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Abstract In this article, a computational model and related methodologies have been
tested for simulating the motion of a malaria infected red blood cell (iRBC for short)
in Poiseuille flow at low Reynolds numbers. Besides the deformability of the red blood
cell membrane, the migration of a neutrally buoyant particle (used to model the malaria
parasite inside the membrane) is another factor to determine the iRBC motion. Typically
an iRBC oscillates in a Poiseuille flow due to the competition between these two factors.
The interaction of an iRBC and several RBCs in a narrow channel shows that, at lower flow
speed, the iRBC can be easily pushed toward the wall and stay there to block the channel.
But, at higher flow speed, RBCs and iRBC stay in the central region of the channel since
their migrations are dominated by the motion of the RBC membrane.
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1 Introduction

The biological cell is a lipid bilayer membrane encapsulating the cellular content. For

eukaryotic cells, the influence of the internal structure on its dynamics in fluid flow is not yet fully

understood. For example, the nucleus occupies 18% to 44% of the volume in human leukocytes

(see [1]) and affects leukocyte adhesion to vascular endothelium. Another example is malaria

infected RBCs (iRBCs for short) which have reduced deformability and shape changed and can

disrupt the microcirculation of blood flow (see [2–3]). In general, vesicle and inextensible vesicle

enclosing homogeneous fluid are often used to model the red blood cell (RBC for short). But

to model those biological cells and to study the cell dynamics in fluid flow, a compound vesicle,

which has a suspended rigid particle inside its membrane, immersed in a fluid was considered
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in [4]. The studies in [4] show that the internal structure does trigger the transition from tank-

trading to tumbling in a two-dimensional bounded shear flow at Stokes regime in the absence

of any viscosity mismatch. In [5], a bilamellar vesicle consisting of two vesicles has been used to

study the influence of the internal structure of a biological cell (e.g., a leukocyte) on its dynamics

and rheology: It was found that increasing the size of the inner vesicle (mimicking the nucleus)

also triggers a tank-treading-to-tumbling transition in a two-dimensional bounded shear flow

at Stokes regime. Concerning the dynamics of iRBCs in fluid flow, Plasmodium falciparum

(P. falciparum for short) parasites inside the RBC membrane can be modeled as rigid particles

(e.g., see [6]). Using a compound model (i.e., using a spring network for membrane and having a

solid particle inside), the effect of iRBCs on the rheological property of blood in micro-channels

has been investigated in [7]. In [8], simulations with a similar compound model successfully

reproduce the experimental observation that how the iRBC transitions from passage to blockage

in microfluidic channels.

In this article we have studied the motion of a compound vesicle and its interaction with

RBCs in a Poiseuille flow by using a spring network to model the cell membrane and treating P.

falciparum parasite inside cell membrane as a neutrally buoyant particle. In [9–11], computa-

tional methods combining such spring network model with an immersed boundary (IB for short)

method for simulating the motion of RBCs in two-dimensional Poiseuille flows were develope-

d. For simulating particle-fluid interaction, distributed Lagrange multiplier/fictitious domain

(DLM/FD for short) formulations were developed and tested in, e.g., [12–15] for simulating

the particle motion in fluid flow at finite Reynolds numbers. In the DLM/FD approach, the

entire fluid-particle domain is considered to be a fluid. The fluid inside the particle boundary

must exhibit a rigid-body motion. This constraint is enforced using a distributed Lagrange

multiplier, which represents the additional body force per unit volume needed to maintain the

rigid-body motion inside the particle, much like the pressure in incompressible fluid flow, whose

gradient is the force required to maintain incompressibility. The integration of both DLM/FD

method and IB method to simulate the interaction of neutrally buoyant particles and RBCs

was first developed in [16]. Such combined method has been extended to simulate the dynamics

of a compound vesicle (vesicle with a neutrally buoyant particle inside) and its interaction with

RBCs in Poiseuille flows. Under the creeping flow condition, the motion of a compound vesicle

in a Poiseuille flow was studied in [17]. Its migration is dominated by the motion of vesicle

membrane. After migrating from the initial position next to the wall to the central region of the

channel, the particle inside the membrane moves horizontally without crossing the streamlines

as expected due to the lack of fluid inertia. When a compound vesicle interacts with several

vesicles modeled as healthy RBCs in a microchannel under the creeping condition, they all mi-

grate to the central region and stay there. But in this article, the fluid flow inertia has its effect

on the compound vesicle at low Reynolds number. Besides the deformability of the red blood

cell membrane, the migration of a neutrally buoyant particle inside the membrane is another

factor to determine the iRBC motion. Typically an iRBC oscillates in a Poiseuille flow due to

the competition between these two factors. Also the interaction of an iRBC and several RBCs

shows that, at lower flow speed, the iRBC can be easily pushed toward the wall and stay there
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to block the channel. But, at higher flow speed, RBCs and iRBC stay in the central region of

the channel since their migrations are dominated by the motion of the RBC membrane. The

content of the article is as follows. We discuss first our IB/DLM/FD formulation and then the

related numerical schemes in Section 2. In Section 3, numerical results of a compound vesicle

in Poiseuille flow are presented. The conclusions are summarized in Section 4.

2 Models and Methods

2.1 Fictitious domain formulation

Let Ω be a bounded rectangular domain filled with blood plasma which is incompressible,

Newtonian, and contains RBCs and compound vesicles with the viscosity of the cytoplasm same

as that of the blood plasma. We suppose, for simplicity, that Ω contains one compound vesicle

(see Figure 1) in which there is a freely moving neutrally buoyant rigid disk B(t) centered at

G(t) = {G1, G2}
t; the flow is modeled by the Navier-Stokes equations and the motion of the

particle B is described by the Euler-Newton’s equations. We define

W0,p = {v | v ∈ (H1(Ω))2, v = 0 on Γ and v is periodic in the x1 direction},

L2
0 =

{
q
∣∣∣ q ∈ L2(Ω),

∫

Ω

q dx = 0
}
,

Λ0(t) = {µ | µ ∈ (H1(B(t)))2, 〈µ, ei〉B(t) = 0, i = 1, 2, 〈µ,
−→
Gx

⊥

〉B(t) = 0}

with Γ as the top and bottom of Ω, e1 = {1, 0}t, e2 = {0, 1}t,
−→
Gx

⊥

= {−(x2−G2), x1−G1}
t and

〈·, ·〉B(t) an inner product on Λ0(t) which can be the standard inner product on (H1(B(t)))2

(see, e.g., [18], for further information on the choice of 〈·, ·〉B(t)). Then as in [12, 16], the

fictitious domain formulation with distributed Lagrange multipliers for flow around a freely

moving neutrally buoyant particle is as follows:

For a.e. t > 0, find u(t) ∈ (H1(Ω))2, u(t) = g0 on Γ, p(t) ∈ L2
0, VG(t) ∈ R

2, G(t) ∈

R
2, ω(t) ∈ R, λ(t) ∈ Λ0(t) such that

ρ

∫

Ω

[∂u
∂t

+ (u ·∇)u
]
· v dx+ 2µ

∫

Ω

D(u) : D(v) dx−

∫

Ω

p∇ · v dx− 〈λ,v〉B(t)

= ρ

∫

Ω

g · v dx+

∫

Ω

f · v dx, ∀v ∈ W0,p, (2.1)

∫

Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (2.2)

〈µ,u(t)〉B(t) = 0, ∀µ ∈ Λ0(t), (2.3)

dG

dt
= VG, (2.4)

VG(0) = V0
G, ω(0) = ω0, G(0) = G0 = {G0

1, G
0
2}

t, (2.5)

u(x, 0) = u0(x) =

{
u0(x), ∀x ∈ Ω\B(0),

V0
G
+ ω0{−(x2 −G0

2), x1 −G0
1}

t, ∀x ∈ B(0),
(2.6)

where u and p denote velocity and pressure, respectively, ρ is the fluid density, and µ is the

fluid viscosity. We also assume that the flow field u is periodic in the x1 direction with period
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L, L being the length of the channel Ω, and the boundary condition is g0 = 0 for the Poiseuille

flow and g0 = (U, 0)t (resp, (−U, 0)t) on the top wall (resp., bottom wall) for the shear flow. In

(2.1)–(2.6), we have D(v) = ∇v+∇v
t

2 , λ is a Lagrange multiplier, g is gravity, f is a body force

which is the sum of fp and fB where fp is the pressure gradient pointing in the x1 direction and

fB accounts for the force acting on the fluid/cell interface (see the following sections), VG is

the translation velocity of the particle B, and ω is the angular velocity of the particle B. We

suppose that the no-slip condition holds on ∂B. We also use, if necessary, the notation φ(t) for

the function x → φ(x, t).

Figure 1 An example of computational domain with one compound vesicle.

Remark 2.1 The functional spaces we used in formula (2.1)–(2.6) are consistent with those

employed in, e.g., [19], for u and ∂u/∂t, namely

u ∈ L∞(0, T ;H1(Ω))2,
∂u

∂t
∈ L2((0, T )× Ω)2

for all T < T ∗ for some T ∗ ∈ (0,∞], where u is the global velocity field (fluid, particle and

vesicle velocity field).

Remark 2.2 In (2.3), the rigid body motion in the region occupied by the particle is

enforced via a Lagrange multiplier λ. As discussed in [12], we solve the following equations to

obtain the translation velocity VG(t) and the angular velocity ω(t)



〈ei,u(t)−VG(t)− ω(t)

−→
Gx

⊥

〉B(t) = 0 for i = 1, 2,

〈
−→
Gx

⊥

,u(t)−VG(t)− ω(t)
−→
Gx

⊥

〉B(t) = 0.
(2.7)

Remark 2.3 In (2.1), 2
∫
Ω
D(u) : D(v) dx can be replaced by

∫
Ω
∇u : ∇v dx since u is

divergence free and in W0,p. Also the gravity g in (2.1) can be absorbed into the pressure term.

Remark 2.4 A two-dimensional elastic spring network model used in [20] is considered

in this paper to describe the deformable behavior of the RBCs. Based on this model, the

RBC membrane can be viewed as made of membrane particles connecting with the neighboring

membrane particles by springs, as shown in Figure 2. Elastic energy stores in the spring due

to the change of the length l of the spring with respected to its reference length l0 and the

change in angle θ between two neighboring springs. The elastic energy of the RBC membrane,

Em = El + Eb, is the sum of the elastic energy for stretch/compression and the elastic energy

for bending which are

El =
kl
2

N∑

i=1

( li − l0
l0

)2

(2.8)
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Figure 2 The elastic spring model of the RBC membrane.

and

Eb =
kb
2

N∑

i=1

tan2
(θi
2

)
. (2.9)

In (2.8)–(2.9), N is the total number of spring elements, and kl and kb are spring constants for

changes in length and bending angle, respectively.

The process of creating the initial shape of RBCs can be found in [20]. The shape of the

membrane is assumed to be a circle of radius R0 = 2.8 µm initially. The circle is discretized

into N = 76 membrane particles so that 76 springs of equal length are formed by connecting

the neighboring particles. The shape change from a circle to the targeted one is caused by

reducing the area of the circle through a penalty function

Γs =
ks
2

(s− se
se

)2

, (2.10)

where s and se are the virtual area enclosed by the membrane and the targeted area of the

RBC, respectively, and the total energy of the membrane is E = Em+Γs. Based on the virtual

work principle, the force acting on the ith membrane particle is now

Fi = −
∂E

∂ri
, (2.11)

where ri is the position of the ith membrane particle. When the area is reduced, each membrane

particle moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi. (2.12)

Here, (̇) denotes the time derivative; m and γ represent the membrane particle mass and the

membrane viscosity. The position ri of the ith membrane particle is solved by discretizing

(2.12) via a second order finite difference method. The total energy stored in the membrane

decreases as the time elapses. The equilibrium shape of the RBC at rest is obtained as the total

energy E + Γs is minimized (see [21]). The reduced area of a RBC in this paper is defined by

s∗ = se
πR2

0

.

Remark 2.5 The immersed boundary method developed by Peskin (see, e.g, [22–24]) has

been employed in this work because of its distinguish features in dealing with the problem of fluid

flow interacting with a flexible fluid/structure interface. Over the years, it has demonstrated

its capability to study computational fluid dynamics phenomena including blood flow. Based
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on this method, the boundary of the deformable structure is discretized spatially into a set of

boundary nodes. The force located at the immersed boundary node X = (X1, X2) affects the

nearby fluid mesh nodes x = (x1, x2) through a 2D discrete δ-function Dh(X− x):

fB(x) = ΣFiDh(Xi − x) for |X− x| ≤ 2h, (2.13)

where h is the uniform finite element mesh size and

Dh(X− x) = δh(X1 − x1)δh(X2 − x2), (2.14)

δh, the 1D discrete δ-functions, being defined by

δh(z) =





1

8h

(
3−

2|z|

h
+

√
1 +

4|z|

h
− 4

( |z|
h

)2)
, |z| ≤ h,

1

8h

(
5−

2|z|

h
−

√
−7 +

12|z|

h
− 4

( |z|
h

)2)
, h ≤ |z| ≤ 2h,

0, otherwise.

(2.15)

The motion of the immersed boundary node X is also affected by the surrounding fluid and

therefore is enforced by summing the velocities at the nearby fluid mesh nodes x weighted by

the same discrete δ-function:

U(X) = Σh2u(x)Dh(X− x) for |X− x| ≤ 2h. (2.16)

After each time step, the position of the immersed boundary node is explicitly updated by

Xt+∆t = Xt +∆tU(Xt). (2.17)

2.2 Space approximation and time discretization

Concerning the finite element based space approximation of {u, p} in problem (2.1)–(2.6), we

have used the P1-iso-P2 and P1 finite element approximation (e.g., see [25] and [26, Chapter 5]).

Let us consider the cell motion in a Poiseuille flow, i.e., g0 = 0 on Γ; a rectangular computational

domain Ω ⊂ R
2 is chosen with length L and height H , h is a space discretization mesh size,

Th is a finite element triangulation of Ω for velocity, T2h is a twice coarser triangulation for

pressure, and P1 is the space of the polynomials in two variables of degree ≤ 1. The finite

dimensional spaces are defined as

W0h = {vh | vh ∈ C0(Ω)2, vh |T∈ P1 × P1, ∀T ∈ Th,vh = 0 on Γ

and is periodic in the x1 direction with period L},

L2
h = {qh | qh ∈ C0(Ω), qh |T∈ P1, ∀T ∈ T2h, qh is periodic in the x1

direction with period L}.

Now we define a finite dimensional space approximating Λ0(t) as follows: Choosing {xi}
N
i=1 as

a set of points covering B(t); we define

Λh(t) =
{
µh | µh =

N∑

i=1

µiδ(x− xi), µi ∈ R
2, ∀i = 1, · · · , N

}
, (2.18)
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where δ(·) is the Dirac measure at x = 0. We then define 〈·, ·〉Bh(t) by

〈µh,vh〉Bh(t) =

N∑

i=1

µi · vh(xi), ∀µh ∈ Λh(t), vh ∈ W0,h. (2.19)

The space Λ0(t) is defined by

Λ0,h(t) = {µh | µh ∈ Λh(t), 〈µh, ei〉Bh(t) = 0, i = 1, 2, 〈µh,
−→
Gx

⊥

〉Bh(t) = 0}. (2.20)

A typical choice of points for defining Λh(t) is to take the grid points of the velocity mesh

internal to the region B(t) and whose distance to the boundary of B(t) is greater than, e.g. ch,

for 0.5 ≤ c ≤ 1 and to complete with selected points from the boundary of B(t) whose distance

to its neighboring boundary points is about kh for 1.5 ≤ k ≤ 2 (e.g., see [27]).

Applying the Lie’s scheme (see [26, 28]) to equations (2.1)–(2.6) with the backward Euler

method in time for some subproblems, we obtain the following algorithm (some of the subscripts

h have been dropped):

u0 = u0 is given; for n ≥ 0, un being known, we compute the approximate solution via the

following fractional steps:

(1) Solve





ρ

∫

Ω

un+ 1
6 − un

△t
· vdx−

∫

Ω

pn+
1
6 (∇ · v)dx = 0, ∀v ∈ W0h,

∫

Ω

q∇ · un+ 1
6 dx = 0, ∀q ∈ L2

h,

un+ 1
6 ∈ W0,h, pn+

1
6 ∈ L2

h.

(2.21)

(2) Update the position of the membrane by (2.16)–(2.17) and then compute the force f
n+ 1

6

B

on the fluid/cell interface by (2.11) and (2.13) and obtain fn+
1
6 = fp + f

n+ 1
6

B .

(3) Solve





∫

Ω

∂u(t)

∂t
· vdx +

∫

Ω

(un+ 1
6 ·∇)u(t) · vdx = 0 on (tn, tn+1), ∀v ∈ W0h,

u(tn) = un+ 1
6 ,

u(t) ∈ W0,h on (tn, tn+1),

(2.22)

and set un+ 2
6 = u(tn+1).

(4) Next, compute un+ 3
6 via the solution of




ρ

∫

Ω

un+ 3
6 − un+ 2

6

△t
· v dx+ µ

∫

Ω

∇un+ 3
6 : ∇v dx =

∫

Ω

fn+
1

6 · v dx,

∀v ∈ W0,h, un+ 3
6 ∈ W0,h.

(2.23)

(5) Now predict the position and the translation velocity of the center of mass of the particles

as follows.

Take V
n+ 4

6
,0

G
= Vn

G
and Gn+ 4

6
,0 = Gn. Then predict the new position of the particle via

the following sub-cycling and predicting-correcting technique:
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For k = 1, · · · , N , compute

V̂
n+ 4

6
,k

G
= V

n+ 4
6
,k−1

G
+

Fr(Gn+ 4
6
,k−1)△t

2N
, (2.24)

Ĝn+ 4
6
,k = Gn+ 4

6
,k−1 +

(V̂
n+ 4

6
,k

G
+V

n+ 4
6
,k−1

G
)△t

4N
, (2.25)

V
n+ 4

6
,k

G
= V

n+ 4
6
,k−1

G
+

(Fr(Ĝn+ 4
6
,k) + Fr(Gn+ 4

6
,k−1))△t

4N
, (2.26)

Gn+ 4
6
,k = Gn+ 4

6
,k−1 +

(V
n+ 4

6
,k

G
+V

n+ 4
6
,k−1

G
)△t

4N
, (2.27)

enddo; and let

V
n+ 4

6

G
= V

n+ 4
6
,N

G
, Gn+ 4

6 = Gn+ 4
6
,N . (2.28)

(6) Now, compute un+ 5
6 , λn+ 5

6 , V
n+ 5

6

G
and ωn+ 5

6 via the solution of





ρ

∫

Ω

un+ 5
6 − un+ 3

6

△t
· v dx = 〈λ,v〉

B
n+4

6
h

, ∀v ∈ W0,h,

〈µ,un+ 5
6 〉

B
n+4

6
h

= 0, ∀µ ∈ Λ
n+ 4

6

0,h ,

un+ 5
6 ∈ W0,h, λn+ 5

6 ∈ Λ
n+ 4

6

0,h ,

(2.29)

and solve for V
n+ 5

6

G
and ωn+ 5

6 from





〈ei,u
n+ 5

6 −V
n+ 5

6

G
− ωn+ 5

6

−−−−→
Gn+ 4

6x
⊥

〉
B

n+4
6

h

= 0 for i = 1, 2,

〈
−−−−→
Gn+ 4

6x
⊥

,un+ 5
6 −V

n+ 5
6

G
− ωn+ 5

6

−−−−→
Gn+ 4

6x
⊥

〉
B

n+4
6

h

= 0.

(2.30)

(7) Finally, take V
n+1,0
G

= V
n+ 5

6

G
and Gn+1,0 = Gn+ 4

6 ; and predict the final position and

translation velocity as follows.

For k = 1, · · · , N , compute

V̂
n+1,k
G

= V
n+1,k−1
G

+
Fr(Gn+1,k−1)△t

2N
, (2.31)

Ĝn+1,k = Gn+1,k−1 +
(V̂n+1,k

G
+V

n+1,k−1
G

)△t

4N
, (2.32)

V
n+1,k
G

= V
n+1,k−1
G

+
(Fr(Ĝn+1,k) + Fr(Gn+1,k−1))△t

4N
, (2.33)

Gn+1,k = Gn+1,k−1 +
(Vn+1,k

G
+V

n+1,k−1
G

)△t

4N
, (2.34)

enddo; and let

Vn+1
G

= V
n+1,N
G

, Gn+1 = Gn+1,N ,

and set

un+1 = un+ 5
6 , ωn+1 = ωn+ 5

6 .
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In the algorithm (2.21)–(2.34), we have tn+α = (n + α)△t, Λn+α
0,h = Λ0,h(t

n+α), Bn+α
h is

the region occupied by the particle centered at Gn+α, and Fr is a short range repulsion force

which prevents the particle/cell penetration (see Remark 2.6).

The degenerated quasi-Stokes problem (2.21) is solved by a preconditioned conjugate gra-

dient method (e.g., see [26]). The advection problem (2.22) for the velocity field is solved by

a wave-like equation method as in [29] and [30], which is formally second-order accurate with

respect to space and time discretizations. The associated CFL condition can be easily satisfied

since the advection problem is decoupled from the rest, we can choose proper sub-time step

here so that the above condition is satisfied. To enforce the rigid body motion inside the region

occupied by the neutrally buoyant particles, we have applied the conjugate gradient method

discussed in [12] to solve problem (2.29). Concerning predicting the particle translation velocity

and position, there are two fractional steps resulted from the splitting of the Newton’s equa-

tions, namely steps (5) and (7), in which we incorporate the repulsion force from the membrane

with smaller sub-time step to prevents the particle/cell penetration. It would be simpler to

have one step by combining steps (5) and (7), but we like to have the correction step right after

the rigid body motion enforcement at the step (6).

Remark 2.6 When simulating the motion of a compound vesicle, we do need a repulsive

force to prevent the overlapping between cell and particle. The repulsive force is obtained from

the following Morse potential (e.g., see [31])

φ(s) = kr(1− e−(s−s0))2,

where the parameter s is the shortest distance between the membrane particle and the surface

of the solid particle and s0 is the range of the repulsive force (when the distance s is greater

than s0, there is no repulsive force). The parameter kr is a constant for the strength of the

potential. At step (2) of algorithm (2.21)–(2.34), we then also compute fr = −∂φ(s)
∂s

for each

membrane particle which is close to a solid particle. Also the force acting on the particle from

all membrane points can be obtained and denoted by Fr. Similarly the repulsive force similar

to the one given above can be used to prevent the overlapping of vesicles which might occur in

simulations.

Remark 2.7 In [21], we have validated the immersed boundary method with the elastic

spring model by comparing the numerical results with previous experimental data (see [32]),

theoretical Keller and Skalak model (see [33]), and simulations [34, 35] for the inclination angles

and tank-treading frequencies of single RBC in shear flow. Also the distributed Lagrange

multiplier/fictitious domain (DLM/FD for short) formulation for simulating neutrally buoyant

particle motion was developed and tested in [12].

3 Numerical Results and Discussions

The initial shapes of the cells used in this article for the flow simulations are obtained via the

procedure described in [20–21] and Remark 2.4. For modelling the cells, we have chosen the same
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parameter values used in [20], namely, the bending constant in (2.9) is kb = 5×10−10 N ·m, the

spring constant in (2.8) is kl = 5×10−8 N ·m, the penalty coefficient in (2.10) is ks = 10−5 N ·m.

The parameter for the repulsive force is kr = 5×10−8 N ·m. The cells are suspended in a blood

plasma which has a density ρ = 1.00 g/cm3. The viscosity ratio which describes the viscosity

contrast of the fluid inside and outside the RBC membrane is fixed at 1.0. The computational

domain is a two dimensional horizontal channel. In the simulation, a constant pressure gradient

is prescribed as a body force. In addition, periodic conditions are imposed at the left and right

boundary of the domain. The Reynolds number is defined by Re = ρUH
µ

where U is the velocity

at the central line in the channel when containing no cells and H is the height of the channel.

Since a malaria-infected RBC (iRBC for short) undergoes a series of changes at different stages,

the parasite forms a round ring shape in the early stage and keeps growing in size. At late stages

the parasite forms a core inside the cell, causing the cell to lose its biconcave shape and turn into

an elliptical shape. Thus the shape of iRBC considered in this section is close to an elliptical

shape and the filling fraction of the particle varies from 0.05 to 0.4.

Figure 3 Position of a compound cell and velocity field next to the cell at the steady

tank-treading state of a compound iRBC in a shear flow: The cell swelling ratios is

s∗=0.84 for the upper row and 0.95 for the lower row. The filling fraction is φ =

0.05, 0.1, 0.15 and 0.2 from left to right for each row.

3.1 A compound cell in a shear flow

In this subsection, we perform a series of numerical tests to simulate the motions of a

compounded iRBC in a shear flow. The computational domain is 20× 20 µm2 as in [36]. The

shear rate of the flow is set as 50 s−1. The fluid viscosity is ν = 0.12 g/(cm s). Two different

swelling ratios (s∗ = 0.84 and 0.95) of cells are used. The filling fraction φ = a2π/s∗ of the

particle varies from 0.05 to 0.2 where a is the radius of the disk inside the cell. The particle

mass center of the compounded iRBC is fixed at center of the domain (10, 10) as considered in

[36]. The grid resolution for the computational domain is 80 grid points per 10 µm. The time
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step is 0.00001 ms. As the filling fraction increases, the angle between the cell long axis and

the horizontal line decreases as shown in Figures 3–4. This can be explained as follows: By

including a solid particle, the energy dissipation increases, so the compound interface behaves

like an inclusion-free interface that encapsulates a more viscous fluid. The larger the inclusion

is, the higher the effective viscosity will be. And as shown in Figure 4, the steady inclination

angle is close to the one reported in [36].

Figure 4 Plot of steady inclination angle as a function of filling fraction.

3.2 Migration of a compound cell in a Poiseuille flow

To use the above methodology to simulate the motion of a compound vesicle in a Poiseuille

flow, we have assumed first that the domain of computation is Ω = 80×10 µm2. The compound

cell swelling ratio is s∗ = 0.9 and its filling fractions φ = πa2/se are 0.2, 0.3, and 0.4. The fluid

viscosity is ν = 0.012 g/(cm s). For driving the Poiseuille flow, we have applied a pressure

gradient as a force in the horizontal direction so that the maximum speed at the central line

is 0.1 (resp., 0.5, and 1) cm/s when having no compound vesicle and the Reynolds number is

Re = 0.008333 (resp., 0.04166 and 0.08333). The initial velocity is zero everywhere. The grid

resolution for the computational domain is 80 grid points per 10 µm. The time step is 0.00001

ms.

The compound vesicle is placed next to the bottom wall with the particle mass center 3 µm

above the wall, the inclination angle being zero (see Figure 5). If we consider only a deformable

vesicle placed at the same initial position, the vesicle migrates toward the central region of

the channel. If a rigid particle is placed at the initial position, due to the shear gradient of

Poiseuille flow and the wall effect, the particle will travel to an equilibrium position somewhere

in between the channel central axis and the wall, which is known as the Segré-Silberberg effect

(see [37]). The equilibrium position depends on the Reynolds number (see, e.g, [12]). Now



546 S. H. Zhao, Y. Yu, T.-W. Pan and R. Glowinski

we have a rigid particle inside a deformable membrane as a compound vesicle. The lateral

migration of the compound vesicle is determined by the combined effect of the trends from the

deformable membrane and the particle. When the particle inside the vesicle is small, the force

on the particle is weak compared to the force on the deformable membrane. The deformable

membrane is dominating and the compound vesicle is migrating toward the central of the

channel. When the particle inside the vesicle is larger, the force on the particle is on par with

the force on the deformable membrane. The particle itself may rest at its equilibrium position,

while the force on the membrane make the compound vesicle migrate toward the central of

the channel. Due to inertia, if the compound vesicle makes its way across the central axis of

the channel, the force on the particle will drive it to its symmetric equilibrium position. The

compound vesicle will also migrate toward the symmetric equilibrium position of the particle

since the force on the membrane drives it back to the central axis is weak due to the fact that

the displacement from the central is tiny. Thus the compound vesicle oscillates between the two

equilibrium positions of the particle. The positions of the particle and membrane at different

times are shown in Figure 5 for φ = 0.2, 0.3, and 0.4. The histories of the mass center of the

neutrally buoyant particle for different filling fractions and maximum speeds are presented in

Figure 6. But for lower maximum speeds U = 0.1 and 0.5 cm/s, the effect of deformability

from the membrane is weaker so that the compound cell oscillates slowly.

 
 

 
 

Figure 5 Particle and membrane positions: φ = 0.2 (top), 0.3 (middle two), and 0.4

(bottom).

3.3 Interaction of a compound cell and RBCs in a Poiseuille flow

The interaction between healthy RBCs and iRBC in a narrow channel is investigated in this

subsection. The computational domain is set as 40×10 µm2. The parameters for the RBC and

fluid properties are the same as in the previous section. For the iRBC, the cell swelling ratio

is s∗ = 0.9 and the filling fraction is φ = 0.4. The healthy red blood cell has a biconcave shape

with swelling ratio of 0.481. The maximum velocity on the channel central axis without cells
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Figure 6 Histories of the mass center of the neutrally buoyant particle inside a vesicle

for φ = 0.2 (green dashed-dotted line), 0.3 (blue dashed line), and 0.4 (red solid line).

The maximum speeds are U = 0.1, 0.5 and 1 (from top to bottom).

is 0.1 cm/s. Then the interaction between 5 healthy RBCs and an iRBC is investigated. The

6 cells are distributed in the domain with even spacing and initial inclination angles of zero

degree. Once the cells start to move, the iRBC moves toward the central region faster due to

the combined lifting force from the membrane and particle. Those RBCs also migrate toward

the central region later on. After RBCs catch up with the iRBC, they usually remain in the

central region of the channel. But due to the presence of an oscillating iRBC in the channel,

they tend to pass by the iRBC through the space between the iRBC and the channel wall when

iRBC is closer to the wall. This passing through of RBCs pushes the iRBC further to the side

of the channel and creates a blockage inside the channel. An illustration of the procedure of

a RBC bypassing an iRBC is shown in Figures 7–8. In Figure 9, the trajectory of cell mass

center is plotted. The blue solid line represents the trajectory of iRBC while the red dashed

lines represent the RBCs. The fact that the red dashed line is above the blue solid lines means

that the iRBC is pushed toward the lower channel wall by the healthy RBCs. Because the cells

are stacked up, keeping in mind that the inclusion in the iRBC has a radius of about 1.7 µm

and it is pushed against the wall most of the time later on. But for a faster flow speed at the

channel center, U = 1 cm/s, RBCs and iRBC all tend to stay away from both walls as shown
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in Figure 9 since their migrations are dominated by the motion of the RBC membrane.

 

 

 

 

 

Figure 7 Positions of the RBCs: t = 2, 24, 72, 154, 296 and 320 ms (from top to bottom).
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Figure 8 Positions of the RBCs: t = 404, 772, 1000, 1400, 1800 and 1900 ms (from

top to bottom).
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Figure 9 Histories of the height of the mass centers of RBCs (dashed lines) and particle

(solid line): U = 0.1 cm/s (top) and 1 cm/s (bottom).

4 Conclusions

In summary, a computational model and related numerical methodologies have been tested

for simulating the motion of an iRBC in Poiseuille flow. The motion of a compound vesicle at

low Reynolds number was studied. Besides the deformability of the membrane, the migration

of neutrally buoyant particle is another factor to determine the motion of a compound vesicle

in Poiseuille flow. The iRBC oscillates inside a channel. The oscillating frequency depends on

the flow speed and its oscillating amplitude depends on the solid fraction. The interaction of

an iRBC and several RBCs shows that, at lower flow speed, the iRBC is easy to be pushed

closer to the wall and stay there to block the channel. But, at higher speed, RBCs and iRBC

stay in the central region of the channel. The numerical results in this paper are qualitatively

similar to experimental observations and other investigators’ findings (see [7]) and thus show

the potential of this numerical method for future studies of blood flow in microcirculation and

microchannels in three dimensions.
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