψ̂, v̂) ∈ V̂per, we define the symmetric tensor Ey3
(V̂, Ψ̂, v̂) by




0 0
1

2

(∂v̂1
∂y3

− y2
∂Ψ̂

∂y3

)

0 0
1

2

(∂v̂2
∂y3

+ y1
∂Ψ̂

∂y3

)

1

2

(∂v̂1
∂y3

− y2
∂Ψ̂

∂y3

) 1

2

(∂v̂2
∂y3

+ y1
∂Ψ̂

∂y3

) ∂v̂3
∂y3

− y1
∂2V̂1

∂y23
− y2

∂2V̂2

∂y23



. (4.1)

In an obvious way, to the displacement field Uε,δ
e we associate the new unknowns (Uε,δ,Θε,δ, uε,δ)

and a straightforward computation yields the unfolded scaled symmetric tensor

1

δ
Tε,δ(e(U

ε,δ
e )) =

1

2




0 | 0 | −y2Tε

(dΘε,δ

dx3

)
+

1

δ
Tε

(duε,δ1

dx3

)

| |

∗ | 0 | +y1Tε

(dΘε,δ

dx3

)
+

1

δ
Tε

(duε,δ2

dx3

)

| |

∗ | ∗ | 2
[
− y1Tε

(d2Uε,δ
1

dx23

)
− y2Tε

(d2Uε,δ
2

dx23

)
+

1

δ
Tε

(duε,δ3

dx3

)]




and we get the following convergence result.

Lemma 4.1 There exists a subsequence of (ε, δ), still denoted (ε, δ), the limit of Bernoulli-

Navier displacement field (U,Θ, u) and the correctors (Û, Θ̂, û)

(U,Θ, u) ∈ VM, (Û, Θ̂, û) ∈ V̂per (4.2)

such that




Tε,δ(u
ε,δ
α )⇀ Uα weakly in L2(0, L;H1(Y )),

1

δ
Tε,δ(u

ε,δ
1 − U

ε,δ
1 )⇀ u1 − y2Θ weakly in L2(0, L;H1(Y )),

1

δ
Tε,δ(u

ε,δ
2 − U

ε,δ
2 )⇀ u2 + y1Θ weakly in L2(0, L;H1(Y )),

1

δ
Tε,δ(u

ε,δ
3 )⇀ u3 − y1

dU1

dx3
− y2

dU2

dx3
weakly in L2(0, L;H1(Y )),

1

δ
Tε,δ(e(U

ε,δ
e ))⇀ E(U,Θ, u) + Ey3

(Û, Θ̂, û) weakly in [L2((0, L)× Y )]9,

(4.3)

where the symmetric strain tensors E(U,Θ, u), Ey3
(Û, Θ̂, û) are given by (3.4) and (4.1).
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Proof Again, from the bounds (2.19), and now with the help of Theorem 3.2, we infer the

existence of a subsequence of (ε, δ) and of limit corrector fields (Û, Θ̂, û) ∈ V̂per such that the

following weak convergences hold:




Tε(U
ε,δ)⇀ U weakly in [L20, L;H2(0, 1))]2,

Tε(Θ
ε,δ)⇀ Θ weakly in L2(0, L;H1(0, 1)),

1

δ
Tε(u

ε,δ)⇀ u weakly in [L2(0, L;H1(0, 1))]3

and 



Tε

(dUε,δ

dx3

)
⇀

dU

dx3
weakly in [L2(0, L;H1(0, 1))]2,

Tε

(d2Uε,δ

dx23

)
⇀

d2U

dx23
+
∂2Û

∂y23
weakly in [L2((0, L)× (0, 1))]2,

Tε

(dΘε,δ

dx3

)
⇀

dΘ

dx3
+
∂Θ̂

∂y3
weakly in L2((0, L)× (0, 1)),

1

δ
Tε

(duε,δ
dx3

)
⇀

du

dx3
+
∂û

∂y3
weakly in [L2((0, L)× (0, 1))]3.

Hence, the convergences in (4.3) are obtained.

Remark 4.1 The limit (U,Θ, u) is the same as the one obtained in Lemma 3.2.

5 Expression of the Unfolded Strain Tensor Tε,δ(e(u
ε,δ)) and

Convergence Results

This section is devoted to the contribution of the warping part of the displacement field uε,δ,

for which we use the bounds given in (2.19),

‖uε,δ‖L2(Ωδ) ≤ Cδ3, ‖∇uε,δ‖L2(Ωδ) ≤ Cδ2. (5.1)

Let us recall the chain rule which gives the transformation of the gradient for any vector-field

ϕ ∈ H1(Ωδ),

Tε,δ

( ∂ϕ

∂xα

)
=

1

δ

∂

∂yα
(Tε,δ(ϕ)), Tε,δ

( ∂ϕ
∂x3

)
=

1

ε

∂

∂y3
(Tε,δ(ϕ)). (5.2)

Then, a straightforward computation yields

1

δ
Tε,δ(e(u

ε,δ)) =
1

δ2




e11,y(Tε,δ(u
ε,δ)) e12,y(Tε,δ(u

ε,δ))
1

2

∂Tε,δ(u
ε,δ
3 )

∂y1

e12,y(Tε,δ(u
ε,δ)) e22,y(Tε,δ(u

ε,δ))
1

2

∂Tε,δ(u
ε,δ
3 )

∂y2
1

2

∂Tε,δ(u
ε,δ
3 )

∂y1

1

2

∂Tε,δ(u
ε,δ
3 )

∂y2
0




+
1

2εδ




0 0
∂Tε,δ(u

ε,δ
1 )

∂y3

0 0
∂Tε,δ(u

ε,δ
2 )

∂y3
∂Tε,δ(u

ε,δ
1 )

∂y3

∂Tε,δ(u
ε,δ
2 )

∂y3
2
∂Tε,δ(u

ε,δ
3 )

∂y3



. (5.3)
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Because of the chain rule (5.2) and estimates (3.1) and (5.1), we deduce that there exists a

constant C > 0 such that we have the bounds




∥∥∥ 1

δ2
Tε,δ(u

ε,δ)
∥∥∥
[L2((0,L)×Y )]3

=
∥∥∥ 1

δ3
uε,δ

∥∥∥
[L2(Ωδ)]3

≤ C,

∥∥∥ 1

δ2
∂Tε,δ(u

ε,δ)

∂yα

∥∥∥
[L2((0,L)×Y )]3

=
∥∥∥ 1

δ2
∂uε,δ

∂xα

∥∥∥
[L2(Ωδ)]3

≤ C,

∥∥∥ 1

δ2
∂Tε,δ(u

ε,δ)

∂y3

∥∥∥
[L2((0,L)×Y )]3

=
ε

δ

∥∥∥ 1

δ2
∂uε,δ

∂x3

∥∥∥
[L2(Ωδ)]3

≤
ε

δ
C.

(5.4)

Therefore, the limit of the unfolded strain tensor 1
δ
Tε,δ(e(u

ε,δ)) and, consequently that of the

unfolded tensor 1
δ
Tε,δ(e(u

ε,δ)) will depend upon the relationship between ε and δ. Let us denote

θ = lim
(ε,δ)→(0,0)

δ
ε
; there exist three possible cases which are

• θ = +∞,

• θ is finite,

• θ = 0.

The remain of this section is devoted to the study of these three possibilities.

5.1 The case lim
(ε,δ)→(0,0)

δ
ε
= +∞

In order to study the convergence of the unfolded strain tensor Tε,δ(e(u
ε,δ)), in the case

θ = +∞, we introduce the vector space:

V̂
∞ .

=
{
v ∈ [L2((0, L)× ω;H1

per(0, 1))]
3
∣∣∣
∫

ω

vi(x3, y)dy1dy2 =

∫

ω

yαv3(x3, y)dy1dy2 = 0,

∫

ω

(y1v2(x3, y)− y2v1(x3, y))dy1dy2 = 0 for a.e. (x3, y3) ∈ (0, L)× (0, 1),

∫ 1

0

vi(x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω
}
.

For any v ∈ [L2(ω;H1(0, 1))]3, let e∞y3
be the strain tensor defined by

e∞y3
(v) =




0 | 0 |
1

2

∂v1
∂y3

| |

0 | 0 |
1

2

∂v2
∂y3

| |
1

2

∂v1
∂y3

|
1

2

∂v2
∂y3

|
∂v3
∂y3




. (5.5)

Lemma 5.1 There exists û
∞

∈ V̂
∞

such that (up to a subsequence)





1

δ2
Tε,δ(u

ε,δ)⇀ u weakly in [L2((0, L)× ω;H1(0, 1))]3,

1

δ
Tε,δ(e(u

ε,δ))⇀ ey′(u) + e∞y3
(û

∞

) weakly in [L2((0, L)× Y )]3×3,

(5.6)

where u was introduced in Lemma 3.2, with ey′defined by (3.5) and where e∞y3
is given by (5.5).
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Proof We still have the bounds as given in (2.19),

‖uε,δ‖[L2(Ωδ)]3 ≤ Cδ3, ‖∇uε,δ‖[L2(Ωδ)]3×3 ≤ Cδ2

and the conditions given by (2.6). Therefore, on the one hand, recall (3.7)4−5,




1

δ2
Πδ(u

ε,δ)⇀ u weakly in [L2(0, L;H1(ω))]3,

1

δ

∂Πδ(u
ε,δ)

∂x3
⇀ 0 weakly in [L2(Ω)]3.

On the other hand, the sequence
{
wε = 1

δ2
Πδ(u

ε,δ)
}
ε
satisfies the assumption of Lemma 3.1

(second part):

‖wε‖L2(Ω) =
1

δ

∥∥∥ 1

δ2
uε,δ

∥∥∥
L2(Ωδ)

≤ C, δ
∥∥∥∂w

ε

∂x3

∥∥∥
L2(Ω)

=
∥∥∥ 1

δ2
∂uε,δ

∂x3

∥∥∥
L2(Ωδ)

≤ C.

Hence, there exists û
∞

∈ V̂
∞

such that the weak convergences (5.6) hold.

5.2 The case lim
(ε,δ)→(0,0)

δ
ε
= θ ∈]0,∞[

Denote

V̂
θ .
=

{
v ∈ [L2(0, L;H1

per(Y ))]3
∣∣∣
∫

ω

vi(x3, y)dy1dy2 =

∫

ω

yαv3(x3, y)dy1dy2 = 0,

∫

ω

(
y1v2(x3, y)− y2v1(x3, y)

)
dy1dy2 = 0 for a.e. (x3, y3) ∈ (0, L)× (0, 1),

∫ 1

0

vi(x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω
}
.

For any v ∈ [H1(ω × Y )]3, let eθy be the strain tensor defined by

eθy(v) =




∂v1
∂y1

|
1

2

(∂v1
∂y2

+
∂v2
∂y1

)
|

1

2

(∂v3
∂y1

+ θ
∂v1
∂y3

)

| |
1

2

(∂v1
∂y2

+
∂v2
∂y1

)
|

∂v2
∂y2

|
1

2

(∂v3
∂y2

+ θ
∂v2
∂y3

)

| |
1

2

(∂v3
∂y1

+ θ
∂v1
∂y3

)
|

1

2

(∂v3
∂y2

+ θ
∂v2
∂y3

)
| θ

∂v3
∂y3




. (5.7)

Lemma 5.2 There exists û
θ
∈ V̂

θ

such that (up to a subsequence)





1

δ2
Tε,δ(u

ε,δ)⇀ u+ û
θ

weakly in [L2(0, L;H1(Y ))]3,

1

δ
Tε,δ(e(u

ε,δ))⇀ ey′(u) + eθy(û
θ
) weakly in [L2((0, L)× Y )]3×3,

(5.8)

where u is introduced in Lemma 3.2 with ey′ defined by (3.5) and where eθy is given by (5.7).

Proof Proceeding as in Lemma 5.1, we introduce the sequence {wε = 1
δ2
Πδ(u

ε,δ)}ε. From

(5.4), the sequence Tε(wε)ε is uniformly bounded in [L2(0, L;H1(Y ))]3, satisfing the assumption

of Theorem 3.1. Hence, there exists û
θ
∈ V̂

θ

such that the weak convergences (5.8) hold.
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5.3 The case lim
(ε,δ)→(0,0)

δ

ε
= 0

Denote

V̂
0 .
=

{
v ∈ [L2((0, L)× (0, 1);H1(ω))]3

∣∣∣
∫

ω

vi(x3, y)dy1dy2 =

∫

ω

yαv3(x3, y)dy1dy2 = 0,

∫

ω

(
y1v2(x3, y)− y2v1(x3, y)

)
dy1dy2 = 0 for a.e. (x3, y3) ∈ (0, L)× (0, 1),

∫ 1

0

vi(x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω
}
.

For every v ∈ [L2(0, 1;H1(ω))]3 we define e0y′ by

e0y′(v) =




e11,y′(v) | e12,y′(v) |
1

2

∂v3
∂y1

| |

e12,y′(v) | e22,y′(v) |
1

2

∂v3
∂y2

| |
1

2

∂v3
∂y1

|
1

2

∂v3
∂y2

| 0




. (5.9)

Lemma 5.3 There exists û
0
∈ V̂

0

such that (up to a subsequence)




1

δ2
Tε,δ(u

ε,δ)⇀ u+ û
0

weakly in [L2((0, L)× (0, 1);H1(ω))]3,

1

δ
Tε,δ(e(u

ε,δ))⇀ ey′(u) + e0y′(û
0
) weakly in [L2((0, L)× Y )]3×3,

where u is introduced in Lemma 3.2 with ey′ defined by (3.5) and where e0y′ is given by (5.9).

Proof We proceed as in the two previous Lemmas 5.1–5.2, but here using part 1 of Lemma

3.1.

The following section is devoted to the study of the whole limit field u according to the

different values of θ.

6 The Limit Problems

Let us make more precise the framework in which the convergences and, consequently, the

limit problems are obtained.

(1) First, based on the decomposition

E(U,Θ, u) =
d2U1

dx23




0 | 0 | 0
0 | 0 | 0
0 | 0 | −y1


+

d2U2

dx23




0 | 0 | 0
0 | 0 | 0
0 | 0 | −y2




+
1

2

dΘ

dx3




0 | 0 | −y2
0 | 0 | y1
−y2 | y1 | 0


+

1

2

du1
dx3




0 | 0 | 1
0 | 0 | 0
1 | 0 | 0




+
1

2

du2
dx3




0 | 0 | 0
0 | 0 | 1
0 | 1 | 0


+

du3
dx3




0 | 0 | 0
0 | 0 | 0
0 | 0 | 1


 ,
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we can represent this strain tensor in a more compact form (recall that Y = ω × (0, 1))

E(U,Θ, u)(x3, y) = gi(x3)Ai(y) for a.e. (x3, y) ∈ (0, L)× Y (6.1)

with an obvious definition of the matrices Ai and unknowns gi, i = 1, · · · , 6, formed with the

unknowns (U′′,Θ′, u′).

(2) Under the assumptions on the forces given in Subsection 2.4, (fi, fT , gα, f i
) ∈ [L2(0, L)]9

and for all displacement field (V,Ψ, v) ∈ VM we have introduced the potential energy
∫ L

0

F (V,Ψ, v)dx3

= |ω|

∫ L

0

(
fαVα +

(I1 + I2
|ω|

)
fTΨ−

( I1
|ω|

g1V
′

1 +
I2
|ω|

g2V
′

2

)
+ f

α
vα + f3v3

)
dx3. (6.2)

In the sequel we will also make use of another set of unknowns, namely, for the displacement

field V = (V′,Ψ, v), with (V,Ψ, v) ∈ VM we will associate the equivalent formulation of the

potential energy
∫ L

0

|ω|F · V dx3 (6.3)

with

F
T =

((∫ L

x3

f1(t)dt−
I1
|ω|

g1

)
,
( ∫ L

x3

f2(t)dt−
I2
|ω|

g2

)
,
I1 + I2
|ω|

fT , f1, f2
, f

3

)
. (6.4)

Even though the treatment of the three different values of θ is quite similar, we decided to

present them in three self-contained sub-sections.

6.1 The case lim
(ε,δ)→(0,0)

δ
ε
= +∞

To any ((V̂, Ψ̂, v̂), v̂) ∈ V̂per × V̂
∞

we associate the corrector field

V̂ =




V̂1 + v̂1 − y2Ψ̂

V̂2 + v̂2 + y1Ψ̂

v̂3 − y1
∂V̂1

∂y3
− y2

∂V̂2

∂y3




+ v̂ (6.5)

belonging to

V̂
.
=

{
V̂ ∈ [L2((0, L);H1

per(Y ))]3
∣∣∣
∫ 1

0

V̂ (x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω
}
.

The spaces V̂per × V̂
∞

(endowed with their usual norms) and V̂ are isometric. To any V̂ ∈ V̂

we associate the symmetric tensor (see (4.1) and (5.5))

E∞

y3
(V̂ ) =




0 0
1

2

∂V̂1
∂y3

0 0
1

2

∂V̂2
∂y3

1

2

∂V̂1
∂y3

1

2

∂V̂2
∂y3

∂V̂3
∂y3




. (6.6)
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By collecting the convergence results given by Lemmas 4.1 and 5.1 we can state the following

result.

Corollary 6.1 There exists a subsequence of (ε, δ), still denoted (ε, δ), limit displacement

fields and correctors (U,Θ, u) ∈ VM, u ∈ V and Û ∈ V̂ such that

1

δ
Tε,δ(e(u

ε,δ))⇀ E(U,Θ, u) + ey′(u) + E∞

y3
(Û) weakly in [L2((0, L)× Y )]3×3, (6.7)

where the strain tensors are given by (3.4)–(3.5) and (6.6).

We endow VM ×V × V̂ with the following norm:

‖((V,Ψ, v), v, V̂ )‖

=

√∫

(0,L)×Y

(E(V,Θ, v) + ey′(v) + E∞

y3
(V̂ )) : (E(V,Θ, v) + ey′(v) + E∞

y3
(V̂ ))dx3dy.

Lemma 6.1 On the space VM ×V × V̂, the norm ‖ · ‖ is equivalent to the usual norm of

this product spaces.

Proof Due to the fact that
∫ 1

0 V̂ (x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω, we first have

‖((V,Ψ, v), v, V̂ )‖2 =

∫

Ω

(E(V,Θ, v) + ey′(v)) : (E(V,Θ, v) + ey′(v))dx3dy1dy2

+

∫

(0,L)×Y

E∞

y3
(V̂ ) : E∞

y3
(V̂ )

)
dx3dy.

The 3D Korn’s inequality, the periodicity of V̂ and its mean value property imply the existence

of a constant C > 0 such that

‖V̂ ‖2[L2(0,L;H1(Y ))]3 ≤ C

∫

(0,L)×Y

E∞

y3
(V̂ ) : E∞

y3
(V̂ )dx3dy.

Then we easily prove (see [7])

‖V‖2[H2(0,L)]2 + ‖v‖2[H1(0,L)]3 + ‖Ψ‖H1(0,L) + ‖v‖2[L2((0,L)×ω)]3

≤

∫

Ω

(E(V,Θ, v) + ey′(v)) : (E(V,Θ, v) + ey′(v))dx3dy1dy2.

The existence and uniqueness of the limit fields and correctors (U,Θ, u, u) and Û are given

in the following theorem.

Theorem 6.1 The limit fields (U,Θ, u) ∈ VM, u ∈ V, Û ∈ V̂ solve the coupled variational

problems:
∫

(0,L)×Y

A(y)(E(U,Θ, u) + ey′(u) + E∞

y3
(Û)) : (E(V,Ψ, v) + ey′(v) + E∞

y3
(V̂ ))dx3dy

=

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM, v ∈ V, V̂ ∈ V̂, (6.8)

where the potential energy is given by (6.2).
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Proof Based on the decomposition (2.11) we choose (V,Ψ, v) ∈ VM, v ∈ [C1(Ω)]3 ∩ V

vanishing on Γ0,δ and we select the test-function

vεδ(x) =




V1(x3) + v1(x3)− x2Ψ(x3)

V2(x3) + v2(x3) + x1Ψ(x3)

v3(x3)− x1
dV1

dx3
− x2

dV2

dx3




+ δ2v
(
x3,

x1
δ
,
x2
δ

)
.

A straightforward calculation leads to the convergences

1

δ
Tε,δ(e(v

ε,δ)) → E(V,Ψ, v) + ey′(v) strongly in [L2((0, L)× Y )]3×3,

1

δ2

∫

Ωδ

Fδ · v
ε,δ dx→

∫ L

0

F (V,Ψ, v)dx3.

Now, dividing (2.17) by δ2 then transforming with Tε,δ (the left hand-side) leads to
∫

(0,L)×Y

Tε,δ(a
ε,δ)

1

δ
Tε,δ(e(u

ε,δ)) :
1

δ
Tε,δ(e(v

ε,δ))dx3dy =
1

δ2

∫

Ωδ

Fδ · v
ε,δdx,

and by passing to the limit, we get
∫

(0,L)×Y

A(y)(E(U,Θ, u) + ey′(u) + E∞

y3
(Û)) : (E(V,Ψ, v) + ey′(v))dx3dy

=

∫ L

0

F (V,Ψ, v)dx3.

Let us introduce the correctors V̂ ∈ [C∞

c (0, L;H1
per(Y ))]6 ∩ V̂ and consider the second test-

functions v̂ε,δ as

v̂ε,δ(x) = δ2V̂
(
x3,

x1
δ
,
x2
δ
,
{x3
ε

})
for a.e. x ∈ Ωδ.

The simple computation 1
δ
∂v̂ε,δ

∂xα
= ∂V̂

∂yα
and 1

δ
∂v̂ε,δ

∂x3

= δ ∂V̂
∂x3

+ δ
ε

∂V̂
∂y3

yields the strong convergence

1

δ
Tε,δ(e(v̂

ε,δ)) → E∞

y3
(V̂ ) strongly in [L2((0, L);H1(Y ))]3×3

which, since
∫
Ωδ
Fδ · v̂

ε,δdx→ 0, achieves establishing (6.8).

Set C∞ the 6× 6 symmetric matrix defined by its elements

C∞

mp =

∫

Y

A(y)B∞

m (y) : Ap(y)dy =

∫

Y

A(y)B∞

m (y) : B∞

p (y)dy, (6.9)

where the second order tensors B∞

m are given in (6.13).

Theorem 6.2 Under the assumptions on the forces given in Section 2.4, (fi, fT , gα, f i) ∈

[L2(0, L)]9, the limit displacement field (U,Θ, u) ∈ VM is the solution of the variational problem

∫ L

0

C∞
U

′ · V ′dx3 =

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM, (6.10)

where the symmetric matrix C∞ is given in (6.9) and where

U = (U′

1 | U′

2 | Θ | u1 | u2 | u3)
T, V = (V′

1 | V′

2 | Ψ | v1 | v2 | v3)
T.
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Proof For all v ∈ V, V̂ ∈ V̂, set ṽ = v + V̂ and denote

G∞

y (ṽ) = ey′(v) + E∞

y (V̂ ).

We rewrite (6.8) with (V,Ψ, v) = 0 that as:

Find ṽ ∈ V ⊕ V̂ such that for all ṽ ∈ V ⊕ V̂,

∫

Y

AG∞

y (ũ) : G∞

y (ṽ)dy = −

∫

Y

AE(U,Θ, u) : G∞

y (ṽ)dy. (6.11)

We consider the decomposition of the strain tensor E as given by (6.1), and we introduce

the 6 auxiliary fields ξ̃∞i ∈ V ⊕ V̂, i = 1, · · · , 6, as the unique solution to the following six

independent variational problems:

∫

Y

AG∞

y (ξ̃∞i ) : G∞

y (ṽ)dy = −

∫

Y

AAi : G
∞

y (ṽ)dy. (6.12)

The solution of problem (6.11) is under the form ũ(x3, y) = gi(x3) ξ̃
∞

i (y).

Hence ey′(u) + E∞

y (Û) = G∞

y (ũ) = giG
∞

y (ξ̃∞i ). Let us return to the limit homogeneous

problem (6.8) with v̂ = 0, V̂ = 0:

∫

(0,L)×Y

A(gmAm + giG
∞

y (ξ̃∞i )) : hjAjdx3dy =

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM,

where h is formed with the unknowns (V′′,Ψ′, v′). Letting

B∞

i = Ai +G∞

y (ξ̃∞i ), i = 1, · · · , 6, (6.13)

we get
∫ L

0

gi(x3)hj(x3)
( ∫

Y

A(y)B∞

i (y) : Aj(y)dy
)
dx3 =

∫ L

0

F (V,Ψ, v)dx3.

6.2 The case lim
(ε,δ)→(0,0)

δ
ε
= θ ∈]0,∞[

To any ((V̂, Ψ̂, v̂), v̂) ∈ V̂per × V̂
θ

we associate the corrector field

V̂ =
1

θ




1

θ
V̂1 + v̂1 − y2Ψ̂

1

θ
V̂2 + v̂2 + y1Ψ̂

v̂3 − y1
∂V̂1

∂y3
− y2

∂V̂2

∂y3




+ v̂ (6.14)

belonging to

V̂
.
=

{
V̂ ∈ [L2((0, L);H1

per(Y ))]3
∣∣∣
∫ 1

0

V̂ (x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω
}
.
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The spaces V̂per × V̂
θ

and V̂ (endowed with their usual norms) are isometric. To any V̂ ∈ V̂

we associate the symmetric tensor (see (4.1) and (5.7)),

Eθ
y(V̂ ) =




e11,y′(V̂ ) e12,y′(V̂ )
1

2

(
θ
∂V̂1
∂y3

+
∂V̂3
∂y1

)

e12,y′(V̂ ) e22,y′(V̂ )
1

2

(
θ
∂V̂2
∂y3

+
∂V̂3
∂y2

)

1

2

(
θ
∂V̂1
∂y3

+
∂V̂3
∂y1

) 1

2

(
θ
∂V̂2
∂y3

+
∂V̂3
∂y2

)
θ
∂V̂3
∂y3




. (6.15)

By collecting the convergence results given by Lemmas 4.1 and 5.2 we can state the following

result.

Corollary 6.2 There exists a subsequence of (ε, δ), still denoted (ε, δ), limit displacement

fields and correctors (U,Θ, u) ∈ VM, u ∈ V and Û ∈ V̂ such that

1

δ
Tε,δ(e(u

ε,δ))⇀ E(U,Θ, u) + ey′(u) + Eθ
y(Û) weakly in [L2((0, L)× Y )]3×3, (6.16)

where the limit of the symmetric strain tensor is obtained using (3.4)–(3.5) and (6.15).

We endow VM ×V × V̂ with the following norm:

‖((V,Ψ, v), v, V̂ )‖

=

√∫

(0,L)×Y

(E(V,Θ, v) + ey′(v) + Eθ
y(V̂ )) : (E(V,Θ, v) + ey′(v) + Eθ

y(V̂ ))dx3dy .

Lemma 6.2 On the space VM ×V × V̂, the norm ‖ · ‖ is equivalent to the usual norm of

this product spaces.

Proof Due to the fact that
∫ 1

0
V̂ (x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω, we first have

‖((V,Ψ, v), v, V̂ )‖2 =

∫

Ω

(E(V,Θ, v) + ey′(v)) : (E(V,Θ, v) + ey′(v))dx3dy1dy2

+

∫

(0,L)×Y

Eθ
y(V̂ ) : Eθ

y(V̂ )
)
dx3dy.

Now, consider the change of variable y = (y1, y2, y3) ∈ Y ⇔ z = (y1, y2, θy3) ∈ Y θ =

ω × (0, θ) which transforms the scaled beam of section ω and length 1 to a beam of section ω

and length θ. We define the new function V̂ θ ∈ [L2((0, L);H1
per(Y

θ))]3 associated to V̂ given

by (6.14),

V̂ θ(z) = V̂
(
z1, z2,

z3
θ

)
, ∀z ∈ Y θ. (6.17)

One has

Ez(V̂
θ)(z) = (eij,z(V̂

θ)(z)) = Eθ
y(V̂ )

(
z1, z2,

z3
θ

)
.
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The 3D Korn’s inequality, the periodicity of V̂ and the mean value property of V̂ imply the

existence of a constant C (which depends on θ) such that

‖V̂ θ‖2[L2(0,L;H1(Y θ))]3 ≤ C

∫

(0,L)×Y θ

Ez(V̂
θ) : Ez(V̂

θ)
)
dx3dz.

Hence, there exists a constant C (which depends on θ) such that

‖V̂ ‖2[L2(0,L;H1(Y ))]3 ≤ C

∫

(0,L)×Y

Eθ
y(V̂ ) : Eθ

y(V̂ )dx3dy. (6.18)

We easily prove (see [7]),

‖V‖2[H2(0,L)]2 + ‖v‖2[H1(0,L)]3 + ‖Ψ‖H1(0,L) + ‖v‖2[L2((0,L)×ω)]3

≤

∫

Ω

(E(V,Θ, v) + ey′(v)) : (E(V,Θ, v) + ey′(v))dx3dy1dy2.

The existence and uniqueness of the limit displacement fields and correctors (U,Θ, u, u) and

Û are given in the following theorem whose proof is obtained as in the previous section.

Theorem 6.3 The limit fields (U,Θ, u) ∈ VM, u ∈ V, Û ∈ V̂ solve the coupled variational
problems:

∫

(0,L)×Y

A(E(U,Θ, u) + ey′(u) + E
θ
y(Û)) : (E(V,Ψ, v) + ey′(v) + E

θ
y(V̂ ))dx3dy

=

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM, v ∈ V, V̂ ∈ V̂, (6.19)

where the potential energy is given in (6.2).

Then we are in the position to state the main result in the case θ ∈]0,∞[.

Theorem 6.4 Under the assumptions on the forces given in Section 2.4, (fi, fT , gα, f i) ∈

[L2(0, L)]9, the limit displacement field (U,Θ, u) ∈ VM is the solution of the variational problem

∫ L

0

Cθ
U

′ ·V ′dx3 =

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM (6.20)

and the 6× 6 symmetric matrix Cθ is given in (6.22) and where

U = (U′

1 | U′

2 | Θ | u1 | u2 | u3)
T, V = (V′

1 | V′

2 | Ψ | v1 | v2 | v3)
T.

Proof The proof follows the same scheme as before. For all v ∈ V, V̂ ∈ V̂, we set ṽ = v+V̂ ,

denote Gθ
y(ṽ) = ey′(v) + Eθ

y(V̂ ) and introduce the 6 auxiliary fields ξ̃θi ∈ V ⊕ V̂, i = 1, · · · , 6,

as the unique solution to the following six independent variational problems:
∫

Y

AGθ
y(ξ̃

θ
i ) : G

θ
y(ṽ)dy = −

∫

Y

AAi : G
θ
y(ṽ)dy. (6.21)

The limit problem (6.20) is obtained by defining the 6× 6 matrix Cθ by its elements, as

Cθ
mp =

∫

Y

A(y)Bθ
m(y) : Ap(y)dy =

∫

Y

A(y)Bθ
m(y) : Bθ

p(y)dy (6.22)

with

Bθ
i = Ai +Gθ

y(ξ̃
θ
i ), i = 1, · · · , 6.
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6.3 The case lim
(ε,δ)→(0,0)

δ

ε
= 0

To any ((V̂, Ψ̂, v̂), v̂) ∈ V̂per × V̂
0

we associate the corrector field

V̂ =




V̂1 + v̂1 − y2Ψ̂

V̂2 + v̂2 + y1Ψ̂

v̂3 − y1
∂V̂1

∂y3
− y2

∂V̂2

∂y3




+ v̂ (6.23)

belonging to

V̂
.
=

{
V̂ ∈ [L2((0, L);H1

per(Y ))]3
∣∣∣
∫

(0,1)

V̂ (x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω
}
.

The spaces (endowed with their usual norms) V̂per × V̂
0

and V̂ are isometric. To any V̂ ∈ V̂

we associate the symmetric tensor (see (4.1) and (5.9))

E0
y′(V̂ ) =




e11,y′(V̂ ) | e12,y′(V̂ ) |
1

2

∂V̂3
∂y1

| |

e12,y′(V̂ ) | e22,y′(V̂ ) |
1

2

∂V̂3
∂y2

| |

1

2

∂V̂3
∂y1

|
1

2

∂V̂3
∂y2

| 0




. (6.24)

By collecting the convergence results given by Lemmas 4.1 and 5.3 we can state the following

result.

Corollary 6.3 There exists a subsequence of (ε, δ), still denoted (ε, δ), limit displacement

fields and correctors (U,Θ, u) ∈ VM, u ∈ V and Û ∈ V̂ such that

1

δ
Tε,δ(e(u

ε,δ))⇀ E(U,Θ, u) + ey′(u) + E0
y′(Û) weakly in [L2((0, L)× Y )]3×3, (6.25)

where the strain tensors are given by (3.4)–(3.5) and (6.24).

We endow VM ×V × V̂ with the following norm:

‖((V,Ψ, v), v, V̂ )‖

=

√∫

(0,L)×Y

(
E(V,Θ, v) + ey′(v) + E0

y′(V̂ )
)
:
(
E(V,Θ, v) + ey′(v) + E0

y′(V̂ )
)
dx3dy.

Lemma 6.3 On the space VM ×V × V̂, the norm ‖ · ‖ is equivalent to the usual norm of

this product spaces.

Proof Due to the fact that
∫ 1

0
V̂ (x3, y)dy3 = 0 for a.e. (x3, y1, y2) ∈ Ω, we first have

‖((V,Ψ, v), v, V̂ )‖2 =

∫

Ω

(E(V,Θ, v) + ey′(v)) : (E(V,Θ, v) + ey′(v))dx3dy1dy2

+

∫

(0,L)×Y

E0
y′(V̂ ) : E0

y′(V̂ )
)
dx3dy.
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The 3D Korn’s inequality, the periodicity of V̂ and the mean value property of V̂ imply the

existence of a constant C. Hence, there exists a constant C such that

‖V̂ ‖2[L2(0,L;H1(Y ))]3 ≤ C

∫

(0,L)×Y

E0
y(V̂ ) : E0

y(V̂ )
)
dx3dy.

We easily prove that (see [7])

‖V‖2[H2(0,L)]2 + ‖v‖2[H1(0,L)]3 + ‖Ψ‖H1(0,L) + ‖v‖2[L2((0,L)×ω)]3

≤

∫

Ω

(E(V,Θ, v) + ey′(v)) : (E(V,Θ, v) + ey′(v))dx3dy1dy2.

The existence and uniqueness of the limit fields and correctors (U,Θ, u, u) and Û are given

in the following lemma.

Theorem 6.5 The limit fields (U,Θ, u) ∈ VM, u ∈ V, Û ∈ V̂ solve the coupled variational
problems:

∫

(0,L)×Y

A(E(U,Θ, u) + ey′(u) + E
0
y′(Û)) : (E(V,Ψ, v) + ey′(v) + E

0
y′(V̂ ))dx3dy

=

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM, v ∈ V, V̂ ∈ V̂, (6.26)

where the potential energy is given by (6.2).

Then we are in the position to state the main result in the case θ = 0.

Theorem 6.6 Under the assumptions on the forces given in Section 2.4, (fi, fT , gα, f i) ∈

[L2(0, L)]9, the limit displacement field (U,Θ, u) ∈ VM is the solution of the variational problem

∫ L

0

C0
U

′ ·V ′dx3 =

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM, (6.27)

where the 6× 6 symmetric matrix C0 is given in (6.30) and where

U = (U′

1 | U′

2 | Θ | u1 | u2 | u3)
T, V = (V′

1 | V′

2 | Ψ | v1 | v2 | v3)
T.

Proof The proof follows the same scheme as before. For all v ∈ V, V̂ ∈ V̂, set ṽ = v + V̂

and denote

G0
y(ṽ) = ey′(v) + E0

y(V̂ ).

We rewrite (6.26) with (V,Ψ, v) = 0 as: Find ṽ ∈ V ⊕ V̂ such that for all ṽ ∈ V ⊕ V̂,

∫

Y

AG0
y(ũ) : G

0
y(ṽ)dy = −

∫

Y

AE(U,Θ, u) : G0
y(ṽ)dy. (6.28)

We consider the decomposition of the strain tensor E as given by (6.1) and introduce the 6

auxiliary fields ξ̃0i ∈ V⊕V̂, i = 1, · · · , 6, as the unique solution to the following six independent

variational problems:
∫

Y

AGθ
y(ξ̃

0
i ) : G

0
y(ṽ)dy = −

∫

Y

AAi : G
0
y(ṽ)dy. (6.29)
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The solution of problem (6.28) is under the form

ũ(x3, y) = gi(x3) ξ̃
0
i (y).

Hence ey′(u) + E0
y′(Û) = G0

y(ũ) = giG
0
y(ξ̃

0
i ). Let us return to the limit homogeneous problem

(6.26) with v̂ = 0, V̂ = 0,

∫

(0,L)×Y

A(gmAm + giG
0
y(ξ̃

0
i )) : hjAjdx3dy =

∫ L

0

F (V,Ψ, v)dx3, ∀(V,Ψ, v) ∈ VM,

where h is formed with the unknowns (V′′,Ψ′, v′). Letting

B0
i = Ai +G0

y(ξ̃
0
i ), i = 1, · · · , 6,

we get
∫ L

0

gi(x3)hj(x3)
( ∫

Y

A(y)B0
i (y) : Aj(y)dy

)
dx3 =

∫ L

0

F (V,Ψ, v)dx3.

The limit problem (6.27) is obtained by defining the 6× 6 matrix C0 by its elements

C0
mp =

∫

Y

A(y)B0
m(y) : Ap(y)dy =

∫

Y

A(y)B0
m(y) : B0

p(y)dy. (6.30)

6.4 Strong formulation

Let us remark that the six order unknown U = (U i) = (U′,Θ, u) ∈ [H1(0, L)]6 obtained for

lim
(ε,δ)→(0,0)

δ
ε
= +∞, θ, 0 solve respectively the limit problems (6.10), (6.20), (6.27) which can be

written in the form ∫ L

0

CU ′ · V ′ dx3 =

∫ L

0

F ·V dx3,

where

V = (V′

1 | V′

2 | Ψ | v1 | v2 | v3)
T, (V,Ψ, v) ∈ VM

and where F is given in (6.4), and the fourth order symmetric positive elasticity tensor takes

respectively the value C∞, Cθ, C0 associated to the fields U∞,Uθ,U0.

Since, whatever the value of lim
(ε,δ)→(0,0)

δ
ε
, we have the boundary condition U(0) = 0. One

can also write these problems as

−C
d2U

dx23
= F , U(0) = 0,

dU

dx3
(0) = 0.

Remark 6.1 Even though the initial elasticity tensor aε,δ is diagonal and depending only

upon the variable x3, generally, the homogenized six-order elasticity tensor C∞, Cθ and C0, given

respectively by (6.9), (6.22) and (6.30), will be coupled so that the limit fields U∞,Uθ,U0 will

be the solution of coupled systems.
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7 Asymptotic Expansion

We recall the decomposition (2.11),

uε,δ(x) = U
ε,δ(x3) + uε,δ(x3) +




−
dUε,δ

2

dx3
(x3)

+
dUε,δ

1

dx3
(x3)

Θε,δ(x3)




∧ (x1e1 + x2e2) + uε,δ(x) a.e. x ∈ Ωδ.

With appropriate definition of the vectors û, Û and of the functional spaces V̂, V̂ (according to

the value of the limit θ), we have established in (4.3), (6.7), (6.16) and (6.25) the existence of

limits

(U,Θ, u) ∈ VM, u ∈ V, û ∈ V̂, Û ∈ V̂

such that




Tε,δ(u
ε,δ)⇀ U weakly in [L2(0, L;H1(Y ))]3,

1

δ
Tε,δ(u

ε,δ − U
ε,δ)⇀ u+R weakly in [L2(0, L;H1(Y ))]3,

1

δ2
Tε,δ(u

ε,δ − Uε,δ
e )⇀ u+ û weakly in [L2(0, L;H1(Y ))]3,

1

δ
Tε,δ(e(U

ε,δ
e ))⇀ E(U,Θ, u) + ey′(u) + Ey(Û) weakly in [L2((0, L)× Y )]9

with

R(x) =




−
dU2

dx3
(x3)

+
dU1

dx3
(x3)

Θ(x3)




∧ (x1e1 + x2e2) for a.e. (x ∈ Ωδ).

This suggest an asymptotic expansion up to the second order in ε, δ,

uε,δ(x) = U(x3) +R(x) + εR̂ε(x) + δu(x3)

+ εδû
(
x3,

{x3
ε

})
+ δ2u

(
x3,

x1
δ
,
x2
δ

)
+ δ2û

(
x3,

x1
δ
,
x2
δ
,
{x3
ε

})
+ · · ·

with

R̂ε(x) =




−
dÛ2

dy3

(
x3,

{x3
ε

})

+
dÛ1

dy3

(
x3,

{x3
ε

})

Θ̂
(
x3,

{x3
ε

})




∧ (x1e1 + x2e2). (7.1)

It is of interest to note that the corrector û appears in the expansion at the same order δ2 as u.

Remark 7.1 Following the lines of [4, Chapter 10, Section 9] we obtain these two results.

(1) The function θ 7→ Cθ from [0,+∞] into R
6×6 is continuous and uniformly elliptic. And

as an immediate consequence we can establish that the function θ 7→ Uθ = (Uθ,Θθ, uθ) from

[0,+∞] into VM is continuous.
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(2) We can also prove that the limit problem corresponding to θ = 0 is the one obtained

when first ε goes to 0 and then δ while the limit problem for θ = +∞ is the one obtained when

first δ goes to 0 and then ε (see also [6]).
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