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Abstract Large-scale empirical data, the sample size and the dimension are high, often
exhibit various characteristics. For example, the noise term follows unknown distributions
or the model is very sparse that the number of critical variables is fixed while dimensionality
grows with n. The authors consider the model selection problem of lasso for this kind of
data. The authors investigate both theoretical guarantees and simulations, and show that
the lasso is robust for various kinds of data.
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1 Introduction

Tibshirani [14] proposed the lasso (least absolute shrinkage and selection operator) method

for simultaneous model selection and estimation of the regression parameters. It is very popular

for high-dimensional estimation due to its statistical accuracy for prediction and model selection

coupled with its computational feasibility. On the other hand, under some sufficient condition

the lasso solution is unique, and the number of non-zero elements of lasso solution is always

smaller than n (see [15–16]). In recent years, this kind of data has become more and more

common in most fields. Similar properties can also be seen in other penalized least squares

since they have a similar framework of solution.

Consider the problem of model selection in the sparse linear regression model

yn = Xnβn + ǫn,

where the detail setting of the data can be found in the next section. Then the lasso estimator

is defined as

β̂n(λn) ∈ argmin
β∈Rpn

{1

2
‖yn −Xnβ‖22 + λn‖β‖

}
,

where λn is the tuning parameter which controls the amount of regularization. Set Ŝn ≡ {j ∈
{1, 2, · · · , pn} : β̂j,n 6= 0} to select predictors by lasso estimator β̂n. Consequently, Ŝn and β̂n
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both depend on λn, and the model selection criteria results in the correct recovery of the set

Sn ≡ {j ∈ {1, 2, · · · , pn} : βj,n 6= 0}:

P (Ŝn = Sn) → 1, as n → ∞.

On the model selection front of the lasso estimator, Zhao and Yu [22] established the ir-

representable condition on the generating covariance matrices for the lasso’s model selection

consistency. This condition was also discovered in [11, 20, 23]. Using the language of [22],

irrepresentable condition is defined as |C21C
−1
11 sign(β(1))| 6 1− η, where sign(·) maps positive

entry to 1, negative entry to −1 and zero to zero. The definitions of C21 and C11 can be seen in

Section 2. When signs of the true coefficients are unknown, they need l1 norms of the regression

coefficients to be smaller than 1. Beyond lasso, regularization methods also have been widely

used for high-dimensional model selection, e.g., [2, 4, 7–8, 10, 12, 17–19, 21, 24–25]. There has

been a considerable amount of recent work dedicated to the lasso problem and regularization

methods problem.

Yet, the study of model selection problem for empirical data is still needed. Stock data for

instance, the Gaussian assumption of the noise term is always unsatisfied for these data. And

the critical variables are extremely few contrast to the collected dimensionality. In this paper,

we consider this kind of data: The sample size and the dimension are high, but the information

of critical variable data is missing (the signs of the true βn and the distribution of the noise

terms are unknown) and the model is extremely sparse that the number of nonzero parameter

is fixed. This kind of data is common in the empirical analysis hence we called it empirical

data.

We consider the model selection consistency of lasso and investigate regular conditions to fit

this data setting. Under conditions, the probability for lasso to select the true model is covered

by the probability of

{‖Wn‖∞ 6 Gn},

where Wn =
X′

n
ǫn√
n

and Gn is a function of λn, n, q. Above inequality is simple and also

easy to calculate its probability. Based on the train of thought of the proof, we analyze the

model selection consistency of lasso under easier conditions than the irrepresentable condition

for empirical data. In the simulation part, we discuss the effectiveness of lasso. Four samples

are given, in which the irrepresentable condition fails for all the settings, but lasso still can

select variables correctly in two of them when our conditions hold.

We discuss the different assumptions of noise terms ǫi,n for model selection consistency.

Gaussian errors or the subgaussian errors1 would be standard, but possess a strong tail. One

basic assumption in this paper is that, errors are assumed to be identically and independently

distributed with zero mean and finite variance.

The rest of the paper is organized as follows. In Section 2, we investigate the data setting,

notations, and conditions. We introduce a lower bound to cover the case in which the lasso

chooses wrong models when suitable conditions hold. Then, to demonstrate the advantages of

this bound, we show the different settings and different assumptions of noise terms in Section 3.

1e.g. P (|ǫi,n| > t) 6 Ce−ct2 , ∀t > 0.
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We show that the lasso has model selection consistency for empirical data with mild conditions.

Section 4 presents the results of the simulation studies. Finally, in Section 5, we present the

proof of the main theorem.

2 Data Setting, Notations and Conditions

Consider the problem of model selection for specific data

yn = Xnβn + ǫn,

where ǫn = (ǫ1,n, ǫ2,n, · · · , ǫn,n)′ is a vector of i.i.d. random variables with mean 0 and variance

σ2, Xn is an n× pn design matrix of predictor variables, βn ∈ Rpn is a vector of true regression

coefficients and is commonly imposed to be sparse with only a small proportion of nonzeros.

Without loss of generality, write βn = (β1,n, · · · , βq,n, βq+1,n, · · · , βp,n)
′ where βj,n 6= 0 for

j = 1, · · · , q and βj,n = 0 for j = q + 1, · · · , pn. Then write β
(1)
n = (β1,n, · · · , βq,n)

′ and

β
(2)
n = (βq+1,n, · · · , βp,n), that is, only the first q entries are nonvanishing. Besides, for any

vector α = (α1, · · · , αm)′, we denote ‖α‖ =
m∑
i=1

|αi|, ‖α‖22 =
m∑
i=1

α2
i , and ‖α‖∞ = max

i=1,··· ,m
|αi|.

For deriving the theoretical results, we write Xn(1) and Xn(2) as the first q and the last

pn − q columns of Xn, respectively. Let Cn = 1
n
X ′

nXn. Partition Cn as

Cn =

(
C11,n C12,n

C21,n C22,n

)
,

where C11,n is q× q matrix and assumed to be invertible. Set Wn =
X′

n
ǫn√
n

. Similarly, W
(1)
n and

W
(2)
n indicate the first q and the last pn − q elements of Wn. Suppose that Λmin(C11,n) > 0

denotes the smallest eigenvalue of C11,n and consider that q does not grow with n. We introduce

the following conditions:

(C1) For j = q + 1, · · · , pn, let ej be the unit vector in the direction of j-th coordinate.

There exists a positive constant 0 < η < 1 such that

‖e′jC21‖2 6 1− η.

(C2) There exists δ ∈ (0, 1), such that for all n > δ−1 and x ∈ R
q, y ∈ R

pn−q,

(x′C12,ny)
2 6 δ2(x′C11,nx) · (y′C22,ny).

(C1) and (C2) play a central role in our theoretical analysis. Both conditions are easy

to satisfy. (C1) for instance, it requires an upper bound on l2-norm, which is much weaker

than requires the upper bound on l1-norm, i.e., irrepresentable condition and variants of this

condition [6, 9, 11, 22, 25]. Another advantage of (C1) is that we do not need the signs of the

true coefficients. (C2) requires that the multiple correlations between relevant variables and

the irrelevant variables is strictly less than one. It is weaker than assuming orthogonality of the

two sets of variables. This condition also has regular appeared many times in the literature,

for example, [13].

Then we have the following theorem, which describes the relationship between the proba-

bility of lasso choosing the true model and the probability of {‖Wn‖∞ 6 Gn}. Videlicet, it is

a lower bound on the probability of lasso picking the true model.
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Theorem 2.1 Assume that (C1)–(C2) hold and Λmin , Λmin(C11,n). Set ρ ∈ (0, 1). We

have

P (Ŝn = Sn) > P (‖Wn‖∞ 6 Gn),

where Gn = min
{√

nΛmin

(
min

j=1,··· ,q
|βj,n| − λn

√
q

Λmin·n

)
, λnρ√

n

}
.

Remark 2.1 Theorem 2.1 is a key technical tool in the theoretical results. It puts a

lower bound on the probability of lasso selecting the true model, and this bound is intuitive to

calculate. Besides that, considering about Gn, it is easy to find out that there exists a lower

bound of non-zero coefficients min
j=1,··· ,q

|βj,n| > λn

√
q

Λmin·n
. This bound can be controlled by the

regularization parameter λn. It is also a regular assumption in the literature that the non-zero

coefficients cannot be too small.

Remark 2.2 According to the proof of Theorem 2.1, we can find that it is also directly to

obtain the sign consistency of the lasso (see the latter part of the proof). Besides, Theorem 2.1

can be applied in a wide range of dimensional setting. We will discuss the behavior of the lasso

on model selection consistency under different settings in the next section.

3 Model Selection Consistency

Now we consider the decay rate of the probability of {‖Wn‖∞ > Gn}. Different dimensions

and different assumptions of noise terms are discussed in this section.

First, we consider general dimensional setting, i.e., pn = O(nc1) where 0 < c1 < 1. Under

this setting, we can obtain the model selection consistency of lasso by no constraint for the noise

terms. Then, we consider ultra-high dimensional setting, i.e., pn = O(en
c2

) where 0 < c2 < 1.

Under this setting, we need an assumption of ǫn to make the model selection of lasso. Gaussian

assumption would be a simple and common one, but result in a strong tail. We prefer the more

standard assumption that only i.i.d random variables of the noise terms.

Before discussing the detail rate of the probability of lower bound, we give the following

regular condition:

(C3) n−1X ′
j,nXj,n 6 1 for j = 1, · · · , pn.

It is a typical assumption in sparse linear regression literature. It can be achieved by

normalizing the covariates (see [9, 22]).

3.1 General dimensional setting pn = O(nc1)

In this part, we consider the general dimensional setting where pn is allowed to grow with

n and show the model selection consistency of lasso as follows.

Theorem 3.1 Assume that ǫi are i.i.d random variables with mean 0 and variance σ2.

Suppose that (C1)–(C3) hold. For pn = O(nc1) where 0 < c1 < 1, if λn√
n
∝ n

c3

2 where c1 < c3 < 1

and min
j=1,··· ,q

|βj,n| > n
c3−1

2 , then we have

P (Ŝn = Sn) > 1− nc1−c3 → 1, as n → ∞.
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Proof Following the result in Theorem 2.1, we have

P (Ŝn = Sn) > P (‖Wn‖∞ 6 Gn),

where

Gn = min
{√

nΛmin

(
min

j=1,··· ,q
|βj,n| −

λn
√
q

Λmin · n
)
,
λnρ√
n

}
.

Applying the setting of Theorem 3.1, hence for n → ∞,

Λ−1
min · λn

√
q

n
= O(n

c3−1

2 ) → 0.

Then there exists a positive constant Kn that

Gn =
ρλn√
n

= Knn
c3

2 .

If (C3) holds, by Markov’s inequality, we easily get

P (‖Wn‖∞ > Gn) 6

pn∑

j=1

P (|Wj,n| > Gn)

=

pn∑

j=1

P
(∣∣∣

X ′
j,nǫ√
n

∣∣∣ > Knn
c3

2

)

6 K−2
n n−c3 · nc1 → 0, as n → ∞.

The proof is completed.

The proof of Theorem 3.1 states that in this setting, lasso is robust and selects the true

model with regular restrains. Similarly, if we consider the classical setting where p, q and β are

fixed when n → ∞, then we have the following result.

Corollary 3.1 For fixed p, q and β, under regularity assumptions (C1)–(C3), assume that

ǫi are i.i.d random variables with mean 0 and variance σ2. If λn satisfies that λn√
n
→ ∞ and

λn

n
→ 0 when n → ∞, then

P (Ŝ = S) → 1, as n → ∞.

Similar with the argument of Theorem 3.1, Corollary 3.1 can be proved directly by Markov’s

inequality, hence the proof is omitted here.

Besides, if we assume that the noise term follows the Gaussian assumption, under the same

setting of Theorem 3.1, then we have

P (Ŝn 6= Sn) 6 P (‖Wn‖∞ > Gn)

6

pn∑

j=1

P (|Wj,n| > Knn
c3

2 )

< nc1−
c3

2 e−
1

2
nc3 → 0, as n → ∞, (3.1)

where the last inequality holds because of the Gaussian distribution’s tail probability bound:

P (|ǫi| > t) < t−1e−
1

2
t2 , ∀t > 0. It can be relaxed to subgaussian assumption, i.e., P (|ǫi| > t) 6

Ce−ct2 , ∀t > 0.
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3.2 Ultra-high dimensional setting pn = O(en
c2

)

In this part, we consider the ultra-high dimensional setting as pn = O(en
c2

) where 0 <

c2 < 1 and discuss the different situation under different assumptions of noise terms (Gaussian

assumption and non-Gaussian assumption). Theorem 3.2 shows the result under non-Gaussian

assumption by applying Bernstein’s inequality. Also, we show the model selection consistency

of the lasso under the Gaussian assumption in Corollary 3.2.

We shall make use of the following condition:

(C4) Assume that ǫ1,n, · · · , ǫn,n are independent random variables with mean 0 and the

following inequality satisfies for j = 1, · · · , pn,

1√
n
E|Wj,n|m 6

m!

2
Lm−2, m = 2, 3, · · · ,

where Wj,n = 1√
n
X ′

j,nǫn and L ∈ (0,∞).

(C4) is the precondition for the non-Gaussian assumption (The model selection consistency

of the lasso under the Gaussian assumption does not need this condition). It is applied here for

the Bernstein’s inequality. According to (C4), we have

E exp
[X ′

j,n · ǫn
L0

]
6 exp

[ n

2(L2
0 − L · L0)

]
,

where L0 > L. This bound leads to Bernstein’s inequality as given in [1]. Then we have the

following result.

Theorem 3.2 Assume that ǫi are i.i.d random variables with mean 0 and variance σ2.

Suppose that (C1)–(C2) and (C4) hold. If λn√
n
∝ n

c3

2 where c2 < c3 < 1 and min
j=1,··· ,q

|βj,n| >

n
c3−1

2 . We have

P (Ŝn = Sn) > 1− e−nc2 → 1, as n → ∞.

Proof By Bernstein’s inequality, let t > 0 be arbitrary, we have

P (Wj,n > n
c3

2 (Lt+
√
2t)) 6 e−tnc3

6 e−nc2

.

Applying the result of Lemma 14.13 from [3], when (C3) holds, we have

P
(

max
16j6pn

|Wj,n| > n
c3

2 (Lt+
√
2t+ α(L, n, pn))

)
6 e−nc2

.

Following the setting of p,

α(L, n, pn) =

√
2 log 2pn

n
+

L log(2pn)

n
→ 0.

Let J ∈ (0,∞) to make the following inequalities hold for all t > 0,

α(L, n, pn) < J, Lt+
√
2t 6 Jt.

Then we have

P (‖Wn‖∞ > J(1 + t)n
c3

2 ) 6 e−nc2

,
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which completes the proof.

Similarly as in general high-dimensional setting, we have the following result under Gaussian

assumption. Since the proof of Corollary 3.2 is direct, we just state the result here without

proof.

Corollary 3.2 Assume that ǫi are i.i.d Gaussian random variables. Let pn = O(en
c2

)

where 0 < c2 < 1. Suppose that (C1)–(C3) hold. If λn√
n

= O(n
c3

2 ) where c2 < c3 < 1 and

min
j=1,··· ,q

|βj,n| > n
c3−1

2 . The Gaussian assumption of noise terms is considered in the following

P (Ŝn 6= Sn) 6 P (‖Wn‖∞ > Gn)

6

pn∑

j=1

P (|Wj,n| > Gn)

= O(n− c3

2 en
c2− 1

2
nc3

) = o(e−nc2

) → 0, as n → ∞.

4 Simulation Part

In this section, we evaluate the finite sample property of lasso estimator with synthetic

data. We start with the behavior of lasso under different settings, then consider the relationship

between n, p, q and then consider the different noise terms.

4.1 Model selection

This first part illustrates two simple cases (low dimension vs high dimension) to show the

efficiency of lasso. Following cases describe two different settings to lead the lasso’s model

selection consistency and inconsistency when (C1) and (C2) hold and fail. As a contrast, we

introduce the irrepresentable condition in this part, and it fails in all the settings.

Example 4.1 In the low dimensional case, assume that there are n = 100 observations

and the values of parameters are chosen as p = 3, q = 2, that is,

β = {2, 3, 0}.

We generate the response y by

y = X1β1 +X2β2 +X3β3 + ǫ,

where X1, X2 and ǫ are i.i.d random variables from Gaussian distribution with mean 0 and

variance 1. The third predictor X3 is generated to be correlated with other parameters as the

following two cases:

X3 =
2

3
X1 +

2

3
X2 +

1

3
e

and

X3 =
1

2
X1 +

1

2
X2 +

1√
2
e,

where e is i.i.d random variable with the same setting as ǫ.
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We can find that the lasso fails for the first case when (C1) and (C2) fail, and selects the

right model for the second case when (C1) and (C2) hold. The different solutions are illustrated

by Figure 1. Since the irrepresentable condition fails in both cases, it shows that the lasso suits

more kinds of data even if the irrepresentable condition is relaxed.

(a) Lasso fails (b) Lasso holds

(c) Lasso fails (d) Lasso holds

Figure 1 An example to illustrate the efficiency of lasso’s (in)consistency in model selection. The

above two graphs are constructed in a low dimensional setting. The below graphs are constructed

in a high dimensional setting. The left graphs are set where (C1) and (C2) fail, and the right

graphs are set where (C1) and (C2) hold.

Example 4.2 We construct a high dimensional case with p = 400, q = 4 and n = 100.

The true parameters are set as

β = {2, 3, 1, 4, 0, 0, · · · , 0}

and the response y is generated by

y = Xβ + ǫ,

where

X = (X1, · · · , Xp)

is 100×400 matrix, and the elements of X are i.i.d random variables from Gaussian distribution

with mean 0 and variance 1 except X400. The last predictor X400 is generated in the following

two settings respectively,

X400 =
7

8
X1 +

3

8
X2 +

1

8
X3 +

1

8
X4 +

1

8
X5 +

1

8
X6 +

1

8
X7 +

1

8
e
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and

X400 =
1

4
X1 +

1

4
X2 +

1

4
X3 +

1

4
X4 +

1

4
X5 +

1

4
X6 +

1

4
X7 +

3

4
e,

where e follows the same setting as Example 4.1. Hence X400 is also constructed from Gaussian

distribution with mean 0 and variance 1. We find that our conditions also fail for the first high

dimensional case but hold for the second. Besides that, irrepresentable condition fails for both

two situations.

We get different lasso solutions for above four cases in Figure 1 (the lasso path is got by lars

algorithm in [5]). As shown in Figure 1, both graphs on the left satisfy neither irrepresentable

condition nor (C1)–(C2), and lasso cannot select variables correctly (both graphs select other

irrelevant variables, e.g., X4 in the first graph and X400 in the second). In contrast, both graphs

on the right select the right model in the settings that (C1)–(C2) hold and irrepresentable

condition fails.

Besides that, the above examples are all constructed based on the synthetic data, in which

the unknown parameter is actually known. In the empirical analysis, the true model cannot

be known in advance. We should recognize a situation in which lasso can be used without

precondition.

4.2 Relationship between p, q and n

In this part, we give a direct view to show the relationship between n, p and q, or to say,

how the sparsity and the sample size affect the model selection of lasso.

The nonzero elements β(1) are set as

{9, 6, 8, 12, 19, 8, 19, 9, 6, 8, 12, 19, 8, 19}.

If the number of nonzero elements is less than 14, we select the number in sequence. The

rest of the other elements in this gather are shrunk to zero. The number of observations and the

parameters are chosen as Table 1. The predictors are made from Gaussian random generation.

Among this table, lasso selects the right variables in the first six items in the list and selects

the wrong variables in the remaining items in the list.

Table 1 Example settings

Example n p q Example n p q

1 100 400 4 7 100 400 5
2 100 500 5 8 100 500 6
3 200 500 7 9 100 500 7
4 200 1000 7 10 100 1000 7
5 500 500 14 11 100 2000 7
6 500 2000 14 12 300 2000 14

The high dimensional settings are considered. The results indicate that q is always required

to be small enough for the efficiency of the lasso. When the number of critical factors increases,

the sample size needs to be increased too to make sure the lasso chooses the right model. In

contrast, the number of zero elements has less influence on the lasso’s (in)consistency in model

selection.
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4.3 Different noise terms

In this part, we consider a high dimensional example with different noise terms. Data from

the high-dimensional linear regression model is set as

yi = X ′
iβ + ǫi, i = 1, · · · , n,

where the data have n = 100 observations and the value of parameter is chosen as p = 1000.

The true regression coefficient vector is fixed as

β = {9, 6, 8, 0, · · · , 0}.

For the distribution of the noise ǫ, we consider four distributions: Gaussian assumption with

(e) Gaussian assumption (f) Exponential distribution

(g) Uniform distribution (h) Student’s t

Figure 2 An example to illustrate the lasso’s behavior in the high dimensional setting with

different assumptions of noise terms. It reflects that in a situation with standard data and strong

sparsity, lasso always chooses the right model no matter the distribution of noise terms.

mean 0 and variance 1; exponential distribution with rate 1; uniform distribution with minimum

0 and maximum 1; student’s t with degrees of freedom 100.

The results are depicted in Figure 2. It reflects that in a situation with standard data and

strong sparsity, lasso always chooses the right model no matter the distribution of noise terms.
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5 Proof of Theorem 2.1

Review the lasso estimator

β̂n(λn) ∈ argmin
β∈Rpn

{1

2
‖yn −Xnβ‖22 + λn‖β‖

}
.

Let ûn =
√
n(β̂n − βn) and

Fn(βn) =
1

2
‖yn −Xnβn‖22 + λn‖βn‖.

Defining Vn(ûn) = Fn(β̂n) − Fn(βn), Cn =
1

n
X ′

nXn and Wn = 1√
n
X ′

nǫn, Vn(ûn) can be

written as

Vn(ûn) =
1

2
û′
nCnûn − û′

nWn + λn

(
‖βn +

ûn√
n
‖ − ‖βn‖

)
.

Let β̂
(1)
n , β̂

(2)
n and W

(1)
n , W

(2)
n be the first q and last pn − q elements of β̂n and Wn, respec-

tively. Similarly, û
(1)
n and û

(2)
n denote the first q and last pn − q elements of ûn.

Due to
{
‖Wn‖∞ 6 ρ λn√

n

}
, by (C2), we have

Vn(ûn) >
1− δ

2
[û′(1)

n C11,nû
(1)
n + û′(2)

n C22,nû
(2)
n ]− û′

nWn

− λn√
n
‖û(1)

n ‖+
pn∑

j=q+1

|ûj,n|
( λn√

n
− |Wj,n|

)
.

Since û
′(2)
n C22,nû

(2)
n > 0 and Λmin(C11,n) denotes the smallest eigenvalue of C11,n, we have

Vn(ûn) > ‖û′(1)
n ‖2

{1− δ

2
Λmin(C11,n)‖û(1)

n ‖2 − ‖W (1)
n ‖2 −

λn√
n

√
q
}

+

pn∑

j=q+1

|ûj,n|
( λn√

n
− |Wj,n|

)

> ‖û′(1)
n ‖2

{1− δ

2
Λmin(C11,n)‖û(1)

n ‖2 −
λn√
n

√
q(1 + ρ)

}

+
λn√
n
(1− ρ) ·

pn∑

j=q+1

|ûj,n|.

Define

Mn ≡ 2

1− δ
· λn

√
q√

n
(1 + ρ) · Λ−1

min(C11,n).

Then Vn(ûn) > 0 depends on

{‖û(1)
n ‖2 > Mn}.

Since Vn(0) = 0, the minimum of Vn(ûn) cannot be attained at ‖û(1)
n ‖2 > Mn. Then assume

that {ûn ∈ R
pn : ‖û(1)

n ‖2 6 Mn, û
(2)
n 6= 0} and (C1) holds. Set ej to be the unit vector in the
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direction of j-th coordinate. Then the following inequality holds uniformly:

Vn(ûn)− Vn(û
(1)
n , 0) = (û(1)

n )′C12,nû
(2)
n +

1

2
(û(2)

n )′C22,nû
(2)
n

+
λn√
n
‖û(2)

n ‖ − (û(2)
n )′W (2)

n

>

pn∑

j=q+1

|ûj,n|
[ λn√

n
− |Wj,n| − |((û(1)

n )′C12,n)j |
]

>

pn∑

j=q+1

|ûj,n|
[ λn√

n
(1− ρ)−Mn‖C12,nej‖2

]

> 0. (5.1)

Set η > 0 such that 1− η = 1−ρ
1+ρ

· 1−δ
2 Λminq

− 1

2 . By (C1), the last inequality of (5.1) holds.

Then the minimum of Vn(un) cannot be attained at u
(2)
n 6= 0 too, hence we have

argmin
ûn∈Rpn

Vn(ûn) ∈ {un ∈ R
pn : ‖û(1)

n ‖2 6 Mn, û
(2)
n = 0}.

After discussing the model selection consistency of β̂
(2)
n , we now consider about the model

selection consistency of β̂
(1)
n . According to the definition of ûn and the solution of the lasso, if

we want β̂
(1)
n 6= 0 or sign(β̂

(1)
n ) = sign(β̂

(1)
n ), the following hold,

C11,n · û(1)
n −W (1)

n = − λn√
n
sign(β(1)

n ),

∣∣∣ û
(1)
n√
n

∣∣∣ < |β(1)
n |.

Combining above two restraints of û
(1)
n , the existence of such û

(1)
n is implied by

|C−1
11,nW

(1)
n | <

√
n
(
|β(1)

n | − λn

n
|C−1

11,n · sign(β(1)
n )|

)
.

Since C−1
11,nW

(1)
n = C−1

11,n · 1√
n
(X

(1)
n )′ǫ, considering that ǫi are i.i.d random variables with

mean 0 and variance σ2 and

∥∥∥C−1
11,n · 1√

n
(X(1)

n )′
∥∥∥
2

2
= C−1

11,n,

we have

P ([C−1
11,nW

(1)
n ]j > t) 6 P ([W (1)

n ]j > t · Λmin),

where Λmin = Λmin(C11,n). Besides, we also have

|C−1
11,nsign(β

(1)
n )| 6 ‖C−1

11,n‖2 · ‖sign(β(1)
n )‖2 6

√
q · Λ−1

min.

By Bonferroni’s inequality, we know that if we want to prove

P (∀j ∈ Sn, β̂j,n = 0) → e−nt, as n → ∞,
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it suffices to show that for every j ∈ Sn,

P (β̂j,n = 0) → e−nt, as n → ∞.

Hence, we have

P (β̂j,n = 0) 6 P
(
[|W (1)

n |]j >
√
n · Λmin

(
|βj,n| −

λn

n
Λ−1
min

√
q
))

.

Let Gn = min
{√

n · Λmin

(
|βj,n| − λn

n
Λ−1
min

√
q
)
, ρλn√

n

}
. Then we have

P (Ŝn = Sn) > P (‖Wn‖∞ 6 Gn),

which completes the proof.
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