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Abstract The authors deal with nonlinear elliptic and parabolic systems that are the
Bellman like systems associated to stochastic differential games with mean field dependent
dynamics. The key novelty of the paper is that they allow heavily mean field dependent
dynamics. This in particular leads to a system of PDE’s with critical growth, for which
it is rare to have an existence and/or regularity result. In the paper, they introduce a
structural assumptions that cover many cases in stochastic differential games with mean
field dependent dynamics for which they are able to establish the existence of a weak
solution. In addition, the authors present here a completely new method for obtaining the
maximum/minimum principles for systems with critical growths, which is a starting point
for further existence and also qualitative analysis.
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1 Introduction

In recent literature, mainly scalar Bellman equations which are coupled with a Fokker-

Planck equation are studied and we refer to starting paper [9] or to a survey [6], see also [7].

These equations model a Nash game with a large number of players behaving similarly, so that

the decision can be approximate by a single decision make (a representative agent). So we have

a scalar Bellman equation. The present paper considers a model suggested by Bensoussan,

accompanied by co-authors (see [3]), where the decision of finite number of N players of large

population of Nash-game-players are approximated by N representative agents. So the Bellman

system is a system of backward parabolic equations coupled with a forward mean field equation.

In principle, the dependence of the coefficients on the data in the nonlinearities of the e-

quation may be a functional one. But in order to have the first insight in the difficulties and
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in order to simplify the presentation, we confine to a point-wise dependence of Hamiltonians

with respect to the mean field variable here. Generally, obtaining the existence of solution of

the Bellman mean field dependent system with growth with respect to the mean field variable

in nonlinearities is the critical subject. Without additional assumptions only a poor growth

behaviour is permitted. For the case of scalar Bellman equations, for obtaining the global solv-

ability, [10–11] gave a quite exhaustive analysis of the growth conditions for the Hamiltonians

concerning the dependence on ∇u (u is a generalized value function) and the mean field m,

which appears in the pay off functional.

In comparison, in the present paper, we restrict ourselves to Hamiltonians which grow

quadratically with respect to ∇u, which is from the point of view of PDE analysis the most

interesting case. In a related paper [1], a mean field dependence of the pay off functional is

assumed, but no such a dependence of m in the dynamics of the system is considered. Also in

[1], the growth properties of the data with respect to m, were crucial to obtain global solvability

of the problem.

In this paper we go much beyond the scalar theory and the theory developed in [1] and

obtain the existence result for much broader class of problems. As a key tool for the existence

of a solution we use the method of sub and super solution used in the context of Bellman

systems in [2].

2 Derivation of the System

In this paper we study a system of partial differential equations which arises as a necessary

condition of a Nash-Point-problem for Vlasov-McKean-functionals

J i(v) =

∫ T

0

∫

Ω

m(v)f i(·,v,m(v))dxdt+

∫

Ω

uiTm(T, ·) dx, (2.1)

where (0, T ) is a given time interval, Ω ⊂ R
d is a cube (0, 1)d and Q := (0, T )×Ω is a space-time

cylinder. The function v := (v1, · · · , vN ) with N ∈ N is the vector of the control functions, i.e.,

vi : Q→ R
M

is the control of the i-th player, where i = 1, · · · , N andM ∈ N is given. For every i = 1, · · · , N
the function

f i : Q× R
MN × R → R

is the so-called pay off function of the i-th player. Finally, the function

m : Q→ R

is the so-called mean field variable. This means that for a given v, it is a weak nonnegative

solution of the following parabolic equation (“mean field equation”):

∂tm−∆m+ div(mg(·,v,m)) = 0 (2.2)
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that is supposed to be satisfied in the space-time cylinder Q, fulfills spatially periodic boundary

conditions (with respect to the unit cube Ω) and is completed by the initial data

m(0) = m0 ≥ 0 in Ω. (2.3)

Here

g : Q× R
NM × R → R

d

is a given mapping and we postpone the discussion about its structure to the end of the section.

For a bounded v, under natural assumptions on the mapping g, the problem (2.2)–(2.3) has

a unique solution

m ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;W 1,2
per(Ω)) ∩W 1,2(0, T ; (W 1,2

per(Ω))
∗), (2.4)

which allows us to define (2.1). Since the mean field variable depends on the choice of v, we

will frequently also write m = m(v), which should not be understood as an algebraic relation,

whenever the couple (m,v) solves (2.2).

In (2.4) we use the standard notation for Bochner, Sobolev and Lebesgue spaces, and the

subscript “per” indicates the periodicity with respect to Ω and this notation will be kept

through the whole paper. In what follows, we also omit writing the dependence of function

on (t, x) explicitly to shorten all formulae, i.e., we use the following abbreviation f(m,v) for

f(t, x,m(t, x),v(t, x)) or for f(·,m,v) in what follows, where f := (f1, · · · , fN ).

Having the mean field variable m and the control function v, we can define a “pre-version”

of the so-called Bellman system for a further function u = (u1, · · · , uN) : Q → R
N via the

backward parabolic system

− ∂tu−∆u = f(v,m) +mfm(v,m),

∇u[g(v,m) +mgm(v,m)] =: L(m,v,∇u),
(2.5)

which is supposed to be satisfied in Q, equipped with the Ω-periodic boundary conditions and

completed by the initial condition

u(T ) = uT in Ω.

We call this system the “pre-Bellman equation” since v has not been replaced by a feed back

formula

v(t, x) := ω(t, x,∇u(t, x),m(t, x)) (2.6)

yet and we introduce the meaning of (2.6) in the next subsection. Moreover, L = (L1, · · · , LN )

are the so-called modified Lagrangians1.

It is evident, that (2.2) and (2.5) do not form a closed problem and one needs to connect

v with m and ∇u via some relationship. It will be shown in the next subsection that the

necessary condition for classical Nash–Point problem may serve as such constraint. In addition

1We use here the word modified since they differ from standard Lagrangians in Bellman systems, which is
however here caused by the fact that f and g depend on m.
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assuming further certain qualitative properties of f , we will be able to give a good meaning

to the feed back formula (2.6) and thus to avoid the presence of the control variable v in the

analysis. The main goal of the paper is to introduce certain structural assumptions on f and

g such that they describe very general mean field dependent Bellman system on one hand, and

for which we can establish the existence of a weak solution on the other hand.

2.1 Derivation of the full system

Finally, we need to close the problem (2.2) and (2.5) by an algebraic condition which is

necessary condition for the Nash-point of functionals J ’s. The classical Nash-point problem

reads: For given uT , find v ∈ L∞(0, T ;L∞(Ω;RMN )) such that

J i(v) ≤ J i(v1, · · · , vi−1, z, vi+1, · · · , vN ) (2.7)

for all z ∈ L∞(0, T ;L∞(Ω;RM )) and corresponding m’s, the solutions2 to (2.2) with v replaced

by

z := (v1, · · · , vi−1, z, vi+1, · · · , vN ).

The classical version treats the case where f i and g do not depend on m. In that case,

the problem (2.7) is purely analytical (meaning stochastic free) formulation of a stochastic

differential game driven by the dynamics

d

dt
x = g(t,x,v).

In recent years, interest came up to study cases with m-dependence of the pay-off f and/or the

dynamics g. From PDE’s point of view, this leads to new interesting version of the Bellman

system.

Although, it is not known whether the problem (2.1) admits a Nash-point, we derive in

what follows certain necessary conditions that must be fulfilled by the hypothetical Nash-point,

which finally allow us to connect the pre-Bellman system (2.5) with the mean field equation

(2.2) via the feed back formula (2.6) or its “equivalent”.

Under natural assumptions on the data (see Subsection 2.2) and, say, v ∈ L∞(0, T ;L∞(Ω;

R
NM )), it is easy to see that the Gateaux derivatives of the J i and of m(v) exist. For

zi := (0, · · · , 0︸ ︷︷ ︸
i−1

, z, 0, · · · , 0︸ ︷︷ ︸
N−i

)

with arbitrary smooth Ω-periodic function z : Q→ R
M , we obtain that

M i :=
d

ds
m(v + sz)

∣∣∣
s=0

with i = 1, · · · , N satisfies

∂tM
i −∆M i = − div(M ig(v,m) +mgvi(v,m) · z +mM igm(v,m)) in Q (2.8)

and is completed by the initial condition

M i(0, x) = 0 a.e. in Ω.

2We may define this also for other Lp(Lq) spaces once the uniqueness of m(v) is guaranteed.
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Here, we use the subscript to abbreviate the notion of partial derivative, i.e., g
v
(v,m) :=

∂vg(v,m) and gm(v,m) := ∂mg(v,m). Furthermore, assuming that v is the Nash-equilibrium,

we have for all i = 1, · · · , N that

0 =
d

ds
J i(v + szi)

∣∣∣
s=0

=

∫

Q

(mf i
vi(v,m) · z +M if i(v,m) +mM if i

m(v,m))dxdt

+

∫

Ω

M i(T )ui(T ) dx (2.9)

for arbitrary smooth Ω-periodic function z. Notice that here m := m(v), i.e., m solves (2.2)

with v. To evaluate the terms not involving explicitly z, we use the equations (2.5) and (2.8).

First, multiplying (2.8) by ui, integrating over Q and using integration by parts (note that

M i(0) = 0), we deduce

∫

Ω

M i(T )ui(T ) dx+

∫

Q

∇M i · ∇uidxdt−
∫

Q

M i∂tu
idxdt

=

∫

Q

(M ig(v,m) +mgvi(v,m) · z +mMgm(v,m)) · ∇uidxdt. (2.10)

Next, multiplying the i-th equation in (2.5) by M i, we observe

−
∫

Q

∂tu
iM idxdt +

∫

Q

∇ui · ∇M idxdt

=

∫

Q

M i(f i(v,m) +mf i
m(v,m))dxdt

+

∫

Q

M i(g(v,m) +mgm(v,m)) · ∇uidxdt. (2.11)

Finally, subtracting (2.11) from (2.10), we obtain the following identity:

∫

Ω

M i(T )ui(T ) dx = −
∫

Q

M i(f i(v,m) +mf i
m(v,m))dxdt

+

∫

Q

mgvi(v,m) · zdxdt. (2.12)

Thus, using this relation in the necessary condition (2.9), we see that

∫

Q

f i
vi(v,m) · z + (∇ui ⊗ z) · gvi(v,m)dxdt = 0

for all i = 1, · · · , N and all smooth Ω-periodic z’s. This consequently leads to the necessary

compatibility condition

f i
vi(v,m) +∇ui · gvi(v,m) = 0 in Q. (2.13)

Thus, now we have a closed system of equations. Namely, (2.2), (2.5) and (2.13) forms a

well-defined problem for which we want to establish our analytical result. Indeed, the first one

will deal just with (2.2), (2.5) and (2.13) and leads to the uniform a priori estimate for (m,v,u).
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However, to obtain also the existence result, we shall require that for a given (m,∇u), we can

find a unique v solving (2.13). For such a solution we define the feed back formula (2.6) as

ω(m,∇u) := v

and replacing v in (2.5) by the feed back formula, we obtain

−∂tu−∆u = H(∇u,m) := L(m,ω(m,∇u),∇u). (2.14)

Similarly, we replace v in the mean field equation (2.2) and obtain the backward-forward system

∂tm−∆m = − div(mg(ω(m,∇u),m)),

−∂tu−∆u = H(∇u,m),
(2.15)

which does not contain a control function v. Nevertheless, this system is equivalent to (2.2)

and (2.5) provided that v is defined such that it satisfies (2.13). The second result of the paper

will be therefore established for (2.15), provided that the feed back formula ω is well defined.

2.2 Structural assumptions on f and g

We keep the notation from the introduction here. Through the whole text, we assume

that all partial derivatives f
v
, g

v
, fm and gm with respect to v and m, respectively, exist

and together with f and g are Carathéodory mappings, i.e., are measurable with respect to

(t, x) for all (v,m) and for almost all (t, x) they are continuous with respect to (v,m). This

assumption will not be mentioned explicitly in what follows but we rather assume it implicitly

in all statements. In what follows we also assume that K and Ci are positive constants and

the same for constants r, s ≥ 0 which will be used to denote certain powers. Furthermore, we

will frequently use C to denote a generic constant that may change from line to line but will

depend only on data. In case, it will depend on some important quantity, and it will be clearly

denoted in the text.

First, we state the assumptions for f : Q × R
NM × R → R

N . We assume that f and f
v

satisfy the following growth conditions:

|f (m,v)|+m|fm(m,v)| ≤ K(mr + 1)|v|2 +Km2s0 ,

|f
v
(m,v)| ≤ K(mr + 1)|v|+Kms0

(2.16)

for all v and all m ≥ 0. In addition, we assume the following one sided estimate for f i: There

exists α ∈ [0, 1) such that for all i = 1, · · · , N there holds

f i(m,v) +mf i
m(m,v) ≤ K(1 + f i(m,v) + |v|α+1 +m2s0) (2.17)

and also one sided sum coerciveness, i.e., we assume

N∑

i=1

f i(m,v) +mf i
m(m,v) ≥ C0(m

r + 1)|v|2 −K(m2s0 + 1). (2.18)

Concerning the structural assumptions on f we just assume that

For all i the function f i is convex with respect to vi. (2.19)
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We also prescribe the behaviour of f at 0, i.e., for all i = 1, · · · , N, we assume that

f i(m,v)|vi=0 ≤ K(1 +m2s0 + |v|α+1) (2.20)

and finally the coerciveness of f i
vi , i.e., we assume that

C0(m
r + 1)|vi|2 ≤ f i

vi(m,v) · vi +K(1 +m2s0 + |v|α+1). (2.21)

Next, we focus on the assumptions on g. The standard ones are related to the growth

estimates, which will be supposed to be given by

m|gm(m,v)|+ |g(m,v)| ≤ K((ms + 1)|v|+ms0 + 1),

|g
v
(m,v)| ≤ K(ms + 1).

(2.22)

The forthcoming structural assumptions on g and also on f
v
are in fact the key restrictions

of the paper. First, to simplify the further analysis, we shall assume that3

g =

N∑

j=1

b1(m)Aj(·)vj + b0(m), (2.23)

where b0 does not depend on (t, x). The matrices Aj : Q→ R
d×M are given functions of (t, x),

i.e., (Aj)ik := A
j
ik with i = 1, · · · , d and k = 1, · · · ,M and the meaning of Ajvj is

(Ajvj)i :=

M∑

k=1

A
j
ikv

j
k.

Hence, as it is assumed we have a d-dimensional vector function g = (g1, · · · , gd). The inhomo-

geneities b0 : R → R
d and b1 : R → R are given. Concerning the assumptions on functions b1

and b0, we require that

|b1(m)| ≤ K(ms + 1), |b0(m)| ≤ K(ms0 + 1) (2.24)

and for matrices Aj we assume that

|Aj(·)| ≤ K. (2.25)

Furthermore, one of the essentially required properties of Aj is that they have the same range,

i.e., we assume that for all i, j = 1, · · · , N , almost all (t, x) and all z ∈ R
Nd there holds

|zAj(t, x)| ≤ C1|zAi(t, x)|. (2.26)

For derivatives of b0, we need that

|m∂mb0(m)| ≤ Km(m+ 1)s0−1,

|m2∂mmb0(m)| ≤ Km2(m+ 1)s0−2.
(2.27)

Finally, for the derivative of b1 with respect to m, we introduce a certain “smallness assump-

tion”: There exists δ ∈ [0, 1) such that for all b ∈ R+ and all v ∈ R
NM there holds

C1

√
N

|m∂mb1(m)|
|b1(m)| |v|

M∑

i=1

|f i
v
i | ≤

N∑

i=1

(f i(m,v) +m∂mf
i(m,v)) +K(1 +m2s0). (2.28)

3The linearity of g with respect to v is in fact not a necessary assumption. A more delicate here is just
behaviour of g with respect to m.
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Although the above assumption seems to be complicated, it naturally appears in the first

a priori estimate of the problem. In the next subsection, we shall show that in many cases,

the assumption (2.28) still allows very general behaviour of all quantities with respect to m,

namely, the case when one can dominate the function g in certain sense. In addition, since

(2.28) may seem to be complicated, we can replace it by

|m∂mb1(m)| ≤ γ|b1(m)| with γ ≤ C0

2(C2
1 +N2)

, (2.29)

since then (2.28) follows easily from the previous assumptions.

Please, observe here that if g is given by (2.23), then (2.13) reduces to

f i
vi
j
(v,m) + b1(m)

d∑

k=1

∂xk
uiAi

kj = 0 in Q, (2.30)

which must be valid for all i = 1, · · · , N and all j = 1, · · · ,M .

The above assumptions are sufficient for establishing formal a priori estimates. However,

for getting also the existence of a weak solution, we need to give a well meaning to the feed

back formula, or in other words, we need to guarantee the unique solvability of (2.30) for given

m and ∇u. There can be introduced many assumptions that would lead to such a goal but we

follow here the most standard one, which is the monotone operator approach. For a given m,

we define the mapping T : RNM → R
NM by

T (v) =
( ∂

∂v1
f1(v,m), · · · , ∂

∂vN
fN (v,m)

)

and assume that it is continuous with respect to (m,v) and measurable with respect to (t, x)

and the strictly monotone, i.e., for all v 6= ṽ,

(T (v)− T (ṽ)) · (v − ṽ) > 0. (2.31)

Then using also the assumption (2.21), we see that it satisfies

T (ν) · ν
|ν| → ∞ as |ν| → ∞, (2.32)

and from the standard monotone operator theory, we can conclude the existence of a unique v

solving (2.30) and also consequently, we obtain that the feed back law (2.6) is well defined.

2.3 Prototypical example

Our prototype example is the following. For f , we assume a structure

f i(m,v) := (m+ 1)r|vi|2 +Bi · v +K(1 +m2s0), (2.33)

where Bi’s are arbitrary bounded measurable matrices. Next, for b1 we consider

b1(m) := (m+ 1)s, (2.34)

and for b0 and matrices Ai, we just require (2.25)–(2.27). With such a choice, all assumptions

(2.16)–(2.27) and also (2.31) are satisfied and we shall just to show what is the meaning of

(2.28). A very direct computation leads to the necessary condition

sm ≤ γ

2N
(1 + (r + 1)m),
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which is surely satisfied whenever

s <
r

2N
. (2.35)

2.4 Statement of main results

The main result of the paper is twofold. First, we give the uniform a priori estimate

result which holds for all sufficiently smooth solutions provided that parameters satisfy the

assumptions stated above.

Theorem 2.1 Let g and f satisfy (2.16)–(2.28). Then any sufficiently regular solution

(m,v,u) to (2.2), (2.5) and (2.13) satisfies the following estimate:

sup
t∈(0,T )

(‖m(t)‖σ + ‖u(t)‖∞) +

∫

Q

|∇u|2 + (m+ 1)σ−2|∇m|2dxdt

+

∫

Q

m2s0+1 + (m+ 1)(mr + 1)|v|2dxdt ≤ C(‖uT ‖∞, ‖m0‖σ), (2.36)

where

σ := r − 2s+ 1 (2.37)

provided that

0 ≤ min
{ 4(2s0(d+ 2)− 1)+
σ(d+ 2)− d− (2s0 − σ + 1)+(d+ 2)

,
2s0(d+ 2)

σ(d+ 2)− d

}
< 1 (2.38)

and

r ≥ 2s. (2.39)

Next, we state the second main theorem of the paper, which is the existence result.

Theorem 2.2 Let g and f satisfy (2.16)–(2.28) and (2.31). Assume that (2.38)–(2.39) is

fulfilled. Then for arbitrary uT ∈ L∞ and nonnegative m0 ∈ Lσ(Ω) with σ fulfilling (2.37)

there exists a weak solution satisfying the estimate (2.36) and fulfilling or almost all t ∈ (0, T ),

〈∂tm,ϕ〉+
∫

Ω

∇m · ∇ϕ−mg(v,m) · ∇ϕ = 0, (2.40)

− 〈∂tu, z〉+
∫

Ω

∇u · ∇z dx

=

∫

Ω

(f(v,m) +mfm(v,m)) · z dx+

∫

Ω

∇u[g(v,m) +mgm(v,m)] · z dx, (2.41)

and completed by the relationship between v and (m,∇u),

f i
vi
j
(v,m) + b1(m)

d∑

k=1

∂xk
uiAi

kj = 0 in Q. (2.42)

To illustrate the power of the result, we just consider our prototypical example. First in

case that s0 = 0, we see that the only restriction is

2Ns < r.



470 A. Bensoussan, M. Buĺıček and J. Frehse

In the opposite extreme case, i.e., if

r = s = 0,

then

s0 <
1

2(d+ 2)
.

3 Algebraic Estimates for Lagrangians and Hamiltonians

In this section, we derive basic algebraic inequalities that are satisfied for Lagrangians and

consequently also for Hamiltonians provided that f and g satisfy the assumption introduced

in Subsection 2.2, namely the assumptions (2.16)–(2.28). The key observation is that under

these assumptions, the Lagrangians satisfy the lower sum coerciveness and the proper upper

estimates. It will be also evident from the estimates below why we require 2s ≤ r in main

results of the paper.

Lemma 3.1 Let f and g satisfy (2.16)–(2.28). Then there exists a constant C > 0 and an

ε0 ∈
(
0, 1

2N

)
such that for almost all (t, x), all (m,v,∇u) fulfilling (2.13) and all i = 1, · · · , N

there hold:

(i) Sum coerciveness

N∑

i=1

Li(m,v,∇u) ≥ C0

2
(mr + 1)|v|2 − C(m2s0 + 1)− C

∣∣∣∇
N∑

i=1

ui
∣∣∣
2(

1 +
m2s + 1

mr + 1

)
. (3.1)

(ii) Upper bound

Li(m,v,∇u)− ε0

N∑

j=1

Lj(m,v,∇u)

≤ C(1 +m2s0) + C
∣∣∣∇

(
ui − ε0

N∑

i=j

uj
)∣∣∣

2(
1 +

m2s + 1

mr + 1

)
. (3.2)

(iii) Global bound

|Li(m,v,∇u)| ≤ C
(
1 +m2s0 + (1 +mr)|v|2 + |∇u|2

(
1 +

m2s + 1

mr + 1

))
. (3.3)

Proof We start with the proof of (3.1). Using the definition of L in (2.5) we get the

identity

N∑

i=1

Li(m,v,∇u) =

N∑

i=1

(f i(v,m) +mf i
m(v,m)) +

N∑

i=1

∇ui · (g(v,m) +mgm(v,m)).

Hence, using (2.18) for the first part and (2.22) for the second part, we observe that

N∑

i=1

Li(m,v,∇u) ≥ C0(m
r + 1)|v|2 −K(m2s0 + 1)−K

∣∣∣∇
N∑

i=1

ui
∣∣∣((ms + 1)|v|+ms0 + 1)

≥ C0

2
(mr + 1)|v|2 − C(m2s0 + 1)− C

∣∣∣∇
N∑

i=1

ui
∣∣∣
2(

1 +
m2s + 1

mr + 1

)
,
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where for the second estimate we used the Young inequality. This finishes the proof of (3.1).

Next, we look for (3.2). Using the definition of Lagrangians, we directly obtain for arbitrary

ε > 0 the following identity:

I := Li(m,v,∇u)− ε
( N∑

i=1

Li(m,v,∇u)
)

= f i(m,v) +mf i
m(m,v)− ε

( N∑

j=1

f j(m,v) +mf j
m(m,v)

)

+∇
(
ui − ε

N∑

j=1

uj
)
· (g(m,v) +mgm(m,v)).

Next, using (2.17)–(2.18), (2.22) and the Young inequality, we have

I ≤ C(1 +m2s0 + |v|α+1) +Kf i(m,v)− εC0(m
r + 1)|v|2

+K
∣∣∣∇

(
ui − ε

N∑

i=1

ui
)∣∣∣(1 +ms0 + (ms + 1)|v|)

≤ C(ε)(1 +m2s0) +Kf i(m,v)− εC0

2
(mr + 1)|v|2

+ C(ε)
(
1 +

m2s + 1

mr + 1

)∣∣∣∇
(
ui − ε

N∑

i=1

ui
)∣∣∣

2

. (3.4)

It remains to estimate the term with f i. We use the convexity of f i with respect to vi and the

assumption (2.20). Then to evaluate f i
vi we also use the constraint (2.13), which however in

our case reduces to (2.30) due to the structural assumptions (2.23). Doing so, we get

Kf i(m,v) ≤ Kf i(m,v)|vi=0 +Kf i
vi(m,v) · vi

≤ C(1 +m2s0 + |v|α+1)− Cb1(m)

d∑

k=1

N∑

j=1

∂xk
uiAi

kjv
i
j

= C(1 +m2s0 + |v|α+1)− Cb1(m)
d∑

k=1

N∑

j=1

∂xk

(
ui − ε

N∑

ℓ=1

uℓ
)
Ai

kjv
i
j

− εCb1(m)

d∑

k=1

N∑

j=1

N∑

ℓ=1

∂xk
uℓAi

kjv
i
j .

Then we estimate terms involving Aℓ∇ui with the help of (2.24), (2.26) and (2.30) as follows

Kf i(m,v) ≤ C(1 +m2s0 + |v|α+1) + C(ms + 1)
∣∣∣∇

(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣|v|

+ εC|vi|
N∑

ℓ=1

|∇uℓAℓ||b1(m)|

≤ C(1 +m2s0 + |v|α+1) + C(ms + 1)
∣∣∣∇

(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣|v|
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+ εC|vi||f
v
(m,v)|. (3.5)

Finally, we focus on estimate of vi. It follows from (2.21), (2.24), (2.26) and (2.30) that

C0(m
r + 1)|vi|2 ≤ f i

vi · vi +K(1 +m2s0 + |v|1+α)

= −b1(m)∇uiAi · vi +K(1 +m2s0 + |v|1+α)

= −b1(m)∇
(
ui − ε

N∑

ℓ=1

uℓ
)
Ai · vi

− εb1(m)

N∑

ℓ=1

∇uℓAi · vi +K(1 +m2s0 + |v|1+α)

≤ C(ms + 1)
∣∣∣∇

(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣|vi|

+ εC|vi||b1(m)|
N∑

ℓ=1

|∇uℓAℓ|+K(1 +m2s0 + |v|1+α)

≤ C
m2s + 1

mr + 1

∣∣∣∇
(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣

2

+ C0
mr + 1

2
|vi|2

+ εC|v||f
v
(m,v)|+K(1 +m2s0 + |v|1+α),

where for the last inequality, we used the Young inequality and the structural constraint (2.30).

Hence absorbing the corresponding term to the left-hand side, using (2.16) and the Young

inequality, we get

(mr + 1)|vi|2 ≤ C
(m2s + 1)

mr + 1

∣∣∣∇
(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣

2

+ εC(mr + 1)|v|2 + C(1 +m2s0 + |v|1+α). (3.6)

Next, using the Young inequality in (3.5), we find

Kf i(m,v) ≤ C(ε)(1 +m2s0) + C
m2s + 1

ε2(mr + 1)

∣∣∣∇
(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣

2

+ Cε2(mr + 1)|v|2 + εC|vi||f
v
(m,v)|

≤ C(ε)(1 +m2s0) + C
m2s + 1

ε2(mr + 1)

∣∣∣∇
(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣

2

+ Cε2(mr + 1)|v|2 + ε
1
2 (mr + 1)|vi|2 + Cε

3
2
|f

v
(m,v)|2
mr + 1

. (3.7)

Finally, we substitute (3.6) into (3.7) to estimate term with vi and with the help of the assump-

tion (2.16), we obtain

Kf i(m,v) ≤ C(ε)
(
1 +m2s0 +

m2s + 1

mr + 1

∣∣∣∇
(
ui − ε

N∑

ℓ=1

uℓ
)∣∣∣

2)
+ Cε

3
2 (mr + 1)|v|2. (3.8)
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Consequently, (3.8) combined with (3.4) directly implies

I ≤ C(ε)(1 +m2s0)− C0

2
(ε− Cε

3
2 )(mr + 1)|v|2 + C(ε)

m2s + 1

mr + 1

∣∣∣∇
(
ui − ε

N∑

i=1

ui
)∣∣∣

2

. (3.9)

Thus, if we choose ε =: ε0 ∈
(
0, 2

N

)
such that

ε0 − Cε
3
2
0 ≥ 0,

which is always possible and the maximal value of such ε0 depends only on the generic constant

C, we obtain the desired estimate (3.2).

The estimate (3.3) is then a simple combination of (3.1)–(3.2). The proof is finished.

4 Uniform a Priori Estimates—Proof of Theorem 2.1

This section is devoted to the estimates for solution (m,u,v) of (2.2), (2.5) and (2.13) that

depend only on data of the problem provided that the assumptions (2.16)–(2.28) are satisfied.

Here, we proceed rather formally, considering that the solution is sufficiently regular. The

justification of such a procedure then will be provided in the proof of the existence result, i.e.,

in the proof of Theorem 2.2.

4.1 Estimates for m

We start with estimates for m. First, if m0 ≥ 0 almost everywhere in Ω, then the standard

minimum principle for parabolic equations implies that (sufficiently smooth) solution satisfies

m ≥ 0 almost everywhere in Q as well. Next, setting ϕ := 1 in (2.40), we get with the help of

nonnegativity of m that
d

dt
‖m(t)‖1 = 0.

Consequently, we have

sup
t∈(0,T )

‖m(t)‖1 ≤ ‖m0‖1 ≤ C. (4.1)

Next, in order to obtain estimates on (u,v) we need to improve the information about m

since the Lagrangians (or Hamiltonians) depend heavily on m. Our goal is to prove the starting

point inequality

E := sup
t∈(0,T )

‖m(t) + 1‖σσ +

∫

Q

(m+ 1)σ−2|∇m|2dxdt

≤ C

∫

Q

(m+ 1)2s0+1dxdt+ C‖u‖2L∞(Q)

(
1 +

∫

Q

(m+ 1)2s0−σ+2dxdt
)
, (4.2)

where the constant C depends only on data given by assumptions on f and g.

Proof of (4.2) We first set ϕ := (m+ 1)σ−1 in (2.40), where σ is given by (2.37), i.e.,

σ := r + 1− 2s ≥ 1.

With such a choice of ϕ, we get the identity

1

σ

d

dt
‖m(t) + 1‖σσ + (σ − 1)

∫

Ω

(m+ 1)σ−2|∇m|2 dx
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= (σ − 1)

∫

Ω

m(m+ 1)σ−2g(m,v) · ∇m dx

= (σ − 1)

∫

Ω

m(m+ 1)σ−2b1(m)

M∑

j=1

Ajvj · ∇m dx

+ (σ − 1)

∫

Ω

m(m+ 1)σ−2b0(m) · ∇m dx,

where the second equality follows from the structural assumption on g (see (2.23)). Clearly,

the second term on the right-hand side vanishes due to the integration by parts and spatially

periodic boundary conditions. For the first integral we use the Young inequality to conclude

1

σ

d

dt
‖m(t) + 1‖σσ +

(σ − 1)

2

∫

Ω

(m+ 1)σ−2|∇m|2 dx

≤ (σ − 1)

2

∫

Ω

m2(m+ 1)σ−2b21(m)
∣∣∣

N∑

j=1

Ajvj
∣∣∣
2

dx.

Thus, using the bounds for b1 and Aj , namely (2.24)–(2.25), we obtain after integration over

(0, T )

sup
t∈(0,T )

‖m(t) + 1‖σσ +

∫

Q

(m+ 1)σ−2|∇m|2dxdt

≤ C(σ, ‖m0‖q,Ω)
(
1 +

∫

Q

m(m+ 1)2s+σ−1|v|2dxdt
)
. (4.3)

Next, we set ϕ := ui in (2.40) and z := m in the i-th equation in (2.41), integrate the result

with respect to time and use integration by parts to obtain the following two identities:
∫

Ω

m(T )ui(T )−m(0)ui(0) dx−
∫

Q

m∂tu
idxdt

+

∫

Q

∇m · ∇ui −mg(v,m) · ∇uidxdt = 0 (4.4)

and

−
∫

Q

∂tu
imdxdt+

∫

Q

∇ui · ∇mdxdt

=

∫

Q

m(f i(v,m) +mf i
m(v,m))dxdt

+

∫

Q

m∇ui · g(v,m) +m2gm(v,m) · ∇uidxdt. (4.5)

Subtracting (4.4) from (4.5) we arrive at identity

∫

Q

m(f i(v,m) +mf i
m(v,m))dxdt

= −
∫

Ω

m(T )ui(T )−m(0)ui(0) dx−
∫

Q

m2gm(v,m) · ∇ui

≤ C‖u‖L∞(Q) −
∫

Q

m2gm(v,m) · ∇uidxdt, (4.6)
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where for the last inequality we used the Hölder inequality and the uniform bound (4.1). Next,

we evaluate the last integral. Using the structural assumption (2.23) and the growth assump-

tions (2.24)–(2.27), we see that

−
∫

Q

m2gm(v,m) · ∇uidxdt

= −
∫

Q

m2∂mb0(m) · ∇uidxdt−
N∑

j=1

∫

Q

m2∂mb1(m)Ajvj · ∇uidxdt

=

∫

Q

ui∂m(m2∂mb0(m)) · ∇mdxdt

−
N∑

j=1

∫

Q

m2∂mb1(m)Ajvj · ∇uidxdt

≤
∫

Q

K|u|m(m+ 1)s0−1|∇m|dxdt

+

∫

Q

m2|∂mb1(m)||v|
( N∑

j=1

|∇uiAj |2
) 1

2

dxdt

=: I1 + I2.

To estimate I2 we use (2.26) and the constraint (2.30) to get

I2 ≤ C1

∫

Q

m2|∂mb1(m)|
b1(m)

|v|
( N∑

j=1

|b1(m)∇uiAi|2
) 1

2

dxdt

= C1

√
N

∫

Q

m2|∂mb1(m)|
b1(m)

|f i
vi ||v|dxdt.

For the term I1 we use the Young and the Hölder inequalities to obtain for arbitrary ε > 0,

I1 ≤ ε

∫

Q

(m+ 1)σ−2|∇m|2dxdt+ C(ε)‖u‖2L∞(Q)

∫

Q

(m+ 1)2s0−σ+2dxdt.

Finally, substituting these estimates into (4.6), summing the result over i = 1, · · · , N and using

(2.28), we obtain

∫

Q

N∑

i=1

m(f i(v,m) +mf i
m(v,m))dxdt

≤ Nε

∫

Q

(m+ 1)σ−2|∇m|2dxdt

+ C(ε)‖u‖2L∞(Q)

(
1 +

∫

Q

(m+ 1)2s0−σ+2dxdt
)

+ C1

√
N

∫

Q

m2|∂mb1(m)|
b1(m)

|v|
N∑

i=1

|f i
vi |dxdt

≤ Nε

∫

Q

(m+ 1)σ−2|∇m|2dxdt

+ C(ε)‖u‖2L∞(Q)

(
1 +

∫

Q

(m+ 1)2s0−σ+2dxdt
)
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+

∫

Q

δ

N∑

i=1

m(f i(v,m) +mf i
m(v,m)) +K(1 +m2s0)dxdt. (4.7)

Consequently, since δ < 1 we can absorb the last term by the left-hand side. Therefore, we can

use the sum coerciveness, i.e., the assumption (2.18), to deduce that
∫

Q

m(mr + 1)|v|2dxdt ≤ C‖u‖L∞(Q) + C(ε)‖u‖2L∞(Q)

∫

Q

(m+ 1)2s0−σ+2dxdt

+ C

∫

Q

(m+ 1)2s0+1dxdt+ Cε

∫

Q

(m+ 1)σ−2|∇m|2dxdt. (4.8)

Finally, using the estimate (4.8) in (4.3), we see that (recalling (2.37))

sup
t∈(0,T )

‖m(t) + 1‖σσ +

∫

Q

(m+ 1)σ−2|∇m|2dxdt

≤ C
(
1 +

∫

Q

m(mr + 1)|v|2dxdt
)

≤ C

∫

Q

(m+ 1)2s0+1 + ε(m+ 1)σ−2|∇m|2dxdt

+ C(ε)‖u‖2L∞(Q)

(
1 +

∫

Q

(m+ 1)2s0−σ+2dxdt
)
.

Thus, setting ε > 0 sufficiently small, we obtain the desired inequality (4.2).

Our next goal is to improve the information coming from (4.2) such that the estimate on E

depends only on u and not on m. It means that we want to show that

E ≤ C
(
1 + ‖u‖

2(σ(d+2)−d)
σ(d+2)−d−((2s0−σ+1)+(d+2))

L∞(Q)

)
(4.9)

provided that

2s0 + 2s < r +
2

d+ 2
, (4.10)

s0 + 2s < r +
1

d+ 2
. (4.11)

The estimate (4.9) will be shown by a certain interpolation of (4.1)–(4.2).

Proof of (4.9) First, we recall the following parabolic interpolation inequality:

∫ T

0

‖u‖
2(d+2)

d
2(d+2)

d

dt ≤
∫ T

0

‖u‖
4
d

2 ‖u‖21,2 dt

≤ C
(

sup
t∈(0,T )

‖u(t)‖22 +
∫ T

0

‖∇u‖22 dt
) d+2

d

. (4.12)

Next, we apply (4.12) onto the function u := (m+ 1)
σ
2 with σ given by (2.37) to get

∫

Q

(m+ 1)
σ(d+2)

d dxdt =

∫ T

0

‖(m+ 1)
σ
2 ‖

2(d+2)
d

2(d+2)
d

dt

≤ C
(

sup
t∈(0,T )

‖(m(t) + 1)
σ
2 ‖22 +

∫ T

0

‖∇(m+ 1)
σ
2 ‖22 dt

) d+2
d
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≤ C
(

sup
t∈(0,T )

‖(m(t) + 1)‖σσ +

∫

Q

(m+ 1)σ−2|∇m|2dxdt
) d+2

d

= CE
d+2
d . (4.13)

Finally, we also use the a priori estimate (4.1) and the interpolation inequality

‖ · ‖q ≤ ‖ · ‖1−
q−1
q

σ(d+2)
σ(d+2)−d

1 ‖ · ‖
q−1
q

σ(d+2)
σ(d+2)−d

σ(d+2)
d

,

which is valid for all 1 ≤ q ≤ σ(d+2)
d

, to obtain
∫

Q

(m+ 1)qdxdt ≤ ‖m+ 1‖q−
σ(d+2)(q−1)
σ(d+2)−d

L1(Q) ‖m+ 1‖
σ(d+2)(q−1)
σ(d+2)−d

L
σ(d+2)

d (Q)

≤ C
(∫

Q

(m+ 1)
σ(d+2)

d dxdt
) d(q−1)

σ(d+2)−d

≤ E
(q−1)(d+2)
σ(d+2)−d , (4.14)

where for the last inequality we used (4.13).

Next, we use (4.14) to handle the right-hand side of (4.2). Assuming that

2s0 + 1 ≤ σ(d+ 2)

d
, (4.15)

we get from (4.14),
∫

Q

(m+ 1)2s0+1dxdt ≤ CE
2s0(d+2)

σ(d+2)−d ≤ C
(
1 +

1

4
E
)

(4.16)

provided that

2s0(d+ 2)

σ(d+ 2)− d
< 1, (4.17)

which by using of (2.37) can be shown to be equivalent to (4.10). Notice that (4.17) directly

implies the validity of (4.15). Hence, we can absorb the first term on the right-hand side of

(4.2) to get

E ≤ C
(
1 + ‖u‖2L∞(Q)

(
1 +

∫

Q

(m+ 1)2s0−σ+2dxdt
))
. (4.18)

In case that

2s0 − σ + 2 ≤ 1 ⇔ 2(s0 + s) ≤ r, (4.19)

we can use (4.1) to conclude (4.9) directly. If (4.19) is not true, we again use (4.14) to get from

(4.18)

E ≤ C(1 + ‖u‖2L∞(Q)E
(2s0−σ+1)(d+2)

σ(d+2)−d ),

which after using the Young inequality leads to (4.9), provided that

(2s0 − σ + 1)(d+ 2)

σ(d+ 2)− d
< 1. (4.20)

Note that (4.20) is a stronger assumption that (4.19) and it can be shown by using (2.37) that

(4.20) is equivalent to (4.11). Hence the proof of (4.9) is complete.
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4.2 Estimates for u

This subsection is devoted to the uniform estimates on u, which will still depend on m. To

be more precise, we want to show that for arbitrary p > d+ 2 we have the estimate

‖u‖L∞(Q) ≤ C + C(p)‖m2s0‖2Lp(Q). (4.21)

Proof of (4.21) We start with the estimates for below for the quantity

w :=

N∑

i=1

ui.

It is not difficult to observe from (2.5), (3.1) and the fact that 2s ≤ r, that w satisfies almost

everywhere in Q,

−∂tw −∆w =

N∑

i=1

Li(v,m,∇u) ≥ −C(|∇w|2 +m2s0 + 1). (4.22)

Next, let us consider w1 a solution to

−∂tw1 −∆w1 = −Cm2s0 (4.23)

completed by zero initial condition, i.e., w1(T ) = 0. Then by a standard parabolic estimate,

we obtain that

‖w1‖L∞(Q) + ‖∇w1‖L∞(Q) ≤ C(p)‖m2s0‖Lp(Q) (4.24)

whenever p > d+ 2. Then subtracting (4.23) from (4.22), we obtain

−∂t(w − w1)−∆(w − w1) ≥ −C(|∇w|2 + 1) ≥ −C|∇(w − w1)|2 − C(1 + ‖∇w1‖2∞). (4.25)

Hence from the theory for subsolutions to parabolic equation (see [8]), we obtain

w − w1 ≥ −C(T )max{‖w(T )‖∞, (1 + ‖∇w1‖2L∞(Q))},

which together with (4.24) and the assumption that u(T ) ∈ L∞ leads to the final estimate from

below

w ≥ −C − C(p)‖m2s0‖2Lp(Q), (4.26)

which is valid for arbitrary p > d+ 2.

Next, we focus on estimates from above. Keeping the notation for w, we can derive from

(2.5) that

−∂t(ui − ε0w)−∆(ui − ε0w) = Li(m,v,∇u)− ε0

N∑

j=1

Lj(m,v,∇u).

Hence, using (3.2), we get

− ∂t(u
i − ε0w)−∆(ui − ε0w)



Bellman Systems with Mean Field Dependent Dynamics 479

≤ C(1 +m2s0) + C
(
1 +

m2s + 1

mr + 1

)
|∇(ui − ε0w)|2

≤ C(1 +m2s0) + C|∇(ui − ε0w)|2, (4.27)

where the second inequality follows from the assumption 2s ≤ r. Thus, we can repeat step by

step the procedure for w and using the fact that u(T ) ∈ L∞(Ω), we obtain

ui − ε0w ≤ C + C(p)‖m2s0‖2Lp(Q). (4.28)

Finally, we derive the uniform bound (4.21). First, summing (4.28) over i = 1, · · · , N, we
have

(1−Nε0)w ≤ CN + C(p)N‖m2s0‖2Lp(Q).

Since ε0 <
1
2N , we can combine this estimate with (4.26) to get

|w| ≤ C + C(p)‖m2s0‖2Lp(Q). (4.29)

Consequently, it follows from (4.28) that

ui ≤ C + C(p)‖m2s0‖2Lp(Q). (4.30)

Finally to obtain also estimate from below for ui, we use (4.29)–(4.30) and get

ui = w −
∑

j 6=i

uj
(4.29)−(4.30)

≥ C + C(p)‖m2s0‖2Lp(Q),

which together with (4.30) implies the desired estimate (4.21). Hence the proof is complete.

4.3 Uniform L∞ bounds

This subsection is devoted to the uniform bound for u, which directly implies the part of

uniform estimates stated in (2.36). Here, we combine (4.14), (4.9) and (4.21) to obtain the final

bound. We go back to (4.21) and estimate the right-hand side. Although we need to choose

p > d+ 2, we formally provide all computation for p = d+ 2 and in the final restriction on the

size of s0 (or σ) we just use the strict inequality sign. Hence, we need to estimate the term on

the right-hand side of (4.21), i.e., the integral

‖m2s0‖2d+2 =
( ∫

Q

m2s0(d+2)dxdt
) 2

d+2

. (4.31)

If 2s0(d+2) < 1 then the integral on the right-hand side of (4.21) is bounded due to (4.1) and

therefore we immediately get

‖u‖L∞(Q) ≤ C(‖u0‖∞, ‖m0‖∞). (4.32)

Hence, in what follows, we assume the opposite case. Assuming that

2s0(d+ 2) <
σ(d+ 2)

d
⇔ r + 1 > 2ds0 + 2s, (4.33)
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we can use (4.14) with q := 2s0(d+ 2) and we deduce

(∫

Q

(m+ 1)2s0(d+2)dxdt
) 2

d+2 ≤ CE
(2s0(d+2)−1)+2

σ(d+2)−d (4.34)

and it follows from (4.21) that

‖u‖L∞(Q) ≤ C(1 + E
(2s0(d+2)−1)+2

σ(d+2)−d ). (4.35)

Inserting this estimate into the right-hand side of (4.9), we also deduce

‖u‖L∞(Q) ≤ C(1 + ‖u‖
4(2s0(d+2)−1)+

σ(d+2)−d−(2s0−σ+1)+(d+2)

L∞(Q) ). (4.36)

Hence, in case

4(2s0(d+ 2)− 1)+
σ(d + 2)− d− (2s0 − σ + 1)+(d+ 2)

< 1, (4.37)

we can absorb the right-hand side by left-hand side to obtain

‖u‖L∞(Q) ≤ C(‖u(T )‖∞, ‖m0‖∞), (4.38)

which implies a part of (2.36). Notice that (4.37) is a stronger assumption than (4.20) and

therefore all needed assumptions, i.e., the assumptions (4.17) and (4.37), are already encoded

in (2.38). Furthermore, using (4.2) and (4.9), we obtain also the bound for m and ∇m stated

in (2.36). Finally, from (4.8), we deduce the bound for term with m(mr + 1)|v|2 in (2.36).

4.4 Uniform estimates for ∇u

This subsection is devoted to the last remaining part of (2.36), i.e., the part of the estimate

with ∇u. Keeping the notation from the previous sections, we start with estimates for ∇w.
Using (3.1) and the fact that 2s ≤ r we have

−∂tw −∆w ≥ (mr + 1)|v|2 − C(|∇w|2 +m2s0 + 1). (4.39)

Next, we multiply (4.39) by e−2Cw ≥ 0, integrate over Q and use integration by parts to obtain
∫

Q

(mr + 1)|v|2e−2Cw + 2Ce−2Cw|∇w|2dxdt

≤ 1

2C

∫

Q

∂te
−2Cw + C(|∇w|2 +m2s0 + 1)e−2Cwdxdt. (4.40)

Thus, we see that we can absorb the term with ∇w by the left-hand side and due to the L∞

bound for u (see (4.38)), and L2s0(d+2) bound for m (see (4.34)), we deduce from (4.40) that
∫

Q

(mr + 1)|v|2 + |∇w|2dxdt ≤ C(‖uT ‖∞, ‖m0‖σ). (4.41)

Notice that the first in (4.41) together with (4.8) leads to the estimate (2.36) for term involving

|v|2.
Next, we use the inequality (4.27), i.e.,

−∂t(ui − ε0w)−∆(ui − ε0w) ≤ C(1 +m2s0) + C|∇(ui − ε0w)|2, (4.42)
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which we multiply by e2C(ui−ε0w) and integrate over Q. Repeating step by step the procedure

(4.40)–(4.41) and using uniform bounds on u and m, we get

∫

Q

|∇(ui − ε0w)|2dxdt ≤ C(‖uT ‖∞, ‖m0‖σ). (4.43)

Finally, combining (4.41) and (4.43), we have for all i = 1, · · · , N,
∫

Q

|∇ui|2dxdt ≤ 2

∫

Q

|∇(ui − ε0w)|2 + ε20|∇w|2dxdt

≤ C(‖uT ‖∞, ‖m0‖σ),

which finishes the proof of (2.36).

5 Existence of Solution—Proof of Theorem 2.2

This section is devoted to the proof of the existence of a solution to (2.2), (2.5) and (2.30).

Notice that due to the assumption (2.31)–(2.32), we know that (2.32) is equivalent to

v = ω(m,∇u)

with a Carathéodory mapping ω. Therefore we can omit (2.30) and replace v by ω(m,∇u) in

(2.2) and (2.5) and solve the problem only for unknowns (m,u). In fact, this is also the way

how one can get the existence of a solution to an approximative problem. Nevertheless, for the

sake of simplicity and to simplify the notation, we keep writing v in what follows.

Second, we do not provide the complete and rigorous proof here. We rather emphasize those

steps that are different from the known procedure for Bellman systems. To be more specific,

we provide here the proof of weak sequential stability, which is the key property of the system

of equations we have in mind. It means that we shall consider a sequence of (mn,un,vn) of

smooth solutions to (2.2), (2.5) and (2.30) (which is however equivalent to (2.15), once the

mapping ω is well defined) corresponding sequence of initial data

un
T → uT strongly in L1(Ω;RN ),

un
T ⇀∗ uT weakly∗ in L∞(Ω;RN ),

mn
0 → m0 stongly in Lσ(Ω)

(5.1)

with nonnegative mn
0 . Our goal is to show that

(mn,un,vn) → (m,u,v), (5.2)

strongly in L1(Q)×L1(0, T ;W 1,2(Ω;RN ))×L1(Q;RNM ), where the triple (m,u,v) solves again

(2.2), (2.5) and (2.30) with initial data (uT ,m0). Indeed such a result suggests that the rigorous

existence proof is doable. Indeed, approximating Hamiltonians H by a sequence of bounded

functions {Hn}∞n=1 and similarly g by a sequence of bounded {gn}∞n=1, one may consider that

for a such approximative system it is classical to obtain the existence of solution (mn,un,vn)

and the only remaining part of the proof is then the weak sequential stability. For details, how

one can approximate Hamiltonians properly, we refer to [2].
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5.1 Uniform a priori estimates

In this part we just use the result of Theorem 2.1, which holds for sufficiently smooth

solutions. Indeed, we may assume that

sup
t∈(0,T )

(‖mn(t)‖σ + ‖un(t)‖∞) +

∫

Q

|∇un|2 + (mn + 1)σ−2|∇mn|2dxdt

+

∫

Q

((mn)r+1 + 1)|vn|2 + (mn)2s0(d+2)dxdt

≤ C(‖un
T ‖∞, ‖mn

0‖σ) ≤ C (5.3)

such that (mn,un,vn) satisfies for all ϕ ∈ C∞
0 (−∞;T ;W 1,∞

per (Ω)),

∫

Q

−mn∂tϕ+∇mn · ∇ϕ−mng(vn,mn) · ∇ϕdxdt =
∫

Ω

mn
0ϕ(0) dx, (5.4)

for all ϕ ∈ C∞
0 (0;∞;W 1,∞(Ω)),

∫

Q

un∂tϕ+∇un · ∇ϕdxdt−
∫

Ω

un
Tϕ(T ) dx =

∫

Q

L(mn,vn,∇un)ϕdxdt (5.5)

and almost everywhere in Q,

f i
vi
j
(vn,mn) + b1(m

n)
d∑

k=1

∂xk
(un)iAi

kj = 0 in Q (5.6)

with g given as

g(vn,mn) :=

N∑

j=1

b1(m
n)Aj(vn)j + b0(m

n) (5.7)

and L(mn,vn,un) given as

L(mn,vn,∇un) := f (vn,mn) +mnfm(vn,mn)

+∇un[g(vn,mn) +mngmn(vn,mn)]. (5.8)

Next, we focus on the estimate for the time derivatives. First, using (3.3) and uniform

bounds (2.36), we see that

∫

Q

|L(mn,vn,∇un)| dx dt ≤ C. (5.9)

Consequently, we can deduce from (5.5) and also from (5.3) that for some q > d,

∫ T

0

‖∂tu‖(W 1,q
per (Ω;RN ))∗ dt ≤ C. (5.10)

Similarly, using (2.22) and (5.3), we see that for some q ∈ (1,∞),

∫ T

0

‖∂tm‖q
′

(W 1,q
per (Ω))∗

dt ≤ C. (5.11)
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5.2 Limit n → ∞

Having (5.3), (5.1) and (5.10)–(5.11) and using the Aubin-Lions lemma, we can find subse-

quences that we do not relabel, such that for some q > d,

un ⇀ u weakly in L2(0, T ;W 1,2
per(Ω;R

N )), (5.12)

un ⇀∗ u weakly∗ in L∞(Q;RN ), (5.13)

un → u strongly in L1(Q;RN), (5.14)

∂tu
n ⇀∗ ∂tu weakly∗ in M(0, T ; (W 1,q

per(Ω;R
N ))∗), (5.15)

mn ⇀m weakly in L2(0, T ;W 1,2
per(Ω)), (5.16)

mn → m strongly in L1(Q), (5.17)

mn ⇀m weakly in L
σ(d+2)

d (Q), (5.18)

∂tm
n ⇀ ∂tm weakly in Lq′(0, T ; (W 1,q

per(Ω)
∗), (5.19)

L(mn,vn,∇un)⇀∗ L weakly∗ in M(Q), (5.20)

where M(K) denotes the space of Radon measures on K. Having (5.12)–(5.20), we can use the

theory for parabolic equations with L1 or measure right-hand side (see [4–5]) to conclude that

∇un → ∇u a.e. in Q. (5.21)

Consequently, since the operator T in (2.31)–(2.32) is strictly monotone, it follows from (5.17)

and (5.21) that

vn → v a.e. in Q, (5.22)

which in particular also implies (note that L and g are Carathéodory)

L(mn,vn,∇un) → L(m,v,∇u) a.e. in Q, (5.23)

g(vn,mn) → g(v,m) a.e. in Q. (5.24)

Thus, the convergence results (5.12)–(5.24) allow us to let n→ ∞ in (5.4)–(5.7) to obtain that

(m,v,u) solves (2.40), (2.41) and

∫

Q

(u∂tϕ+∇u · ∇ϕ)dxdt −
∫

Ω

uTϕ(T ) dx =

∫

Q

Lϕdxdt (5.25)

for all ϕ ∈ C∞
0 (0,∞;W 1,∞(Ω)). Thus, to finish the proof of Theorem 2.2, we need to show that

L = L(m,v,∇u) a.e. in Q. (5.26)

Indeed, having (5.26), we can read from the equation that the time derivative of u is better,

i.e., that

u ∈ L1(0, T ; (W 1,q
per(Ω;R

N ))∗)

for some q > d and integrating by parts with respect to the time variable t in (5.25), we find

that (2.41) holds true.
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5.3 Identification of L and the proof of (5.26)

This last part is devoted to the proof of (5.26). We follow the procedure developed in [2]

with the necessary changes due to the presence of the mean field variable m. We also proceed

here slightly formally and refer the interested reader to [2], where the very similar procedure is

made rigorously. Defining

wn :=

N∑

i=1

(un)i,

it follows from (5.5) that in the sense of distributions we have

−∂twn −∆wn =

N∑

i=1

L(mn,vn,∇un). (5.27)

Next, we multiply (5.27) by

e−2Cwn

and obtain

1

2C
∂te

−2Cwn

+
1

2C
∆e−2Cwn

=
N∑

i=1

L(mn,vn,∇un)e−2Cwn

+ 2Ce−2Cwn |∇wn|2. (5.28)

Consequently, multiplying the resulting identity by arbitrary nonnegative ϕ ∈ W
1,1
0 (0, T :

L∞(Ω)∩W 1,2
per(Ω)) and integrating the result over Q, we get by using integration by parts that

− 1

2C

∫

Q

e−2Cwn

∂tϕ+∇e−2Cwn · ∇ϕdxdt

=

∫

Q

ϕ

N∑

i=1

L(mn,vn,∇un)e−2Cwn

+ 2Ce−2Cwn |∇wn|2. (5.29)

Next, we let n→ ∞. Thanks to (5.12)–(5.14), it is easy to deduce that

lim
n→∞

∫

Q

e−2Cwn

∂tϕ+∇e−2Cwn · ∇ϕdxdt =
∫

Q

e−2Cw∂tϕ+∇e−2Cw · ∇ϕdxdt. (5.30)

Next, using (3.1), we get that

N∑

i=1

L(mn,vn,∇un)e−2Cwn

+ 2Ce−2Cwn |∇wn|2 ≥ −C((mn)2s0 + 1).

Consequently, we see that the right-hand side of (5.29) is bounded from below by a strongly

convergent function, so using the point-wise convergence result (5.23) and the Fatou lemma,

we get

lim inf
n→∞

∫

Q

ϕ
( N∑

i=1

L(mn,vn,∇un)e−2Cwn

+ 2Ce−2Cwn |∇wn|2
)

≥
∫

Q

ϕ
( N∑

i=1

L(m,v,∇u)e−2Cw + 2Ce−2Cw|∇w|2
)
. (5.31)
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Hence, combining (5.30)–(5.31), we see that for all nonnegative ϕ ∈ W
1,1
0 (0, T : L∞(Ω) ∩

W 1,2
per(Ω)) there holds

− 1

2C

∫

Q

e−2Cw∂tϕ+∇e−2Cw · ∇ϕdxdt

≥
∫

Q

ϕ
( N∑

i=1

L(m,v,∇u)e−2Cw + 2Ce−2Cw|∇w|2
)
. (5.32)

Finally, taking ϕ := e2Cwψ with arbitrary ψ ∈ W
1,1
0 (0, T ;L∞(Ω) ∩W 1,2

per(Ω)), we deduce that4

∫

Q

w∂tψ +∇w · ψdxdt ≥
∫

Q

ψ
( N∑

i=1

L(m,v,∇u)
)
ψdxdt, (5.33)

which implies that in the sense of distributions

−∂tw −∆w ≥
N∑

i=1

L(m,v,∇u). (5.34)

Similarly, we deduce the opposite type inequalities. It follows from (5.5) that for all i =

1, · · · , N,

− ∂t((u
i)n − ε0w

n)−∆((ui)n − ε0w
n)

= Li(mn,vn,∇un)− ε0

N∑

i=1

Li(mn,vn,∇un). (5.35)

Denoting zn := (ui)n − ε0w
n and multiplying (5.35) by e2Czn

we get

− 1

2C
∂te

2Czn − 1

2C
∆e2Czn

= e2Czn
(
Li(mn,vn,∇un)− ε0

N∑

i=1

Li(mn,vn,∇un)
)
− e2Czn |∇zn|2. (5.36)

Hence, using (3.2), we see that the right-hand side is bounded by an convergent sequence and

therefore we can proceed similarly as before by using the Fatou lemma to obtain

−∂t(ui − ε0w) −∆(ui − ε0w) ≤ Li(m,v,∇u)− ε0

N∑

i=1

Li(m,v,∇u). (5.37)

Thus summing with respect to i = 1, · · · , N and dividing by (1 − ε0) we see that

−∂tw −∆w ≤
N∑

i=1

Li(m,v,∇u),

which combined with (5.34) gives

−∂tw −∆w =

N∑

i=1

Li(m,v,∇u). (5.38)

4In fact we must mollify the test function with respect to the time variable and then to pas to the limit.
Since such a procedure was explained in details in [2], we do not provide the complete proof here.
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Consequently also we obtain from (5.37) that

−∂tui −∆ui ≤ Li(m,v,∇u). (5.39)

Finally using (5.38)–(5.39), we get

−∂tui −∆ui = −∂tw −∆w +
∑

j 6=i

(∂tu
j +∆uj)

≥
N∑

j=1

Lj(m,v,∇u)−
∑

j 6=i

Lj(m,v,∇u)

= Li(m,v,∇u).

Hence, (5.39) implies that

−∂tui −∆ui = Li(m,v,∇u) (5.40)

and (2.41) follows. This completes the proof of Theorem 2.2.
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[4] Boccardo, L., Dall’aglio, A., Gallouët, T. and Orsina, L., Nonlinear parabolic equations with measure
data, J. Funct. Anal., 147(2), 1997, 237–258.
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