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Abstract The development of foils for racing boats has changed the strategy of sailing.
Recently, the America’s cup held in San Francisco, has been the theatre of a tragicomic
history due to the foils. During the last round, the New-Zealand boat was winning by 8 to
1 against the defender USA. The winner is the first with 9 victories. USA team understood
suddenly (may be) how to use the control of the pitching of the main foils by adjusting the
rake in order to stabilize the ship. And USA won by 9 victories against 8 to the challenger
NZ. The goal in this paper is to point out few aspects which could be taken into account
in order to improve this mysterious control law which is known as the key of the victory of
the USA team. There are certainly many reasons and in particular the cleverness of the
sailors and of all the engineering team behind this project. But it appears interesting to
have a mathematical discussion, even if it is a partial one, on the mechanical behaviour of
these extraordinary sailing boats. The numerical examples given here are not the true ones.
They have just been invented in order to explain the theoretical developments concerning
three points: The possibility of tacking on the foils for sailing upwind, the nature of foiling
instabilities, if there are, when the boat is flying and the control laws.

Figure 1 Principle of the flying boat with the AC45 of Oracle USA Team—TV snapshot.
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1 Introduction

The control of foiling during the America’s cup appeared to be a determinant point in

the success of Oracle Team USA (OTUSA for short). In particular during upwind legs, when

the boat had to avoid the waves created by the wake of the preceding boat, the automatic

stabilization is a fundamental advantage that OTUSA exploited in a smart way and finally won

the competition. Such situations are represented on the Figures 2 taken from TV transmissions

during the America’s cup in San Francisco (September 2013).

Figure 2 Two situations where the controlled foiling could avoid tacking.

In this paper, we have tried to give a simple and precise mathematical model and analysis of

such boats. Even if a more industrial 3D analysis would be obviously more realistic, and in order

to be as simple as possible, we restrict our analysis to a bi-dimensional case. Hence, only two

movements of the ship are taken into account: The heaving which is a normal displacement to

the surface of the sea, and the pitching which is the rotation around a horizontal axis transverse

to the main direction of the ship. Hence, the yawing angle and the rolling are eliminated from

our model. Obviously they are meaningful, but according to our mind, not necessary for the

understanding of our purpose.

The inclination of the main foil should be manually driven but a hydraulic ram can be used

for the control process (rules of the race) using the high pressure collected from a small hole in

the foil. Because the system is a second order one (with inertia, damping and stiffness), only

a phase control can lead to optimal results (see [1, 2, 10]). This driven angle is named the

rake. It appears, in the numerical simulations, that the regulation law strongly depends on the

ship velocity. Even if the experimental data that we introduce in our numerical model could

be improved, they are sufficient in order to give an idea of how things work.

The aim of this paper is to obtain a faithful dynamical model of the movement of the boat

which respects the following facts:

(1) the existence of the foiling velocity under which the boat can not stand up on its foil,

(2) the possibility that the velocity of the boat can be greater than the wind velocity,

(3) the possibility to discuss the stall flutter phenomenon of the foils.

The plane of our work is the following one: We first compute the aerodynamic propulsion

force due to the wind and which is applied on the sails bearing in mind its importance since it

is the unique energy source of the boat. We then establish a nonlinear model which take into
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account the apparent velocity of the water flow at the rear and main foils. We then analyze

the steady state of the nonlinear model and a numerical study will point out the overspeed

phenomena. We finally study the stability of the linear model and discuss the stall-flutter

phenomenon. A part of the work was the characterization of the foiling velocity at which the

boat takes off. All our theoritical work is illustrated with numerical results with computations

performed with Matlab. The fundamental tools for the numerical analysis are developed in the

book of Ciarlet [3].

2 Dynamical Model of the Boat

2.1 Description of the boat and main notations

The orthonormal basis of R3 is denoted by (ex, ey, ez). The velocity of the boat is −uex

where u > 0 and therefore the velocity of the flow of the water in the basis connected to the

boat is uex. As said before, the movement is assumed to be represented by two functions (see

Figure 3): The heaving z and the pitching angle γ in the plane (ez, ex). The equilibrium is

written at an arbitrary point—say O. For sake of convenience, it is chosen to be the center of

rotation of the main foil.

′

Figure 3 The boat with the foils.

The following notations are used.

Characteristics of the boat, of the air and of the water:

⋄ ̺a mass density of the air,

⋄ ̺e mass density of the water,

⋄ g = 9.81 m/s2 is the gravity,

⋄ −uex velocity of the ship,

⋄ M is the mass of the ship,



430 P. Destuynder and C. Fabre

⋄ G center of mass of the boat,

⋄ JG is the inertia around the center of mass G in the pitching,

⋄ JO is the inertia around the center of mass O in the pitching,

⋄ Mo is the moment of the external forces at point O in the pitching,

⋄ ds = O′S is the length of the stick supporting the steering rudder, O′ being the anchor

point of the rear foil,

⋄ df = OF is the length of the foil in the depth direction,

⋄ Ss, Sf are respectively the cross sections of the foils at the extremities of the rudder and

the main foil,

⋄ a (respectively b) is the distance between the center of mass and O (respectively O′),

⋄ h = a+ b = OO′,

⋄ dog is the distance from the rotation point of the foil to the center of mass of this foil.

Variables for the description of the movement of the boat:

⋄ z is the heaving,

⋄ γ is the pitching angle,

For the angles, apparent velocities and forces:

⋄ α is the angle of attack of the mail foil,

⋄ β is the angle of attack of the rear foil, it is supposed to be fixed,

⋄ czf and czs are the lift hydrodynamic coefficients for the main foil and the rear foil. They

are continuous in their variables,

⋄ cmf and cms are the pitching hydrodynamic coefficients at points F and S. They are

continuous functions in their variables,

⋄ v is the absolute wind velocity: It is in the plane (ex, ey),

⋄ V the modulus of v, absolute wind velocity,

⋄ θ = ̂(v,−ex) is the angle between the velocity of the wind and the direction in which the

boat is moving forward,

⋄ Va is the modulus of the apparent velocity of the wind,

⋄ Vas, Vaf are respectively the apparent flow velocity at the two foils: One on the rudder

and the other one which, is the main one, supported by the daggerboard,

⋄ u is the modulus of the velocity of the ship,

⋄ cf and ξ are respectively the stiffness and the damping coefficient of the system used for

the stabilisation of the main foil.

The forces applied to the ship and implying an evolution of these two previous functions,

are those due the rear and the main foils. The local hydrodynamical coefficients (cz for the lift

and cm for the pitching moment) depend respectively on the apparent local angle of attack of

each foil. For the rear foil, it is denoted by (β + γ)a and (α + γ)a for the main one.

2.2 The apparent velocity of the wind

Even if it is a side subject for our main purpose, it is worth to recall how the apparent wind

velocity can induce overspeed for particular positions of the boat with respect to the direction

of the wind. The formulae used in this section, are not original. Our goal is only to show with

a simple numerical simulation, the influence of various parameters on the boat velocity and
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mainly the one of the sailing position and of the drag coefficient of the bows or the foils in the

water.

Let us consider the situation represented on Figure 4. Following the notations of this figure,

the apparent wind velocity is given by

va = v − uex = −(V cos(θ) + u)ex + V sin(θ)ey, (2.1)

and its modules is equal to

V 2
a = V 2

[

1 +
u2

V 2
+ 2

u

V
cos(θ)

]

. (2.2)

The apparent angle between the normal to the sail plane and this apparent wind velocity is

µa = (̂n, va) and it satisfies

va = Va cos
(π

2
+ µa

)

τ + Va sin
(π

2
+ µa

)

n = Va[cos(µa)n− sin(µa)τ ], (2.3)

Figure 4 The sail plane and the apparent wind.

and therefore

va · n = Va cos(µa) = (v − uex) · n = v · n− sin(ζ)u

= −V cos(θ) sin(ζ) + V sin(θ) cos(ζ) − sin(ζ)u

= V sin(θ − ζ)− sin(ζ)u.

Using (2.3), we get

Va cos(µa) = V sin(θ − ζ)− sin(ζ)u,



432 P. Destuynder and C. Fabre

and thus

µa = arccos

( sin(θ − ζ)− u

V
sin(ζ)

√

1 +
u2

V 2
+ 2

u

V
cos(θ)

)

. (2.4)

The propulsion force due to the wind denoted by Fx, is the projection on the direction ex of

the aerodynamical force applied to the sail. For sake of simplicity it can be written (the square

of the cos(µa) takes into account the normal component of the apparent wind velocity and n is

the unit normal to the sail plane) as

Fx =
1

2
ρaSa(va.n)

2cxan.ex.

In fact, a correction coefficient is included in the surface Sa which takes into account the

aerodynamical coefficient cz(µa) of the sail. With (2.3) we get

Fx =
1

2
ρaSaV

2
a cos2(µa)cxa sin(ζ).

The drag force is the sum of two contributions: One due to the sail and another one due

to the drag in the water of the bows (zero during the flight) and the foils which are always

immersed. Furthermore, the last term depends on both β + γ and α + γ. Let us assume that

this drag force can be evaluated by

Tx =
1

2
ρeSeu

2cxe,

where Se is the cross section immerged into the water and cxe the corresponding drag coefficient.

In fact, the important number is the product Secxe. It is about 1.5 m2 for a ship floating and

about 1 m2 for a flying one as far as the profil of the foils are correctly drawn.

2.3 The overspeed phenomenon

We deduce that the velocity u of the boat is obtained by solving the equation

Fx − Tx = 0.

Due to the complexity of this equation, it is easier to perform numerical tests. We have

drawn on Figure 5 the sign of the function Fx − Tx with respect to the two variables u on the

abscissa which is the velocity of the ship and ζ on the ordinate which is the angle of the sail

plane with the direction ex (velocity of the boat). The boundary between the two areas (black

and white) are the solutions.

The Figure 5a is concerned with a floating boat (which has its bows in the water) whereas

Figure 5b and Figure 5c illustrate the case of a flying boat.

For the floating boat, it appears, with the set of data used, that the absolute wind velocity

can not be overtaken with our choice for the physical data. For the flying boat, the absolute

wind velocity can be exceeded. This is due to the reduction of the drag force on the bows in the

water. In fact the pictures on these figures show that a tacking for upwind sailing is much better

with large angles concerning the velocity because it enables to make the boat flying above the
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Figure 5a A floating boat: SCxe = 0.3m2, V = 20m/s,
θ = 0.67rd (left ) and θ = 1.03rd (right). The speed is

smaller than V.

Figure 5b A flying boat: SCXe = 0.01m2, V = 10m/s
θ = 0.67rd (left) and θ = 1.03rd (right). The speed can

be greater than 2V.

Figure 5c A flying boat: SCXe = 0.01m2, V = 20m/s.

The speed can be greater than 2V.

Figure 5

water using the foils. And even if the distance covered is more important, the time necessary

can be smaller. But the flight must be stabilized similarly to what is done with an aircraft.

Because, even if the flight is stable, there can be perturbations due to the gravity waves for

instance. This is more critical if the boat has to cross over the wake of a preceding boat. In



434 P. Destuynder and C. Fabre

fact the phenomena are very close for a simple reason: The ratio between the aerodynamical

forces on the wing of an aircraft is similar to the one applied to the foil of a flying ship. In fact,

the ratio between the mass density of the water and the one of the air is about 1000/1.2 ≃ 833

and the one between the square of the velocities is about (10/290)2 ≃ 1/841.

And the equivalence is deduced from the fact that the forces are proportional to the mass

density times the square of the velocity.

3 Dynamical Equations

3.1 The apparent flow velocities on the foils

The apparent velocity of the water on the foils implies the terms γ̇ and ż. It is the difference

between the wind velocity and the one of the boat. First of all, let us give the expressions of

the velocities of the points S and F corresponding respectively to the rudder and the main foil

where the hydrodynamic forces are given from hydrotunnel tests. We refer to Figure 3.

One has

Vs = (ż − hγ̇ cos(γ))ez − hγ̇ sin(γ)ex +
d
−−→
O′S

dt
.

In another way, we have

−−→
O′S = ds cos

(

γ − π

2

)

(−ex) + ds sin
(

γ − π

2

)

ez

= −ds sin(γ)ex − ds cos(γ)ez,

and therefore the velocity of the flow at point S is equal to

Vs = (ż − hγ̇ cos(γ) + dsγ̇ sin(γ))ez + (−hγ̇ sin(γ)− dsγ̇ cos(γ))ex. (3.1)

We get analogous results at point F where the velocity of the flow is

Vf = (ż + df (α̇+ γ̇) sin(α+ γ))ez − df (α̇+ γ̇) cos(γ)ex. (3.2)

The computations of the hydrodynamic apparent velocities are performed at points S and F

in the axis (ex, ez). These apparent flow velocities are defined as the difference between the

absolute flow velocity and the one of the point considered. Let us notice that there are two

different notions for the apparent velocity. The one of the wind and the one of the hydrodynamic

flow on the foils. From now on, it is the second one which is taken under consideration. It is

given by the following formulae (see [6, 9]):

Vas = uex − Vs and Vaf = uex − Vf ,

and we then obtain

Vas = (u+ γ̇(h sin(γ) + ds cos(γ)))ex − (ż − γ̇(h cos(γ)− ds sin(γ)))ez (3.3)

and

Vaf = (u+ df (α̇+ γ̇) cos(γ + α))ex − (ż + df (α̇+ γ̇) sin(γ + α))ez . (3.4)
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Furthermore, the hydrodynamic apparent angle of attack of both the extremity of the rudder

and the one of the driven foil, which are denoted by (β + γ)a and (α + γ)a, are given by the

following expressions ((·, ·)3 is the scalar product in R3):















(β + γ)a = arsin
(

(ey,
Vas

|Vas|
∧ (cos(β + γ)ex − sin(β + γ)ez)3

)

,

(α+ γ)a = arsin
(

(ey,
Vaf

|Vaf |
∧ (cos(α+ γ)ex − sin(α+ γ)ez)3

)

.
(3.5)

3.2 The equations of the movement of the boat

The equations of the movement are the following ones (the right-hand-side is derived from

the factor of ż and γ̇ in the expression of the power of the hydrodynamical forces):



































































Mz̈ − aM cos(γ)γ̈

= −Mg +
̺eSs|Vas|2

2
czs((β + γ)a) +

̺eSf |Vaf |2
2

czf ((α+ γ)a)

−aM cos(γ)z̈ + J0γ̈

= −̺eSs(h cos(γ)− ds sin(γ))|Vas|2
2

czs((β + γ)as)

+
̺eSfdf sin(α+ γ)|Vaf |2

2
czf ((α+ γ)af )−M0

+
̺eSsL|Vas|2

2
cms((β + γ)a) +

̺eSfL|Vaf |2
2

cmf ((α + γ)a).

(3.6)

If the point O was chosen as the center of hydrodynamic forces, then one would have M0 = 0.

3.3 On the steady state

First of all, let us characterize the equilibrium position of the ship. The term (α0, β0)

corresponding to the equilibrium of the ship over the water (γ = 0) is the solution of















Ssczs(β
0) + Sfczf (α

0) =
2Mg

̺eu2
,

−Ssh

L
czs(β

0) +
Sfdf sin(α

0)

L
czf (α

0) + Sscms(β
0) + Sfcmf (α

0) =
2M0

̺eLu2
.

(3.7)

It can happen that there is no solution to system (3.7) and there may be several reasons for

this: For instance, it could be because there is no solution at all or because there is no acceptable

solution. Indeed, the angles α0 and β0 must be small enough and the interval
[

− π
8 ,

π
8

]

seems to

be reasonable. Of course, in order to solve (3.7), we have to know the different hydrodynamic

coefficients involved in it. We assume in the following computations that these coefficients

depend linearly on their variable. It means that the angles α0 and β0 are assumed smaller than

the static stall values. We prove the following theorem.

Theorem 3.1 (i) There exists uf > 0, such that for u < uf , system (3.7) has no solution.

(ii) In the case of linear hydrodynamic coefficients, one can choose uf > 0 such that system

(3.7) has a unique solution for u ≥ uf and uf can be explicitely computed.



436 P. Destuynder and C. Fabre

Proof (i) Let us define

G(α0, β0) =



























̺e
2Mg

(Ssczs(β
0) + Sfczf (α

0))

̺eL

2M0

(

− Ssh

L
czs(β

0) +
Sfdf sin(α

0)

L
czf (α

0)

+Sscms(β
0) + Sfcmf(α

0)
)

.

System (3.7) can be written as G(α0, β0) = 1
u2

(

1
1

)

. Let us denote by ∆ the first bisector of R2.

System (3.7) has at leat one solution if and only if

1

u2

(

1

1

)

∈ G([0, 2π]2) ∩∆.

The set G([0, 2π]2) ∩∆ is bounded since G is continuous. Let us set

U0 = max
(x,x)∈G([0,2π]2)∩∆

|x|.

A necessary condition for having solution is

1

u2
≤ U0

and thus u ≥ 1√
U0

. The nonnegative real uf = 1√
U0

is convenient in order to prove the point

(i).

(ii) We assume that the four hydrodynamic coefficients are linear. Let us write


























czs(ξ) = Rzsξ,

czf (ξ) = Rzfξ,

cms(ξ) = Rmsξ,

cmf(ξ) = Rmfξ.

(3.8)

By simplifying equation (3.7), we can easily prove that α0 is the solution of

Aα0 +Bα0 sin(α0) =
C

u2
, (3.9)

where coefficients A,B et C do not depend on the velocity u. Indeed, their values are

A =
( h

L
SfRzfRzs + SfRmfRzs − SfRmfRzf

)

,

B =
h

L2
SfdfRzfRzs

and

C =
1

ρe

(2Mgh

L
Rzs +

2M0

L
Rzs − 2MgRms

)

.

Let us set f(α0) = 1
C
(Aα0 + Bα0 sin(α0)). A necessary condition for existence of solution of

(3.9) is that u satisfies

u ≥ 1
√

max
|α0|≤π

8

(|f(α0)|)
.
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Taking into account an analogous condition for the angle β0, we introduce a critical speed

named foiling velocity and defined by

uf = max
( 1
√

max
|α0|≤π

8

(|f(α0)|)
, min
|β0(u)|≤π

8

|u|
)

. (3.10)

The value uf is the minimum speed for which the boat can stand up on the foils. It is obvious

that, if A 6= 0, the function f is one to one in a neighborhood of 0. Hence, the best value of uf

can be explicited: It depends of all the parameters that appear in A,B and C. The proof of

(ii) is complete.

The graphs that follow on Figures 6–7 provide the function |f | and the steady angles α0 and

β0 for a = 0.2. The foiling speed is nearly 7.2 m/s for a 1000 kg boat which seems reasonable.

Of course, the foiling speed depends on the mass of the boat.

Figure 6 Graph of the function |f |. Figure 7 The evolution of the steady
equilibrium angles.

3.4 Linearization of the equations

The discussion on the dynamical stability will be organized from a linearization of these

equations around the steady angles α0, β0 solutions of (3.7). The variables are z and γ. The

first step is to formulate the linearized model around an equilibrium position solution of (3.7).

Let us recall that β is assumed to be fixed (equal to β0), and the evolution of the pitching angle

of the rear foil is only due to the global pitching of the boat -say γ. We write δ = α− α0. In a

formal way one can write this linear model as follows:
{

Mz̈ − aMγ̈ = F1 +K1z + T1γ + C11ż + C12γ̇ +B1δ + E1δ̇,

−aMz̈ + J0γ̈ = F2 +K2z + T2γ + C21ż + C22γ̇ +B2δ + E2δ̇.
(3.11)

In practice, the coefficients C11, C12, C21 and C22 could be computed using a symbolic com-

putation software if for instance a three dimensional modelling would be concerned. In our two

dimensional case it is still possible to perform a hand computation.

We introduce the several matrices of the system—say—M, C and K,

M =

(

M −aM
−aM J0

)

, C =

(

C11 C12

C21 C22

)

, K = −
(

K1 T1

K2 T2

)

(3.12)
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and the right-hand-side F0, B, E are defined by

F0 =

(

F1

F2

)

, B =

(

B1

B2

)

, E =

(

E1

E2

)

. (3.13)

System (3.11) can now be written: Find X =
(

z
γ

)

satisfying

MẌ − CẊ +KX = F0 + δB + δ̇E (3.14)

with initial data X(0) = X0 ∈ R2 and Ẋ(0) = X1 ∈ R2. For ξ1 and ξ2 small enough, we set



























czs(β
0 + ξ) = c0zs +Rzsξ + o(ξ),

czf (α
0 + ξ) = c0zf +Rzfξ + o(ξ),

cms(β
0 + ξ) = c0ms +Rmsξ + o(ξ),

cmf (α
0 + ξ) = c0mf +Rmfξ + o(ξ).

(3.15)

Obviously, we get on the one hand

czs(β
0) = c0zs, czf (α

0) = c0zf , cms(β
0) = c0ms, cmf (α

0) = c0mf ,

and on the other hand

Rzs = c′zs(β
0), Rzf = c′zf (α

0), Rms = c′ms(β
0) and Rmf = c′mf (α

0).

Let us define

F(z, γ, ż, γ̇, δ, δ̇) = −Mg +
̺eSs|Vas|2

2
czs((β + γ)a) +

̺eSf |Vaf |2
2

czf ((α + γ)a)

and

G(z, γ, ż, γ̇, δ, δ̇) = −̺eSs(h cos(γ)− ds sin(γ))|Vas|2
2

czs((β + γ)as)−M0

+
̺eSfdf sin(α+ γ)|Vaf |2

2
czf ((α+ γ)af ) +

̺eSsL|Vas|2
2

cms((β + γ)a)

+
̺eSfL|Vaf |2

2
cmf ((α + γ)a),

the right hand side of the system (3.6).

The expressions in (3.11) are (recall that the steady state is often denoted by 0) F1 = F(0),

F2 = G(0) and partial derivatives of the functions F and G with respect to z, γ, ż, γ̇, δ, δ̇ at

the equilibrium point (in apparition order). With (3.7), we can assume F(0) = G(0) = 0 thus

F1 = F2 = 0 and F0 = 0. The following lemma is useful for the computation of the derivatives.
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Lemma 3.1 We get at the equilibrium point (α0, β) the following expressions:

∂Vaf

∂α
=

∂Vaf

∂γ
= 0,

∂|Vaf |2
∂ż

= 0,

∂

∂ż

( Vaf

|Vaf |
)

= − 1

u
ez,

∂|Vaf |2
∂γ̇

= 2udf cos(α
0),

∂|Vaf |
∂γ̇

= df cos(α
0),

∂

∂γ̇

( Vaf

|Vaf |
)

= − 1

u
df sin(α

0)ez,

∂Vas

∂α
(0) =

∂Vas

∂γ
(0) = 0,

∂|Vas|2
∂ż

= 0,

∂

∂ż

( Vas

|Vas|
)

= − 1

u
ez,

∂|Vas|
∂γ̇

= ds,

∂|Vas|2
∂γ̇

= 2uds,
∂

∂γ̇

( Vas

|Vas|
)

=
h

u
ez,

∂(β + γ)a
∂ż

= − 1

u
,

∂(β + γ)a
∂γ̇

=
h

u
,

∂(α+ γ)a
∂α

=
∂(α+ γ)a

∂α
= 1,

∂(α+ γ)a
∂ż

= − 1

u
,

∂(α+ γ)a
∂γ̇

= −df sin(α
0)

u
.

The proof, which rests on a simple but long computation, is left to the reader (see [7]).

3.4.1 Computation of the stiffness matrix K

One obtains

K1 = K2 = 0 and thus K = −
(

0 T1

0 T2

)

with

T1 = ρe
u2

2
[SsRzs + SfRzf ]

and

T2 =
ρeSs

2
Lu2Rms +

ρeSf

2
Lu2Rmf

+
ρeSf

2
df cos(α

0)u2c0zf +
ρeSf

2
df sin(α

0)u2Rzf

+
ρeSs

2
dsu

2c0zs −
ρeSs

2
hu2Rzs.

We introduce the opposite of the dynamical stiffness:

R1 =
(SsRzs

2
+

SfRzf

2

)

and

R2 =
1

2
[−SshRzs + Sfdf sin(α0)Rzf + SsLRms

+ SfLRmf + Ssdsc
0
zs + Sfdf cos(α0)c

0
zf ]. (3.16)
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The stiffness matrix is then

K = −ρeu
2

(

0 R1

0 R2

)

.

3.4.2 Computation of the matrix C

The coefficients are given explicitely in the following table.

Table 1 Expressions of the coefficients Cij around γ = 0 versus α and β.

Coefficient Expression of the coefficients of the matrix C around γ = 0
2

1

C11 −ρe
2
u(SsRzs + SfRzf )

C12 ρeu
(

Ssdsc
0
zs + Sfdf cos(α

0)czf +
Ssh

2
Rzs −

Sfdf
2

sin(α0)Rzf

)

C21
ρeu

2

(

− SsLRms − LSfRmf − Sfdf sin(α
0)Rzf + SshRzs

)

C22

−̺eSshu

2
[2dsc

0
zs + hRzs] +

̺euSfd
2
f

2
[sin(2α0)c0zf − sin(α0)2Rzf ]

+
̺euLSs

2
[2dsc

0
ms + hRms] +

̺euL

2
Sfdf [− sin(α0)Rmf + 2 cos(α0)c0mf ]

4 Stability of the Boat

4.1 Static stability

We assume in this subsection that the apparent flow velocity is negligible (C = 0), and that

the angles of attack at the main and the rear foils are solution of (3.7) with a velocity larger

than the foiling one (it is the one for which the foiling appears). The model is

MẌ +KX = 0. (4.1)

Let us set Y =
(

Ẋ
X

)

. We obtain Y ∈ R4 and

Ẏ =

(

O2 −M−1K
I2 O2

)

Y.

We introduce the 4× 4 matrix A:

A =

(

O2 −M−1K
I2 O2

)

.

The solutions of

Ẏ = AY

are

Y (t) = eAtY0

where

Y (0) = Y0.
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The stability is governed by the sign of the real part of the eigenvalues of the matrix A and

more precisely the stability is acted if (σ(A) is the spectrum of A),

∀λ ∈ σ(A), Re(λ) ≤ 0.

A vector v 6= 0 is an eigenvector of A if one can find λ ∈ C such that Av = λv. One can write

with v =
(

v1
v2

)

where vi ∈ C2 (i = 1, 2),

{

−M−1Kv2 = λv1,
v1 = λv2,

or equivalently

(λ2I2 +M−1K)v2 = 0

with v2 6= 0. We then deduce that the eigenvalues are also the solutions of

det(λ2M+K) = 0.

Let us write (recall that JG = J0 − a2M)

det(λ2M+K) = λ4MJG − λ2ρeu
2M(aR1 +R2).

The value λ0 = 0 is an eigenvalue because of the heaving which is not restricted, and the other

are the solutions of

λ2 =
ρeu

2

JG
(aR1 +R2).

If aR1 + R2 > 0, one of them is nonnegative and therefore an instability (which is coupling

between heaving and pitching) may appear. The stability is ensured if

aR1 +R2 < 0. (4.2)

In that case, the solutions are λ = ±iµ where µ is the pulsation of the movement and we have

µ = u

√

̺e‖aR1 +R2‖
JG

.

The frequency is

f =
µ

2π
.

Let us notice that the existence of the instability depends only on u via the angles β0 and α0.

There is no direct dependence. For a small enough, the sign of aR1+R2 is the same as the sign

of R2 and is therefore equal to the sign of the trace of the matrix (K) which is nonnegative.

We deduce that the eigenvalues of K are λ1 = 0 and

λ2 = −ρeu
2R2 > 0.

If a = 0, it is easy to check that

J0γ̈ + λ2γ = 0.
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Therefore

γ(t) = γ0 cos
(

√

λ2

J0
t
)

+
γ1
√
J0√

λ2

sin
(

√

λ2

J0
t
)

.

Since

z̈ = −λ2

M
γ,

and since the initial data must satisfy (3.7), one can see that the angle of attack of the main

foil α0 must be adjusted in order that the boat resists capsizing.

The Figures 8–9 illustrate the numerical computation of the eigenvalues when the hydro-

dynamics coefficients linearly depend on their variables for sake of simplicity. The velocity u

begins at 1 m/s and up to 10 m/s with 300 steps in time. At each iteration, the values of the

angles β0 and α0 at the equilibrium are computed with the formulae (3.7). Once computed, the

spectrum of the matrix A is obtained. We have drawn the real part (damping or increase) and

the frequency of the movement f with respect to the velocity u. We can notice an instability

in heaving due to the double null eigenvalue. The pitching is stable since 0 is the only real

eigenvalue. Moreover, a > 0 means that the center of mass of the boat is behind (but not

far from) the point O. We have drawn the graphs for a = 0.2 and a = 0.8 with h = 5. The

frequencies seems to be near 1Hz or 1.5 Hz for large values of u. There is an instable region for

small speeds for a = 0.8 m.

Figure 8 The evolution of the spectrum Figure 9 The evolution of the spectrum
versus the velocity of the boat with versus the velocity of the boat with
a = 0.2 m and h = 5 m. a = 0.8 m and h = 5 m.

The Figure 10 presents the same graphs for h = 7. One can notice that the movement is

stable for both values of a = 0.2 and a = 0.8.

The Figures 11–12 correspond to different hydrodynamics coefficients, smaller at point S

than at point F , for h = 5.

The Figures 13–14 concern the previous phenomenon. On Figure 13, we have drawn R2+aR1

with respect to a and u (recall that the stability is ensured if R2+aR1 < 0). One can notice that

for large value of the parameter a (the distance between the center of mass and the daggerboard),

there is a critical value uc = uc(a) under which instability may occur. The Figure 14 is the graph
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Figure 10 The evolution of the spectrum versus the velocity of the boat with a = 0.8 m

(left) and a = 0.2 m (right) with h = 7 m.

Figure 11 The evolution of the spectrum versus the velocity of the boat with a = 0.2 m

(left) and a = 0.8 m (right), h = 5 m and different hydrodynamics coefficients.

of uc with respect to a. These graphs are achieved with h = 5. The Figures 15–16 illustrate the

same phenomenon in the case of different hydrodynamics coefficients.

4.2 Dynamic stability

Let us notice that the dynamical behavior of a single foil is presented in [8] where the

hydroelastic response and stability of both rigid and flexible 2D hydrofoils in viscous flow are

discussed from experimental and numerical aspects. There are in general four kinds of dynamic

instabilities which can occur in general.

(1) One is well known by the sailors. It concerns induced vibrations on the rudder due to

vortices created by the main foil. But, this so called buffeting effect (see [4, 9]), can occur only

for very particular cases. In our case it would be due to a vortex shedding from the main foil

onto the one of the rudder. And it would appear if the frequency of the vortices is close to

the one of the rudder and its foil. It is quickly detected and should be suppressed by an ad

hoc conception of the ship. It is not necessarily destroying but can reduce considerably the

efficiency as far as it takes energy from the kinetical energy of the boat.
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Figure 12 The evolution of the spectrum versus the velocity of the boat with a = 1 m

(left) and a = 0.8 m (right) with h = 7 m and different hydrodynamics coefficients.

Figure 13 The criterion stability with respect Figure 14 The critical velocity with respect to
to a and u. a is sensitive to small value of a.

(2) The second one is the classical flutter which is violent and corresponds usually to the

unlimited exchange of energy between two movements with the same eigenfrequency (here for

the heaving and the pitching). Clearly the secure flight of a ship would be seriously compromised

by such an instability implying an exponential increase of the movement of the ship (see [9]).

It would be difficult to control it using the main foil without additional lifting supplementary
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Figure 15 The stability criterion with respect Figure 16 The critical velocity with respect
to a and u. to a is sensitive to small value of a.

wing. Furthermore, because the phenomenon is very quick and complex, its control requires

an automatic loop driven by an electronic computer. In fact as far as the boat is flying over

the water, there no stiffness on the heaving excepted the one due to the hydrodynamical forces

acting on the foils which are fully immersed in our model. Maybe it would be different if the

bows were in contact with the water and the Archimède forces would operate.

(3) The third possibility of instability is due to a fluctuation of the wind velocity. It is a

rather complex phenomenon implying the apparent flow velocity but mainly the perturbation of

the flow due to vortex shedding. The rudder is the part mainly concerned by this phenomenon

due to the turbulence generated from the main foil. It is under the skipper/helmsman control.

It is discussed in Subsection 2.2. It could be compared from the mathematical point of view to

the buffeting phenomenon.

(4) The fourth dynamical instability and the last one in our discussion, is due to the ap-

parent water velocity on the foils. It could be compared to a stall flutter phenomenon as the

one encountered in the breakdown of the famous Tacoma-Narrows bridge which collapsed on

November 1940. This accident was correctly explained forty years later by Scanlan [7] and the

final explaination rests on the apparent flow velocity. From the mechanical point of view, the

phenomenon can be understood as a negative damping. See also [5] for a similar collapse of a

model of a military aircraft.

We are mainly interested in this paper in the case of stall flutter phenomenon (see (4)). We

then consider the model

MẌ − CẊ +KX = 0. (4.3)

We still set Y =
(

Ẋ
X

)

. We have

Y ∈ R
4

and

Ẏ =
(M−1C −M−1K

I2 O2

)

Y.



446 P. Destuynder and C. Fabre

Following the previous section, we have to consider the spectrum of the following matrix A :

A =
(M−1C −M−1K

I2 O2

)

.

Let v 6= 0 be an eigenvector of A. One has

Av = λv (λ ∈ C)

and with v =
(v1
v2

)

with vi ∈ C2 (i = 1, 2),

{

M−1Cv1 −M−1Kv2 = λv1,
v1 = λv2,

which leads to

(λ2I2 − λM−1C +M−1K)v2 = 0

with v2 6= 0. Therefore

det(λ2M− λC +K) = 0,

which is an equation like

λ(Aλ3 +Bλ+ C) = 0.

The stability of (4.3) is ensured if the solutions are simple and with a negative real part. We

have λ = 0 or

λ3mJG − λ2(mc22 + c11J0 + a(c21 + c12))

+ λ(c11c22 − c21c12 − ρemu2(R2 + aR1)) + ρeu
2(c11R2 − c21R1) = 0.

If one considers the pulsation, then λ = iµ and µ is the solution of

det(−µ2M− iµC +K) = 0,

and the stability condition becomes

Im(µ) > 0.

The Figure 17 concerns the dynamic stability. On the upper graph of the Figure 17 (left),

we have drawn the maximum and minimum of the real part of the spectrum. On the centered

graph, we have drawn the frequencies, and the down graph is the one of the equilibrium angles.

On the Figure 17 (right), we have drawn the maximum of the real part of the spectrum A with

respect to the speed. The parameters are a = 1m and h = 5m. The Figures 18 concerns the

case a = 0.2m and h = 5m. On Figures 22–24, the criterion of stability is drawn with respect

to a and u respectively in the case of identical hydrodynamic coefficients for h = 5m, h = 7m

and different hydrodynamic coefficients (czs and czf ): The stability is ensured under the plane

z = 0.

The Figures 19–20 concern the case of different hydrodynamic coefficients for decreasing

value of the parameter a and h = 5. As shown on Figure 19, the stability is ensured but one

can see that the eigenmodes are quite different.

The Figure 21 concerns the case of different hydrodynamic coefficients for a and h = 7.

Same phenomena occur.
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Figure 17 The spectrum (left) and the stability criterion (right) for a = 1 and h = 5.

Figure 18 The spectrum (left) and the stability criterion (right) for a = 0.2 and h = 5.

5 Conclusion

In this article, the influence of the apparent flow velocities has been studied. It concerns
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Figure 19 The spectrum (left) and the stability criterion (right) for a = 0.2 m

Figure 20 The spectrum for a = 1 m and a = 0.8 m : Stable in both cases.

Figure 21 The spectrum (left) for a = 1 m and the stability criterion (right).

both the effect of the wind on the sails and the one of the water on the foils. For the apparent

wind effect it appears that the velocity of the boat can be almost three times the one of the

absolute wind, as far as the bows are out of the water. For the foils the apparent water flow

plays a different role. It generates a damping effect as far as the boat is stable. The numerical

examples show that the instabilities can only appear at very low velocity, but for which the

foiling is impossible, or for high velocities which are at the limit of the performance of such

ships. Hence the control from the foils can be introduced for any speed of the ship between the

foiling velocity and the maximum velocity of the boat. Clearly, a control on the rudder would

certainly be the best method but it was not permitted during the 2013 America’s cup.
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Figure 22 The stability criterion with respect to a and u for h = 5.

Figure 23 The stability criterion with respect to a and u for h = 7.

Figure 24 The stability criterion in case of different values of the

hydrodynamic coefficients.
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