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1 Introduction

The use of the framework of continuum mechanics for the study of the influence of electro-

magnetic effects on solids has been largely stimulated by Truesdell and Toupin [14]. Their

research on the coupling between the mechanical and magnetic responses of magnetoelastic

solids was the first of a long list (without any attempt to be exhaustive, see, e.g. [1, 4–7, 10,

12–13] etc.). An important stimulus for the development of these researches was the study of the

magnetoelastic buckling problem. Indeed a plate, made of a magnetoelastic material, subject

to a transverse magnetic field, buckles when the magnetic field attains a critical value; see also

[3, 5, 9], for a general analysis of the buckling of some magnetoelastic structures. Following a

pioneering experimental and theoretical research of Moon and Pao, the first rigorous attempt

to analyze this problem is due to Pao and Yeh [12]. Maugin and Goudjo [8] considered a

plate model with particular attention on the regularity of the boundary. More recently, in the

case linear soft magnetoelastic materials, Zhou and Zheng [15–17] have revisited the subject

by adapting the usual Kirchhoff-Love and von Kármán models only modifying the equivalent

transverse force with the addition of the magnetic effects.

The paper is organized as follows. In Section 2, we briefly recall the governing equilibrium

equations of magnetoelasticity and, then, in Section 3, we state the problem on a variable

domain assuming that the magnetic forces are given. In order to apply the Ciarlet’s method

(see, e.g., [2]), we must at first prove that the magnetic forces give rise to a linear and continuous

form. This can be achieved under suitable assumptions on the magnetic forces (see lemma 3.1).
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Palaiseau, France. E-mail: giuseppe.geymonat@polytechnique.edu
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In Section 4, we introduce the usual scaling on the mechanical quantities and we scale the

magnetic quantities in such a way that the Gauss’ Law (2.1) is conserved. Using the classical

change of variables, we deduce the scaled equations. Then we can use the asymptotic methods,

following [2], to obtain the limit problem and the strong convergence result. It is interesting to

remark that in the simplest situation of a transversal magnetic field, we recover the Kirchhoff-

Love model of Zhou and Zheng, which is, hence, completely justified.

2 Governing Equations of Magnetoelasticity for Linear Soft

Ferromagnetic Materials

In the sequel, Greek indices range in the set {1, 2}, Latin indices range in the set {1, 2, 3},

and the Einstein’s summation convention with respect to the repeated indices is adopted. Let us

consider a three-dimensional Euclidean space identified by R
3 and such that the three vectors

ei form an orthonormal basis. We introduce the following notations for the vector product:

a ∧ b = aiei ∧ bjej = aibjǫijkek, for all vectors a = (ai) ∈ R
3 and b = (bi) ∈ R

3, where ǫijk

denotes the alternator Ricci’s symbol.

When a magnetizable, deformable elastic solid Ω is placed in a magnetic field, magnetic

moments are induced inside the body. The action of the external magnetic induction B0

manifests itself in magnetization M (magnetic moment per unit volume). Within the body, the

magnetic induction B is not necessarily equal to B0. The induced magnetization M = (Mi)

is related to B = (Bi) by B = µ0(H + M), where H = (Hi) is called magnetic intensity

and µ0 is the magnetic permeability of vacuum. Generally, we have H = H(M), but, in

the sequel, we restrict our attention to a class of linear isotropic magnetoelastic materials

called soft ferromagnetic materials, which are characterized by the fact that their local average

magnetization becomes zero when the external field is set to zero. In this particular case, the

hysteresis loops are narrow and the influence of induced currents is small in comparison with

the effect of magnetization. Therefore, it is possible to use the quasi-static approximation, i.e.,

the equations of magneto-statics:

{
∂iBi = 0 in Ω (Gauss’ Law),
ǫkij∂jHi = 0 in Ω (Ampère’s Law).

(2.1)

The magnetic constitutive law takes the following linear form

M = χH or B = µ0µrH, (2.2)

where χ represents the magnetic susceptibility and µr := χ+1 is the relative magnetic perme-

ability. For linear soft ferromagnetic materials, such as steels, iron, cobalt and various alloys,

the relative permeability is very large, µr or χ = 102 ∼ 105.

In this work we use the model proposed by Brown [1] where the action of the magnetic field

is given by a magnetic body force (per unit volume) fm = (fm
i ) and a magnetic body couple

(per unit volume) Im = (Imi ):

fm = µ0(∇H)M and Im = µ0M ∧H,

i.e., component-wise, fm
i = µ0Mj∂jHi and Imi = µ0ǫkjiMkHj . This choice of the action of

the magnetic field is sometimes called the dipole model of microcurrents and has been used in

particular by Pao-Yeh for soft ferromagnetic elastic solids (see [12]). Using the Gauss’ law and
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the Ampère’s law, the magnetic body force fm can also be written as the divergence of a second

order tensor Tm = (Tm
ij ), the so-called Maxwell’s stress tensor

fm = divTm, (2.3)

or, component-wise, fm
j = ∂iT

m
ij with Tm

ij := BiHj −
1
2µ0H

2δij and H2 := HkHk. As pointed

out by [1], other different choices of the Maxwell’s stress tensor are possible and, indeed, they

depend on the choice of the Helmomtz free energy; see in particular [5], for a clear explanation

of the influence of the choice of the arguments in the free energy on the Maxwell stress, magnetic

body forces and traction boundary conditions.

Considering the expressions above, in the absence of electric field, charge distribution and

conduction current, the mechanical governing equations defined in a magnetized body Ω can

be expressed by




∂itij + fm
j = 0 in Ω,

tij − tji + µ0(MiHj −MjHi) = 0 in Ω,

tijni =
1

2
µ0(Mn)

2nj in Ξ,

(2.4)

where tij is the non-symmetric total stress tensor, (ni) represents the unit normal vector to the

boundary Ξ ⊂ ∂Ω and Mn := Mini is the normal surface boundary magnetization. The non-

symmetry of the total stress tensor is due to the presence of a magnetic body couple. In order

to simplify the model, we neglect magnetostriction and piezostrictive terms in the constitutive

laws and we consider an isotropic linear elastic material. Thus, we obtain that

tij = σij + µ0MiHj with σij = λeppδij + 2µeij, (2.5)

where σij denotes the symmetric Cauchy stress tensor, associated with the linearized strain

tensor eij = 1
2 (∂iuj + ∂jui), being (ui) the displacement field, through the classical Lamé’s

constitutive equations. The presence of the term µ0MiHj in the decomposition of the total

stress always follows from the form of the Helmoltz free energy (see [1, 5]).

In the Pao-Yeh’s case of soft ferromagnetic materials, thanks to (2.2), the magnetic body

couple Im = µ0χH∧H = 0, and, hence, the stress tensor tij becomes symmetric, i.e., tij = tji.

Moreover, substituting the expression of the Maxwell’s stress tensor into the divergence relation

(2.3) and using (2.1), we can find an alternative form of the magnetic body force:

fm = µ0(∇H)M =
µ0χ

2
∇(H2).

In the sequel, we will focus our attention on the reduced mechanical model arising from the

use of the asymptotic methods, assuming that the magnetization M and the magnetic intensity

H are a given external magnetic source.

3 Position of the Problem

Let ω ⊂ R
2 denote a smooth domain in the plane spanned by vectors eα, with boundary

γ; γ0 ⊂ γ is a measurable subset of γ with strictly positive length measure; γ1 := γ \ γ0 is the

complement of γ0 with respect to γ; finally, 0 < ε < 1 is a dimensionless small real parameter

which shall tend to zero. For each ε, we define

Ωε := ω × (−hε, hε), Γε := γ × (−hε, hε),
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Γε
0 := γ0 × (−hε, hε), Γε

± := ω × {±hε}

with hε > 0. Hence the boundary ∂Ωε of Ωε is partitioned into the lateral surface Γε and the

upper and lower faces Γε
+ and Γε

−; the lateral surface is itself partitioned as Γε = Γε
0 ∪ Γε

1, with

Γε
1 := γ1 × (−hε, hε). Moreover, we let Γ̂ε := Γε

± ∪ Γε
1 = ∂Ωε \ Γε

0, the complement of Γε
0 with

respect to ∂Ωε.

We assume that Ωε is constituted by a homogeneous isotropic linear soft ferromagnetic

material, whose constitutive law is given in (2.5). We suppose that the Lamé’s coefficients

satisfy the classical positivity properties. The plate is clamped on Γε
0, so that uε = 0, and, for

simplicity, we consider that no mechanical charges are applied to the body. The only source

terms are given by M ε
i and Hε

i .

Let V (Ωε) := {vε ∈ H1(Ωε;R3); vε = 0 on Γε
0} be the functional space of admissible

displacements. The variational formulation of problem (2.4), defined on the variable domain

Ωε, takes the following form:
{
Find uε = (uε

i ) ∈ V (Ωε) such that
Aε(uε,vε) = Lε(vε) for all vε = (vεi ) ∈ V (Ωε),

(3.1)

where the bilinear form Aε(·, ·) and the linear form Lε(·) are, respectively, defined by

Aε(uε,vε) :=

∫

Ωε

tεije
ε
ij(v

ε)dxε, Lε(vε) :=

∫

Ωε

µ0M
ε
j ∂

ε
jH

ε
i v

ε
i dx

ε +

∫

Γ̂ε

1

2
µ0(M

ε
n)

2nε
iv

ε
i dΓ

ε

with tεij := λeεpp(u
ε)δij + 2µeεij(u

ε) + µ0M
ε
i H

ε
j .

In order to prove the wellposedness of the problem, by virtue of the Lax-Milgram’s lemma,

we rewrite (3.1) in an alternative form:
{
Find uε = (uε

i ) ∈ V (Ωε) such that

A
ε
(uε,vε) = L

ε
(vε) for all vε = (vεi ) ∈ V (Ωε),

(3.2)

where

A
ε
(uε,vε) :=

∫

Ωε

{λeεpp(u
ε)eεqq(v

ε) + 2µeεij(u
ε)eεij(v

ε)}dxε,

L
ε
(vε) :=

∫

Ωε

µ0{M
ε
j ∂

ε
jH

ε
i v

ε
i −M ε

i H
ε
j e

ε
ij(v

ε)}dxε +

∫

Γ̂ε

1

2
µ0(M

ε
n)

2nε
iv

ε
i dΓ

ε.

Since the bilinear form A
ε
(·, ·) is V (Ωε)-coercive, in order to apply the Lax-Milgram’s lemma,

we have only to prove that the linear form L
ε
(·) is continuous on V (Ωε). For this when

1 < p < +∞ we denote W 1
p (Ω

ε) the Banach space of v ∈ Lp(Ωε) whose first order derivatives

(in the distribution sense) also belong to Lp(Ωε). The continuity of the linear form L
ε
(·) is the

object of the following lemma.

Lemma 3.1 Let us assume

M ε
i , Hε

i ∈ W 1
12/5(Ω

ε). (3.3)

Then L
ε
(·) is continuous on V (Ωε).

Proof (i) Since vεi ∈ H1(Ωε), thanks to the Sobolev imbedding theorem, (see e.g. [11,

Chapter 2, Theorem 3.4]) we obtain that vεi ∈ L6(Ωε) and that f
m,ε
i ∈ L

6
5 (Ωε); hence, by

means of Hölder’s inequality, we can infer that
∣∣∣
∫

Ωε

{µ0M
ε
j ∂

ε
jH

ε
i v

ε
i }dx

ε
∣∣∣ ≤ C‖vi‖1,Ωε . (3.4)
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(ii) Since M ε
i , H

ε
i ∈ W 1

12/5(Ω
ε), thanks to the Sobolev imbedding theorem, we get that

M ε
i , H

ε
i ∈ L12(Ωε) ⊂ L4(Ωε) and, thus, M ε

i H
ε
i ∈ L2(Ωε). It then follows from Korn’s inequality

∣∣∣
∫

Ωε

{µ0M
ε
i H

ε
j e

ε
ij(v

ε)}dxε
∣∣∣ ≤ C‖eεij(v

ε)‖L2(Ωε) ≤ C‖v‖V (Ωε). (3.5)

(iii) By virtue of a trace imbedding theorem (see e.g. [11, Chapter 2, Theorem 4.2]), we have

that M ε
i |∂Ωε ∈ L8(∂Ωε). Besides, being v ∈ V (Ωε), then the same trace imbedding theorem

imply that vi|∂Ωε ∈ L4(∂Ωε), and so

∣∣∣
∫

Γ̂ε

1

2
µ0(M

ε
n)

2nε
iv

ε
i dΓ

ε
∣∣∣ ≤ C‖(M ε

n)
2‖L4(∂Ωε)‖v

ε
i ‖L4(∂Ωε) ≤ C‖v‖V (Ωε). (3.6)

Collecting (3.4)–(3.6), we obtain the desired result.

Thanks to the V (Ωε)-coercivity of the bilinear form A
ε
(·, ·) and the continuity of the linear

form L
ε
(·) we deduce, using the Lax-Milgram’s lemma, that the variational problem (3.1) admits

one and only one solution.

4 The Asymptotic Expansion

In order to perform an asymptotic analysis, we need to transform problem (3.1), posed on a

variable domain Ωε, onto a problem posed on a fixed domain Ω (independent of ε). We suppose

that the thickness of the plate hε depends linearly on ε, so that hε = εh. Accordingly, we let

Ω := ω × (−h, h),

Γ0 := γ0 × (−h, h), Γ1 := γ1 × (−h, h),

Γ± := ω × {±h}, Γ̂ := Γ± ∪ Γ1,

and we define the following change of variables (see [2]):

πε : x ≡ (x̃, x3) ∈ Ω 7→ xε ≡ (x̃, εx3) ∈ Ω
ε

with x̃ = (xα).

By using the bijection πε, one has ∂ε
α = ∂α and ∂ε

3 = 1
ε∂3. Moreover, we define the following

functional spaces:

V (Ω) := {v = (vi) ∈ H1(Ω;R3); v = 0 on Γ0}, W 1
12/5(Ω).

In order to write the expression of the scaled problem, we need first to make some assumptions on

the data which will define their dependences with respect to the small parameter ε. In our case,

the only external data are represented by the magnetic field (Bε
i ), the magnetic intensity field

(Hε
i ) and the magnetization field (M ε

i ). By virtue of the constitutive equations Bε
i = µ0µrH

ε
i

and M ε
i = χHε

i , we assume that Bε
i , H

ε
i and M ε

i will share the same dependence on ε. The

scaling of Bε
i must reflect the fact that the magnetic field is a solenoidal field, meaning that

∂ε
iB

ε
i = 0 in Ωε. This property must be satisfied also on the fixed domain Ω. Let us suppose

that

Bε
α(x

ε) = εqBα(x), Bε
3(x

ε) = εpB3(x), x ∈ Ω

with Bi independent of ε. By applying the change of variables πε, we can write that the

scaled divergence vanishes in Ω, so that εq∂αBα + εp−1∂3B3 = 0 in Ω. In order to guarantee
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the consistency of this equation, we ask that p = q + 1, finding a relation between the two

exponents p and q. In the sequel, we choose q = 0 and, hence

Bε
α(x

ε) = Bα(x), Bε
3(x

ε) = εB3(x), x ∈ Ω,

Hε
α(x

ε) = Hα(x), Hε
3 (x

ε) = εH3(x), x ∈ Ω,

M ε
α(x

ε) = Mα(x), M ε
3 (x

ε) = εM3(x), x ∈ Ω.

With the unknown displacement field uε, we associate the scaled unknown displacement field

u(ε) defined by

uε
α(x

ε) = uα(ε)(x) for all xε = πεx ∈ Ω
ε
,

uε
3(x

ε) =
1

ε
u3(ε)(x) for all xε = πεx ∈ Ω

ε
.

We likewise associate with any test function vε, the scaled test function v, defined by the

scalings:

vεα(x
ε) = vα(x) for all xε = πεx ∈ Ω

ε
,

vε3(x
ε) =

1

ε
v3(x) for all xε = πεx ∈ Ω

ε
.

According to the previous hypothesis, problem (3.1) can be reformulated on a fixed domain

Ω independent of ε. Thus we obtain the following scaled variational problem:
{
Find u(ε) = (ui(ε)) ∈ V (Ω) such that
A(u(ε),v) = L(v) for all v = (vi) ∈ V (Ω),

(4.1)

where the scaled bilinear form A(·, ·) and the scaled linear form L(·) are, respectively, defined

by

A(u(ε),v) :=
1

ε4
a−4(u(ε),v) +

1

ε2
a−2(u(ε),v) + a0(u(ε),v)

with

a−4(u(ε),v) :=

∫

Ω

(λ+ 2µ)e33(u(ε))e33(v)dx,

a−2(u(ε),v) :=

∫

Ω

{4µeα3(u(ε))eα3(v) + λeσσ(u(ε))e33(v) + λe33(u(ε))eσσ(v)}dx,

a0(u(ε),v) :=

∫

Ω

{λeσσ(u(ε))eττ (v) + 2µeαβ(u(ε))eαβ(v) + µoMiHjeij(v)}dx,

L(v) :=

∫

Ω

µ0Mj∂jHividx+
1

2

∫

Γ+

µ0(M
+
3 )2v+3 dΓ−

1

2

∫

Γ
−

µ0(M
−

3 )2v−3 dΓ

+
1

2

∫

Γ1

µ0(Mβnβ)
2nαvαdΓ,

where φ± := φ(x̃,±h) denotes the restriction of φ on Γ±. Since Hi,Mi ∈ W 1
12/5(Ω), thanks to

Lemma 3.1 and Lax-Milgram’s lemma, we can prove that the scaled problem admits one and

only one solution.

We are now in position to perform an asymptotic analysis of the scaled problem (4.1). Since

the scaled problem (4.1) has a polynomial structure with respect to the small parameter ε, we

can look for the solution of the problem as a formal series of powers of ε:

u(ε) = u0 + ε2u2 + ε4u4 + · · · . (4.2)
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Hence, by substituting expressions (4.2) in (4.1) and by identifying the terms with identical

power of ε, we can write the following sequence of variational subproblems:

P−4 : a−4(u
0,v) = 0,

P−2 : a−4(u
2,v) + a−2(u

0,v) = 0,

P0 : a−4(u
4,v) + a−2(u

2,v) + a0(u
0,v) = L(v),

...

(4.3)

By solving the above variational problems, we can characterize the leading term of the asymp-

totic expansion u0, the so-called the limit displacement field, and its associated limit problem.

5 The Limit Problem

We define the usual functional space of Kirchhoff-Love admissible displacements:

VKL(Ω) := {v ∈ V (Ω); ei3(v) = 0}

and

VH(ω) := {vH = (vα) ∈ H1(ω;R2); vH = 0 on γ0},

V3(ω) := {v3 ∈ H2(ω); v3 = 0 and ∂νv3 = 0 on γ0},

where ν = (να) is the outer unit normal vector to γ.

Theorem 5.1 (a) The leading term u0 of the asymptotic expansion (4.2) satisfies the fol-

lowing variational problem:

{
Find u0 ∈ VKL(Ω) such that

A(u0,v) = L(v) for all v ∈ VKL(Ω),
(5.1)

where

A(u0,v) :=

∫

Ω

{ 2µλ

λ+ 2µ
eσσ(u

0)eττ(v) + 2µeαβ(u
0)eαβ(v) + µ0MαHβeαβ(v)

}
dx. (5.2)

(b) The sequence {u(ε)}ε>0 strongly converges in H1(Ω;R3) to u0, the solution of the limit

problem (5.1).

Proof The proof is straightforward, following the approach by [2].

Let us focus our attention on the expression of the magnetic force work L(·) of the limit

problem. By choosing a test function v ∈ VKL(Ω), namely vα(x̃, x3) := ηα(x̃)− x3∂αη3(x̃) and

v3(x̃, x3) := η3(x̃), with ηα ∈ H1(ω) and η3 ∈ H2(ω), after an integration along x3 and by

applying the Gauss-Green’s formula, we get

L(η) =

∫

Ω

µ0{(M3∂3H3 +Mα∂αH3)η3 + (Mβ∂βHα +M3∂3Hα)(ηα − x3∂αη3)}dx

+
1

2

∫

Γ+

µ0(M
+
3 )2η3dΓ−

1

2

∫

Γ
−

µ0(M
−

3 )2η3dΓ +
1

2

∫

Γ1

µ0(Mβnβ)
2nα(ηα − x3∂αη3)dΓ

=

∫

ω

f̃m
i ηidx̃+

∫

γ1

g̃mi ηidx̃+

∫

γ1

h̃m
3 ∂νη3dx̃,



458 G. Geymonat, F. Krasucki and M. Serpilli

where the reduced magnetic forces f̃m
i , g̃mi and h̃m

3 have the following form:

f̃m
α := µ0χ〈Hi∂iHα〉 = µ0〈f

m
α 〉,

f̃m
3 := µoχ

{1

2
(χ+ 1)((H+

3 )2 − (H−

3 )2) + 〈Hβ∂βH3〉+ ∂α〈〈Hi∂iHα〉〉
}

= µ0χ
{1

2
(χ+ 1)((H+

3 )2 − (H−

3 )2) + 〈Hβ∂βH3〉
}
+ µ0〈〈∂αf

m
α 〉〉,

g̃mα :=
1

2
µ0χ

2〈H2
ν 〉να,

g̃m3 := −µ0χ〈〈Hi∂iHα〉〉να = −µ0〈〈f
m
α 〉〉να,

h̃m
3 := −

1

2
µ0χ

2〈〈H2
ν 〉〉,

where Hν := Hανα, and

〈φ〉(x̃) :=

∫ h

−h

φ(x̃, x3)dx3, 〈〈φ〉〉(x̃) :=

∫ h

−h

x3φ(x̃, x3)dx3.

It easy to verify that if the induced magnetic intensity field is normal to the middle plane

of the plate, with Hα = 0, the form of the limit magnetic force acting on a plate depends just

on the jump of the square of magnetic intensities evaluated at the top and bottom faces of the

plate. Indeed, since f̃m
α = g̃mα = h̃m

3 = 0, one has

f̃m
3 :=

1

2
µ0χ(1 + χ){(H+

3 )2 − (H−

3 )2} ≈
1

2
µ0χ

2{(H+
3 )2 − (H−

3 )2} (5.3)

being χ very large for soft ferromagnetic materials. Equation (5.3) is analogue to the one

presented in [16] and it can be considered as a mathematical justification of the magnetic force

acting on a plate, which is usually employed in magnetic instability problems.

The limit problem (5.1) can be decoupled into a membrane and a bending problem, by

virtue of the Kirchhoff-Love limit displacement field. The membrane problem reads as follows:




Find u0
H = (u0

α) ∈ VH(ω) such that
∫

ω

nαβ(u
0
H)eαβ(ηH)dx̃ =

∫

ω

f̃m
α ηαdx̃+

∫

γ1

g̃mα ηαdx̃ for all ηH = (ηα) ∈ VH(ω),

where

nαβ(u
0
H) :=

4hλµ

λ+ 2µ
eσσ(u

0
H)δαβ + 4hµeαβ(u

0
H) + µ0〈MαHβ〉

represents the ferromagnetic membrane stress tensor. After an integration by parts, we find

that the membrane displacements u0
α solve the following membrane differential problem:





Field equation:

−∂βnαβ = f̃m
α in ω.

Boundary conditions:
nαβνβ = g̃mα on γ1,

uα = 0 on γ0.

The bending problem takes the following form:




Find u0
3 ∈ V3(ω) such that

∫

ω

mαβ(u
0
3)∂αβη3dx̃ =

∫

ω

f̃m
3 η3dx̃+

∫

γ1

g̃m3 η3dx̃+

∫

γ1

h̃m
3 ∂νη3dx̃ for all η3 ∈ V3(ω),
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where

mαβ(u
0
3) :=

4h3λµ

3(λ+ 2µ)
∆u0

3δαβ +
4h3µ

3
∂αβu

0
3 − µ0〈〈MαHβ〉〉, ∆ := ∂σσ

represents the ferromagnetic moment stress tensor. After an integration by parts, we find that

the transversal displacement u0
3 solves the following bending differential problem:





Field equation:

∂αβmαβ =
2h3

3

λ+ µ

λ+ 2µ
∆∆u0

3 − µ0∂αβ〈〈MαHβ〉〉 = f̃m
3 in ω.

Boundary conditions:
∂αmαβνβ + ∂τ (mαβνατβ) = g̃m3 on γ1,

mαβνανβ = h̃m
3 on γ1,

u3 = ∂νu3 = 0 on γ0,

(5.4)

where τ = (−ν2, ν1) represents the unit tangent vector to γ.

Considering the case of an induced magnetic intensity field, normal to the middle plane of

the plate, with Hα = 0, nαβ and mαβ reduce to the classical elastic membrane stress tensor and

moment stress tensor. Besides, since f̃m
α = g̃mα = 0, we can infer that the membrane problem

admits the only zero solution, so that nαβ = 0, and thus, in this case, the plate equilibrium

problem takes just into account the bending behavior.

6 Concluding Remarks

In this work we derive a model of a soft ferromagnetic isotropic linear plate by means of an

asymptotic analysis. In the absence of mechanical loading, thanks to the particular scaling of

the magnetic charges, we obtain a complex expression of the reduced magnetic forces acting on

the plate. The problem can be decoupled as usual in a membrane problem and in a flexural

problem. It is important to notice that in the simple case in which the magnetic charges are

normal to the middle plane of the plate, we formally obtain an expression of the magnetic force

(5.3), acting on the plate, which is equivalent to the one used in classical literature (see, e.g.,

[12, 15–16]). Moreover, by virtue of the strong convergence result, we also give a mathematical

justification to the limit model.

The present work represents a first step on the asymptotic modeling of soft ferromagnetic

plates. Indeed, we do not consider the coupling between the mechanical and magnetic behaviors

within the equations of magnetostatics. We assume the magnetic charges as external loads

without investigating the asymptotic behavior of the magnetostatic equations for what concerns

with the magnetic field, the magnetic intensity and the magnetization. Therefore, the limit

problem becomes linear and we cannot see, at first glance, the so-called magnetic buckling

phenomenon.
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