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Abstract The author presents a method allowing to obtain existence of a solution for some

elliptic problems set in unbounded domains, and shows exponential rate of convergence of

the approximate solution toward the solution.
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1 Introduction

The goal of this note is to prove existence and uniqueness of solutions for some classes of

elliptic problems set in unbounded domains. More precisely if Ω is an unbounded domain in

R
n, let

A = A(x) = (aij(x))

be an n × n matrix with entries aij ∈ L∞(Rn) for i, j = 1, · · · , n, which satisfies the usual

ellipticity condition

A(x)ξ · ξ ≥ λ|ξ|2, ∀ξ ∈ R
n, a.e. x ∈ Ω, (1.1)

and

|A(x)ξ| ≤ Λ|ξ|, ∀ξ ∈ R
n, a.e. x ∈ Ω. (1.2)

Here “·” denotes the usual Euclidean product in R
n, | · | the Euclidean norm, λ and Λ some

positive constants.

If f denotes some distribution on Ω we would like to consider for instance problems of the

type
{

−∇ · (A(x)∇u(x)) + β(x, u) = f in Ω,

u = 0 on ∂ΩD, ∂νu = 0 on ∂ΩN ,
(1.3)

where ∂Ω = ∂ΩD ∪ ∂ΩN is the boundary of Ω which is split into two parts where we impose

Dirichlet or Neumann boundary conditions, ν denotes the outward unit normal to ∂Ω supposed
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to be possibly smooth. We refer to [11, 13–14] for the classical notation and results on Sobolev

spaces.

We make now more precise our assumptions on β—a Carathéodory function— such that

for some a ∈ L∞(Ω), a ≥ 0, a 6≡ 0, Λ > 0 one has

(β(x, u)− β(x, v))(u − v) ≥ a(x)(u − v)2 a.e. x ∈ Ω, ∀u, v ∈ R, (1.4)

|β(x, u)− β(x, v)| ≤ Λ|u− v| a.e. x ∈ Ω, ∀u, v ∈ R, (1.5)

β(x, 0) = 0 a.e. x ∈ Ω. (1.6)

Note that we made the choice of uniformizing the constant Λ appearing here and in (1.2).

This can be done w. l. o. g. at the expense of choosing this constant bigger.

In a bounded domain f ∈ H−1(Ω) allows to solve (1.3) relatively easily. Unfortunately

when Ω is unbounded many simple functions fail to belong to H−1(Ω) as it is the case for the

constant functions (see for instance [4, 9]). Thus, in this case, some new techniques have to be

developed.

These kinds of problems were attacked by the Russian school in the past decades. For

instance one will find in [17], (see also [12, 16]), some technique of resolution of (1.3) in the

distributional sense in the case, where

β(x, u) = a(x)|u|p−1u a.e. x ∈ Ω

with p > 1, a(x) ≥ λ > 0 under the boundary conditions below. Our approach is different and

allows for instance the case

β(x, u) = a(x)u a.e. x ∈ Ω (1.7)

with a ≥ 0. In addition we establish an exponential rate of convergence of the approximate

solutions to (1.3) toward u. Note that here we do not assume Ω bounded in one direction and

we are not relying on the Poincaré inequality (see [4–8, 10]).

Let us introduce further notation. If ω is a bounded, convex open set of Rn containing 0

for ℓ > 0 we denote by Ωℓ the set

Ωℓ = ℓω ∩ Ω, ℓω = {ℓx | x ∈ ω}. (1.8)

Let Vℓ denote the closed subspace of H1(Ωℓ) defined as

Vℓ = {v ∈ H1(Ωℓ) | v = 0 on ∂ΩD ∩ ∂Ωℓ}. (1.9)

Vℓ could be define for instance as the closure for the H1(Ωℓ)-norm of the space of C1(Ωℓ)-

functions vanishing on ∂ΩD ∩ ∂Ωℓ. We will suppose Vℓ equipped with the usual norm of

H1(Ωℓ).

For f ∈ V ∗
ℓ the dual of Vℓ and for ℓ large enough there exists a unique uℓ solution to















uℓ ∈ Vℓ,

∫

Ωℓ

A(x)∇uℓ(x) · ∇v(x) + β(x, uℓ)vdx = 〈f, v〉, ∀v ∈ Vℓ,
(1.10)
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where 〈 , 〉 denotes the duality bracket between V ∗
ℓ and Vℓ.

To see this, one sets

〈Au, v〉 =
∫

Ωℓ

A(x)∇u(x) · ∇v(x) + β(x, u)vdx, ∀u, v ∈ Vℓ. (1.11)

First note that for u ∈ Vℓ one has

|β(x, u)| = |β(x, u)− β(x, 0)| ≤ Λ|u| ∈ L2(Ωℓ) (1.12)

and thus the right-hand side integral in (1.11) is well defined. It is then easy to see thatA defines

a monotone operator from Vℓ into V ∗
ℓ (see below). Moreover this operator is hemicontinuous

and coercive. Indeed to see this last point note that for all u, u0 ∈ Vℓ one has

〈Au −Au0, u− u0〉 =
∫

Ωℓ

A(x)∇(u − u0) · ∇(u− u0)

+ {β(x, u)− β(x, u0)}(u− u0)dx

≥ λ

∫

Ωℓ

|∇(u − u0)|2 dx+

∫

Ωℓ

a(x)(u − u0)
2 dx

≥ δ

∫

Ωℓ

|∇(u− u0)|2 + (u − u0)
2dx (1.13)

for some δ small enough. Note that for a ≥ 0, a 6≡ 0 the norms

{

∫

Ωℓ

|∇u|2 + a(x)u2dx
}

1
2

,
{

∫

Ωℓ

|∇u|2 + u2dx
}

1
2

= |u|H1(Ωℓ) (1.14)

are equivalent in H1(Ωℓ) (see [2] or Section 3 below). The existence of uℓ follows then from

classical results (see [3, 15]).

Set

V 0
ℓ = {v ∈ Vℓ | v = 0 on ∂Ωℓ ∩Ω}. (1.15)

Suppose that there exists some constant that w. l. o. g. we can denote by λ such that for ℓ

large enough
∫

Ωℓ

A(x)∇u · ∇u+ a(x)u2dx ≥ λ

∫

Ωℓ

|∇u|2 + u2dx = λ|u|2H1(Ωℓ)
, ∀u ∈ H1(Ωℓ). (1.16)

We will give in Section 3 below some conditions on a for this to hold.

Then we can prove the following theorem.

Theorem 1.1 Under the above assumptions suppose that

|f |V ∗

ℓ
= O(eσℓ) (1.17)

for some positive constant σ which will be chosen later on. Then there exists a unique u∞ such

that for ℓ large enough






















u∞ ∈ Vℓ, ∀ℓ,
∫

Ωℓ

A(x)∇u∞ · ∇v + β(x, u∞)vdx = 〈f, v〉, ∀v ∈ V 0
ℓ , ∀ℓ,

|u∞|Vℓ
= O(e2σℓ).

(1.18)
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Moreover one has for some positive constants C and β independent of ℓ

|uℓ − u∞|V ℓ

2

≤ Ce−βℓ. (1.19)

Remark 1.1 Note that due to the second equation of (1.18) u∞ solves the first equation

of (1.11) in the distributional sense.

2 Proof of Theorem 1.1

We first will need the following lemma.

Lemma 2.1 uℓ is a Cauchy “sequence”.

Proof We do not precise here in what space uℓ is a Cauchy “sequence” —note that ℓ ∈ R—

it will be clear later on. We assume that ℓ is large enough in such a way that (1.16) holds. Let

r ∈ [0, 1]. We are going to estimate first uℓ − uℓ+r.

Let R be such that

B(0, R) ⊂ ω, (2.1)

where B(0, R) denotes the Euclidean ball in R
n with center 0 and radius R. Set for ℓ1 ≤ ℓ− 1,

ρℓ1(x) = ρ(x) = 0 ∨
(

1− dist(x, ℓ1ω)

R

)

,

where ∨ stands for the maximum of two numbers and dist denotes the Euclidean distance.

Clearly one has

0 ≤ ρ ≤ 1, ρ = 1 on ℓ1ω, ρ = 0 outside of (ℓ1 + 1)ω, (2.2)

|∇ρ| ≤ 1

R
. (2.3)

To prove the last claim of (2.2) it is enough to show that if x /∈ (ℓ1+1)ω, then dist(x, ℓ1ω) ≥ R.

If not, for some y ∈ ω one has

|x− ℓ1y| < R.

This implies by (2.1) that x− ℓ1y = z where z ∈ ω. It follows that

x = (ℓ1 + 1)
( ℓ1
ℓ1 + 1

y +
1

ℓ1 + 1
z
)

∈ (ℓ1 + 1)ω

by the convexity of ω. This completes the proof of the last claim of (2.2).

Since clearly (uℓ − uℓ+r)ρ ∈ Vℓ ∩ Vℓ+r using the equation of (1.10) for ℓ and ℓ+ r we get

∫

Ωℓ

A(x)∇(uℓ − uℓ+r) · ∇{(uℓ − uℓ+r)ρ}+ {β(x, uℓ)− β(x, uℓ+r)}(uℓ − uℓ+r)ρdx = 0. (2.4)

Using (2.2) we obtain

∫

Ωℓ1+1

{A(x)∇(uℓ − uℓ+r) · ∇(uℓ − uℓ+r)}ρ
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+ {β(x, uℓ)− β(x, uℓ+r)}(uℓ − uℓ+r)ρdx

= −
∫

Dℓ1

A(x)∇(uℓ − uℓ+r) · ∇ρ (uℓ − uℓ+r)dx, (2.5)

where Dℓ1 = Ωℓ1+1\Ωℓ1 . Thus by (1.4),
∫

Ωℓ1+1

{A(x)∇(uℓ − uℓ+r) · ∇(uℓ − uℓ+r)}ρ+ a(uℓ − uℓ+r)
2ρdx

≤
∫

Dℓ1

Λ|∇(uℓ − uℓ+r)||∇ρ||(uℓ − uℓ+r)| dx. (2.6)

Using again (2.2)–(2.3) and (1.16), we derive, thanks to the Young Inequality,

λ

∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx

≤ Λ

2R

∫

Dℓ1

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx.

This can be written as
∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx

≤ Λ

2λR

∫

Dℓ1

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2 dx

and thus for any ℓ1 ≤ ℓ− 1 we get
∫

Ωℓ1

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx ≤ c

∫

Ωℓ1+1

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx,

where

c =
Λ

2λR

1 + Λ
2λR

< 1.

Let us denote by [ ] the integer part of a number. Choosing for ℓ large enough ℓ1 = ℓ
2 and

iterating the inequality above
[

ℓ
2

]

-times we get
∫

Ω ℓ

2

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx ≤ c[

ℓ

2 ]

∫

Ω ℓ

2
+[ ℓ

2
]

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx.

Since ℓ
2 − 1 < [ ℓ2 ] ≤ ℓ

2 , this leads to
∫

Ω ℓ

2

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx

≤ c
ℓ

2−1

∫

Ωℓ

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx

≤ 2

c
e−

ℓ

2 log 1
c

∫

Ωℓ

|∇uℓ|2 + u2
ℓ + |∇uℓ+r|2 + u2

ℓ+rdx. (2.7)

We would like now to estimate the right-hand side of (2.7). Taking v = uℓ in (1.10) leads to
∫

Ωℓ

A(x)∇uℓ(x) · ∇uℓ(x) + β(x, uℓ)uℓdx = 〈f, uℓ〉 ≤ |f |V ∗

ℓ
|uℓ|Vℓ

.
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Thus by (1.16)–(1.17) for some constant C one has

λ

∫

Ωℓ

|∇uℓ|2 + u2
ℓdx ≤ Ceσℓ|uℓ|Vℓ

.

From this it follows that
∫

Ωℓ

|∇uℓ|2 + u2
ℓdx ≤

(C

λ

)2

e2σℓ, (2.8)

where C is independent of ℓ. Going back to (2.7) we obtain

∫

Ω ℓ

2

|∇(uℓ − uℓ+r)|2 + (uℓ − uℓ+r)
2dx

≤ 2

c
e−

ℓ

2 log 1
c

{(C

λ

)2

e2σℓ +
(C

λ

)2

e2σ(ℓ+r)
}

=
2

c

(C

λ

)2

e−
ℓ

2 log 1
c e2σℓ{1 + e2σr}

≤ 2

c

(C

λ

)2

e−
ℓ

2 log 1
c e2σℓ{1 + e2σ}. (2.9)

We choose then σ small enough such that

4σ <
1

2
log

1

c
(2.10)

to get for

2β =
1

2
log

1

c
− 2σ, (2.11)

|uℓ − uℓ+r|V ℓ

2

≤ Ce−βℓ (2.12)

for some constant C independent of ℓ. Recall that the norm in Vℓ is just the induced H1(Ωℓ)-

norm.

The estimate above holds for any r ∈ [0, 1]. For any t > 0 one deduces then by the triangular

inequality

|uℓ − uℓ+t|V ℓ

2

≤ |uℓ − uℓ+1|V ℓ

2

+ |uℓ+1 − uℓ+2|V ℓ

2

+ · · ·+ |uℓ+[t] − uℓ+t|V ℓ

2

≤ |uℓ − uℓ+1|V ℓ

2

+ |uℓ+1 − uℓ+2|V ℓ+1
2

+ · · ·+ |uℓ+[t] − uℓ+t|V ℓ+[t]
2

≤ Ce−βℓ + Ce−β(ℓ+1) + · · ·+ Ce−β(ℓ+[t])

≤ C
1

1− e−β
e−βℓ. (2.13)

Thus for any ℓ0 <
ℓ
2 we see that uℓ is a Cauchy sequence in H1(Ωℓ0). This completes the proof

of the lemma.

End of the Proof of Theorem 1.1 Let us fix ℓ0. For ℓ large enough uℓ is a Cauchy

sequence in H1(Ωℓ0) and thus converges toward some u∞ ∈ Vℓ0 (see (1.9)). Since by (1.10),

∫

Ωℓ0

A(x)∇uℓ(x) · ∇v(x) + β(x, uℓ)vdx = 〈f, v〉, ∀v ∈ V 0
ℓ0
, (2.14)
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passing to the limit in ℓ we obtain the two first properties of (1.18). Next, going back to (2.13)

written in replacing ℓ by 2ℓ we get for some other constant C

|u2ℓ − u2ℓ+t|Vℓ
≤ Ce−2βℓ. (2.15)

Letting t → ∞ it comes

|u2ℓ − u∞|Vℓ
≤ Ce−2βℓ (2.16)

and thus by (2.8)

|u∞|Vℓ
≤ Ce−2βℓ + |u2ℓ|V2ℓ

≤ Ce−2βℓ + Ce2σℓ ≤ Ce2σℓ (2.17)

for some constant C. This completes the proof of (1.8). Passing to the limit in t in (2.13) leads

to (1.19). To show now that the solution to (1.18) is unique if u′
∞ is another solution one has

∫

Ωℓ

A(x)∇(u∞ − u′
∞) · ∇v + {β(x, u∞)− β(x, u′

∞)}vdx = 0, ∀v ∈ V 0
ℓ , ∀ℓ. (2.18)

It is clear that (u∞ − u′
∞)ρℓ1 ∈ V 0

ℓ , then, using the arguments used for uℓ − uℓ+r for u∞ − u′
∞

(see (2.7)), leads to

∫

Ω ℓ

2

|∇(u∞ − u′
∞)|2 + (u∞ − u′

∞)2dx

≤ 2

c
e−

ℓ

2 log 1
c

∫

Ωℓ

|∇u∞|2 + u2
∞ + |∇u′

∞|2 + (u′
∞)2dx. (2.19)

Using the last property of (1.18) and (2.10) one deduces easily that u∞ = u′
∞. This completes

the proof of the theorem.

Remark 2.1 A priori u∞ depends on the choice of ω. However when σ is chosen small

enough it leads to the same solution for two different ω. Indeed suppose that ω and ω′ are two

bounded open convex subsets of Rn containing 0. For some positive constant c1 one has

ω ⊂ c1ω
′.

Suppose now R small enough in such a way that B(0, R) is included in ω and ω′ (see (2.1)).

Then Theorem 1.1 is true for σ < σ0(ω) where σ0(ω) is some constant depending on ω (see

(2.10)). Then choosing

σ < σ0(ω) ∧ σ0(ω
′)

one gets solutions u∞, u′
∞ to (1.18) corresponding to ω, ω′ respectively. Let us denote by Vℓ(ω)

(respectively V 0
ℓ (ω)) the spaces Vℓ (respectively V 0

ℓ ) corresponding to ω. Due to the inclusion

above one has

V 0
ℓ (ω) ⊂ V 0

ℓc1
(ω′),

and thus by (1.18) corresponding to ω and ω′ one has

∫

Ωℓ

A(x)∇(u∞ − u′
∞) · ∇v + {β(x, u∞)− β(x, u′

∞)}vdx = 0, ∀v ∈ V 0
ℓ (ω).
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Then since (u∞−u′
∞)ρℓ1 ∈ V 0

ℓ (ω) for any ℓ1 ≤ ℓ− 1 one deduces as above the inequality (2.19)

and the equality of u∞ and u′
∞ follows. Different choices of ω might be useful for computing

approximate solutions since a cube is more simple to discretise than a ball or an ellipse.

Note that if (1.17) is replaced by

|f |V ∗

ℓ
= O(ℓγ)

for some positive constant γ then the solution u∞ obtained above is independent of ω, the third

condition of (2.18) being replaced by |u∞|Vℓ
= O(ℓγ).

3 Remarks and Applications

If a(x) ≥ λ > 0 or, more precisely, a(x) ≥ c > 0 for a constant c that without loss of

generality we can take equal to λ, then clearly it follows that (1.16) holds and thus Theorem

1.1 applies.

Note that in constructing a solution to (1.18) one can possibly consider only the ℓ’s such

that ℓ ∈ N. Then—this is common practice in numerical analysis— suppose that Ωℓ can be

covered by similar triangles, rectangles, such that on each of them one has

0 ≤ a ≤ µ,

∫

Q

a(x) dx ≥ ǫ

for some constants µ and ǫ. Then one can show (see [1]) that there exists δ = δ(µ, ǫ) such that

∫

Q

|∇u|2 + au2dx ≥ δ

∫

Q

u2 dx. (3.1)

It is clear then that (1.16) holds. To convince the reader by a more simple case suppose that

on each Q = Qi covering Ωℓ the function a is the same up perhaps to a rigid motion. Then on

each Qi one has for some δ,
∫

Qi

|∇u|2 + au2dx ≥ δ

∫

Qi

u2 dx. (3.2)

Summing up on the different Qi allows to get (1.16). Such a situation arises for instance in the

case of a periodic a. We refer to [4] for details.

One should notice that the third condition in (1.18) is necessary in order to be able to state

an existence and uniqueness result in all generality. Indeed suppose for instance that Ω is a

domain in R
2 containing the strip,

S = R× (−α, α), α > 0.

Suppose in addition that

A = Id, β(x, u) = a(x)u, a(x) = 0 on S,

i.e., the principal part of the operator is the usual Laplace operator. Then, since a vanishes on

S, it is clear that for any n the function defined by

vn = e
√
λnx1cos(

√
λnx2),

√
λn =

(2n+ 1)π

2α
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satisfies

−∆vn + avn = 0 in S, vn = 0 on ∂S,

where ∂S denotes the boundary of S. Thus adding to a solution to (1.18) a combination of these

vn’s would lead to another solution to the first part of (1.18) in such a way that uniqueness is

lost—even though (1.16) could be satisfied (see above). Of course for such solutions the third

property of (1.18) is not satisfied. We refer the reader to [3] for the connection between σ and

λ1.

Note that the assumption (1.6) can be relaxed at the expense of changing β(x, u) into

β(x, u)− β(x, 0) and f into f − β(x, 0).

In the case of f = 0 Theorem 1.1 provides a Liouville type result, namely, if u is a function

satisfying (1.18) with f = 0 then u = 0. This is clear since f = 0 satisfies (1.17) and then the

only solution to (1.18) is 0.

Theorem 1.1 could be extended to nonlinear operators when the operator

−∇ · (A(x)∇u)

is replaced by an operator of the type

−∇ · (A(x,∇u))

equipped with the ad hoc structural assumptions.

Acknowledgements The author would like to thank the referee for some constructive

remarks which allow him to improve this paper. This work was performed when the author

visiting the City University of Hong Kong and the USTC in Hefei. He is very greatful to these

institutions for their support. This article was also written during a part time employment

at the S. M. Nikolskii Mathematical Institute of RUDN University, 6 Miklukho-Maklay St,

Moscow, 117198.

References

[1] Brezis, H., Chipot, M. and Xie, Y., Some remarks on Liouville type theorems, Proceedings of the Interna-
tional Conference in Nonlinear Analysis, World Scientific Edt, Hsinchu, Taiwan, 2008, 43–65.

[2] Chipot, M., ℓ Goes to Plus Infinity, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2002.
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