
Chin. Ann. Math. Ser. B

39(4), 2018, 621–632
DOI: 10.1007/s11401-018-0085-5

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2018

The Estimates of All Homogeneous Expansions for a

Subclass of ε Quasi-convex Mappings in

Several Complex Variables∗

Xiaosong LIU1 Taishun LIU2

Abstract The authors obtain the estimates of all homogeneous expansions for a subclass

of ε quasi-convex mappings on the unit ball in complex Banach spaces. Moreover, the

estimates of all homogeneous expansions for the above generalized mappings on the unit

polydisk in Cn are also obtained. Especially, the above estimates are only sharp for a

subclass of starlike mappings, quasi-convex mappings and quasi-convex mappings of type

A. The results are the generalization of many known results.
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1 Introduction

It is well known that biholomorphic starlike mappings and biholomorphic convex mappings

are two extreme significant families of mappings in the geometric function theory of several

complex variables. So the family of ε starlike mappings which were originally introduced by

Gong and Liu [2] is a meaningful family of mappings in several complex variables in that it is

a family of mappings between the family of biholomorphic starlike mappings and the family of

biholomorphic convex mappings. After that Liu and Zhu [5] extended the above family of ε

starlike mappings to a new family of mappings which is called ε quasi-convex mappings, and

ε ∈ [0, 1] is widened to ε ∈ [−1, 1]. However, there are only a few results for ε starlike mappings

and ε quasi-convex mappings, for instance, the generalized Roper-Suffridge extension operator

preserved ε starlikeness on some Reinhardt domains in Cn for ε ∈ [0, 1] (see [2–3]) and ε quasi-

convexity on some domains in complex Banach spaces ε ∈ [−1, 1] (see [5]), and the estimates

of m-th (m = k + 1, k + 2, · · · , 2k) homogeneous expansions for ε starlike mappings f (z = 0

is a zero of order k + 1 of f(z) − z) on the unit polydisk in Cn and ε quasi-convex mappings
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f (z = 0 is a zero of order k + 1 of f(z)− z) on the unit ball in complex Banach spaces were

established respectively (see [5, 7]).

We denote by X the complex Banach space with the norm ‖ · ‖. Let X∗ denote the dual

space of X , let B be the open unit ball in X , and let U be the Euclidean open unit disk in

C. Also, we denote by Un the open unit polydisk in Cn, and let N∗ be the set of all positive

integers. Let ∂Un denote the boundary of Un, (∂U)n be the distinguished boundary of Un.

Let the symbol ′ stand for transpose. For each x ∈ X\{0}, we define

T (x) = {Tx ∈ X∗ : ‖Tx‖ = 1, Tx(x) = ‖x‖}.

Let H(B) be the set of all holomorphic mappings from B into X . It is shown that if

f ∈ H(B), then

f(y) =

∞∑

n=0

1

n!
Dnf(x)((y − x)n),

for all y in some neighborhood of x ∈ B, where Dnf(x) is the nth-Fréchet derivative of f at x,

and for n > 1,

Dnf(x)((y − x)n) = Dnf(x)(y − x, · · · , y − x
︸ ︷︷ ︸

n

).

A holomorphic mapping f : B → X is called to be biholomorphic if the inverse f−1 exists

and is holomorphic on the open set f(B). We say that a mapping f ∈ H(B) is a locally

biholomorphic mapping if the Fréchet derivative Df(x) has a bounded inverse for each x ∈ B.

If f : B → X is a holomorphic mapping, then we say that f is normalized if f(0) = 0 and

Df(0) = I, where I stands for the identity operator from X into X .

A normalized biholomorphic mapping f : B → X is called to be a starlike mapping if f(B)

is a starlike domain with respect to the origin.

Now we recall some definitions as follows.

Definition 1.1 (see [3]) Let f : B → X be a locally biholomorphic mapping with 0 ∈ f(B).

f is said to be an ε starlike mapping on B if there exists a positive number ε, 0 6 ε 6 1, such

that f(B) is starlike with respect to every point in εf(B).

We denote by S∗
ε (B) the set of all ε starlike mappings on B.

Definition 1.2 (see [5]) Let ε ∈ [−1, 1], and f : B → X be a normalized locally biholomor-

phic mappings. If

Re {Tx[(Df(x))−1(f(x)− εf(ξx))]} > 0, x ∈ B, ξ ∈ U,

then f is said to be an ε quasi-convex mapping on B.

Let Qε(B) be the set of all ε quasi-convex mappings on B.
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It is obviously known that

S∗
ε (B) $ Qε(B), S∗

ε (U) = Qε(U), ε ∈ [0, 1]

from Definitions 1.1–1.2.

Definition 1.3 (see [9]) Suppose that f : B → X is a normalized locally biholomorphic

mapping, and denote

Gf (α, β) =
2α

Tu[(Df(αu))−1(f(αu)− f(βu))]
−

α+ β

α− β
.

If

ReGf (α, β) > 0, u ∈ ∂B, α, β ∈ U,

then f is said to be a quasi-convex mapping of type A on B.

We denote by QA(B) the set of all quasi-convex mappings of type A on B.

Definition 1.4 (see [9]) Suppose that f : B → X is a normalized locally biholomorphic

mapping. If

Re {Tx[(Df(x))−1(f(x) − f(ξx))]} > 0, x ∈ B, ξ ∈ U,

then f is said to be a quasi-convex mapping on B.

Let Q(B) be the set of all quasi-convex mappings on B.

Definitions 1.3 and 1.4 are actually the same definitions in one complex variable, and

QA(B) = Q(B) (see [9]).

In this paper, we shall establish the estimates of all homogeneous expansions for a subclass

of ε quasi-convex mappings on the unit ball in complex Banach spaces. Furthermore, we shall

also obtain the estimates of all homogeneous expansions for the above generalized mappings

on the unit polydisk in Cn. In particular, the above estimates are only sharp for a subclass of

starlike mappings, quasi-convex mappings and quasi-convex mappings of type A. It is shown

that a weak version of the Bieberbach conjecture in several complex variables (see [1]) will be

proved as a corollary, and our results generalize many known results.

2 Estimates of All Homogeneous Expansions for a Subclass of ε Quasi-

convex Mappings on the Unit Ball in Complex Banach Spaces

In order to establish the desired theorems in this section, it is necessary to give the lemmas

as follows.
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Lemma 2.1 Suppose ε ∈ [−1, 1]. If f, g : B → C ∈ H(B), f(0) = g(0) = 1, and

(1 + ε)(f(x) + Df(x)x) = (f(x) + εf(−x))g(x), then

(1 + 3ε)Df(0)x = (1 + ε)Dg(0)x,

((m− 1)(1 + ε) + (1 + (−1)m)ε)Dm−1f(0)(xm−1)

(m− 1)!

=
(1 + ε)Dm−1g(0)(xm−1)

(m− 1)!
+

Dm−2g(0)(xm−2)

(m− 2)!
(1− ε)Df(0)x

+ · · ·+ Dg(0)x
(1 + (−1)m−2ε)Dm−2f(0)(xm−2)

(m− 2)!
, x ∈ B, m = 3, 4, · · · .

Proof In view of the hypothesis of Lemma 2.1, we have

(1 + ε)
(

1 + 2Df(0)x+
3D2f(0)(x2)

2!
+ · · ·+

mDm−1f(0)(xm−1)

(m− 1)!
+ · · ·

)

=
(

1 + ε+ (1− ε)Df(0)x+
(1 + ε)D2f(0)(x2)

2!
+ · · ·

+
(1 + (−1)m−1ε)Dm−1f(0)(xm−1)

(m− 1)!
+ · · ·

)

·
(

1 + Dg(0)x+
D2g(0)(x2)

2!
+ · · ·+

Dm−1g(0)(xm−1)

(m− 1)!
+ · · ·

)

.

A simple calculation shows that

(1 + ε)
(

1 + 2Df(0)x+
3D2f(0)(x2)

2!
+ · · ·+

mDm−1f(0)(xm−1)

(m− 1)!
+ · · ·

)

= 1 + ε+ (1− ε)Df(0)x+ (1 + ε)Dg(0)x+
(1 + ε)D2f(0)(x2)

2!
+ Dg(0)x · (1− ε)Df(0)x

+
(1 + ε)D2g(0)(x2)

2!
+ · · ·+

(1 + (−1)m−1ε)Dm−1f(0)(xm−1)

(m− 1)!

+ Dg(0)x
(1 + (−1)m−2ε)Dm−2f(0)(xm−2)

(m− 2)!
+ · · ·

+
Dm−2g(0)(xm−2)

(m− 2)!
(1 − ε)Df(0)x+

(1 + ε)Dm−1g(0)(xm−1)

(m− 1)!
+ · · · .

Compare the homogeneous expansions of the two sides in the above equality. We derived the

desired result. This completes the proof.

Lemma 2.2 Suppose ε ∈
(
− 1

3 , 1
]
. Then

2(1 + ε) + 2(1− ε)
(

1 +
1− ε

(2− 1)(1 + ε) + (1 + (−1)2)ε

)

+ · · ·

+ 2(1 + (−1)l−1ε)
l∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

= (l(1 + ε) + (1 + (−1)l+1)ε+ 1− ε)

l∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

(2.1)

for l = 2, 3, · · · .
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Proof It is easily known that (k−1)(1+ε)+(1+(−1)k)ε > 0 for ε ∈
(
− 1

3 , 1
]
and k = 2, 3, · · · .

When l = 2, a simple calculation shows that the left-hand side of (2.1) is 2(1+ε)(3+ε)
1+3ε , and the

right-hand side of (2.1) is also 2(1+ε)(3+ε)
1+3ε . Hence (2.1) holds for l = 2. Assume that (2.1) holds

for l = s, namely

2(1 + ε) + 2(1− ε)
(

1 +
1− ε

(2 − 1)(1 + ε) + (1 + (−1)2)ε

)

+ · · ·

+ 2(1 + (−1)s−1ε)

s∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

= (s(1 + ε) + (1 + (−1)s+1)ε+ 1− ε)
s∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

.

When l = s+ 1, it is shown that

2(1 + ε) + 2(1− ε)
(

1 +
1− ε

(2− 1)(1 + ε) + (1 + (−1)2)ε

)

+ · · ·

+ 2(1 + (−1)s−1ε)
s∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

+ 2(1 + (−1)sε)

s+1∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

= (s(1 + ε) + (1 + (−1)s+1)ε+ 1− ε)

s∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

+ 2(1 + (−1)sε)

s+1∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

= ((s+ 1)(1 + ε) + (1 + (−1)s+2)ε+ 1− ε)
s+1∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

by a direct computation. Hence (2.1) holds for l = s+ 1. This completes the proof.

Theorem 2.1 Let ε ∈
(
− 1

3 , 1
]
, f : B → C ∈ H(B), F (x) = xf(x) ∈ Qε(B). Then

‖Dmf(0)(xm)‖

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖x‖m, x ∈ B, m = 2, 3, · · · .

Proof Let W (x) = 1
1+ε

(DF (x))−1(F (x)− εF (−x)). A straightforward computation shows

that

1

1 + ε
(DF (x))−1(F (x) − εF (−x)) =

x(f(x) + εf(−x))

(1 + ε)(f(x) + Df(x)x)
, x ∈ B.

Since F (x) = xf(x) ∈ Qε(B), it is shown that

Re
(1 + ε)(f(x) + Df(x)x)

f(x) + εf(−x)
= Re

( ‖x‖

Tx(W (x))

)

> 0, x ∈ B \ {0} (2.2)

from Definition 1.2. Consider

g(x) =
(1 + ε)(f(x) + Df(x)x)

f(x) + εf(−x)
, x ∈ B. (2.3)
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Then g : B → C ∈ H(B), g(0) = f(0) = 1, and (1+ ε)(f(x) +Df(x)x) = (f(x) + εf(−x))g(x).

We now prove that

|Dm−1f(0)(xm−1)|

(m− 1)!

6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖x‖m−1, x ∈ B, m = 2, 3, · · · (2.4)

by the induction method. When m = 2, we deduce that

|Df(0)x|

1!
6

2(1 + ε)

1 + 3ε
‖x‖ =

(

1 +
1− ε

(2− 1)(1 + ε) + (1 + (−1)2)ε

)

‖x‖, x ∈ B

from Lemma 2.1 and [8, Lemma 2.2]. This implies that (2.4) holds for m = 2.

Assume that (2.4) holds for m = 3, 4, · · · , l. That is,

|Dm−1f(0)(xm−1)|

(m− 1)!

6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖x‖m−1, x ∈ B, m = 3, 4, · · · , l.

When m = l + 1, by [8, Lemma 2.2] and (2.4), we obtain

|(l(1 + ε) + (1 + (−1)l+1)ε)Dlf(0)(xl)|

l!

=
∣
∣
∣
(1 + ε)Dlg(0)(xl)

l!
+

Dl−1g(0)(xl−1)

(l − 1)!
(1− ε)Df(0)x

+ · · ·+Dg(0)x
(1 + (−1)l−1ε)Dl−1f(0)(xl−1)

(l − 1)!

∣
∣
∣

6 2(1 + ε)‖x‖l + 2(1− ε)
(

1 +
1− ε

(2− 1)(1 + ε) + (1 + (−1)2)ε

)

‖x‖l

+ · · ·+ 2(1 + (−1)l−1ε)

l∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖x‖l

= (l(1 + ε) + (1 + (−1)l+1)ε+ 1− ε)

l∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖x‖l.

This implies that

|Dlf(0)(xl)|

l!
6

l+1∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖x‖l, x ∈ B.

Hence we see that (2.4) holds for m = l + 1.

On the other hand, it is shown that

DmF (0)(xm)

m!
= x

Dm−1f(0)(xm−1)

(m− 1)!
, x ∈ B, m = 2, 3, · · · , (2.5)

if F (x) = xf(x). Consequently from (2.4)–(2.5), it follows the result as desired. This completes

the proof.

Taking ε = 0 in Theorem 2.1, we get the following corollary immediately.
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Corollary 2.1 Let f : B → C ∈ H(B), F (x) = xf(x) ∈ S∗(B). Then

‖DmF (0)(xm)‖

m!
6 m‖x‖m, x ∈ B, m = 2, 3, · · · ,

and the above estimates are sharp.

Letting ε = 1 in Theorem 2.1, we also obtain the following corollary directly.

Corollary 2.2 Let f : B → C ∈ H(B), F (x) = xf(x) ∈ Q(B) (or QA(B)). Then

‖DmF (0)(xm)‖

m!
6 ‖x‖m, x ∈ B, m = 2, 3, · · · ,

and the above estimates are sharp.

Remark 2.1 Corollary 2.1 is the same as the case k = 1 of [8, Theorem 2.1].

Corollary 2.3 Let ε ∈ [0, 1], f : B → C ∈ H(B), F (x) = xf(x) ∈ Qε(B). Then

‖F (x)‖ 6
‖x‖

(1− ‖x‖)
2

1+ε

, ‖DF (x)x‖ 6
‖x‖(1 + 1−ε

1+ε
‖x‖)

(1− ‖x‖)
2

1+ε
+1

, x ∈ B,

and the above estimates are sharp for ε = 0 and ε = 1.

Proof It is apparent to see that

‖Dmf(0)(xm)‖

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε)

)

‖x‖m

=

m∏

k=2

k + (k − 2)ε

(k − 1)(1 + ε)
‖x‖m

=

m∏

k=2

(k + (k − 2)ε)

(m− 1)!(1 + ε)m−1
‖x‖m, x ∈ B, m = 2, 3, · · ·

from Theorem 2.1. We also know that

F (x) = x+
∞∑

m=2

Dmf(0)(xm)

m!
, DF (x)x = x+

∞∑

m=2

mDmf(0)(xm)

m!
, x ∈ B.

In view of the triangle inequality of the norm, it follows the result as desired. This completes

the proof.

Remark 2.2 When X = C, B = U , Corollary 2.3 reduces to [6, Theorem 4.1].

Corollary 2.4 Let ε ∈ [0, 1], f : B → C ∈ H(B), F (x) = xf(x) ∈ Qε(B), where B is the

unit ball of a complex Hilbert space X. Then

‖DF (x)ξ‖ 6
‖ξ‖(1 + 1−ε

1+ε
‖x‖)

(1− ‖x‖)
2

1+ε
+1

, x ∈ B, ξ ∈ X,

and the above estimates are sharp for ε = 0 and ε = 1.
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Proof It is shown that

sup
‖x‖=‖ξ‖=1

‖DmF (0)(xm−1, ξ)‖

m!
= sup

‖x‖=1

‖DmF (0)(xm)‖

m!

(see [4]). Making use of triangle inequalities with respect to the norm in complex Banach spaces,

it follows the result as desired. It is not difficult to verify that

F1(x) =
x

(1− 〈x, e〉)2
∈ S∗(B)

and

F2(x) =
x

1− 〈x, e〉
∈ Q(B) (orQA(B)),

where ‖e‖ = 1. It yields that

DF1(x)ξ =
ξ

(1− 〈x, e〉)2
+

2〈ξ, e〉x

(1− 〈x, e〉)3
, x ∈ B, ξ ∈ X

and

DF2(x)ξ =
ξ

1− 〈x, e〉
+

〈ξ, e〉x

(1− 〈x, e〉)2
, x ∈ B, ξ ∈ X

by a simple calculation. Put x = re, ξ = Re (0 6 r < 1, R > 0). Then

‖DF1(x)ξ‖ =
R(1 + r)

(1− r)3
, ‖DF2(x)ξ‖ =

R

(1− r)2
.

Therefore, it is shown that the estimate of Corollary 2.4 is sharp for ε = 0 and ε = 1. This

completes the proof.

3 Sharp Estimates of All Homogeneous Expansions for a Subclass of ε

Quasi-convex Mappings on the Unit Polydisk in Cn

Let each mj be a non-negative integer, N = m1 +m2 + · · ·+mn ∈ N∗, and mj = 0 imply

that the corresponding components in Z and F (Z) are omitted. Let Uml (resp. UN) denote

the unit polydisk of Cml (l = 1, 2, · · · , n) (resp. CN ).

Theorem 3.1 Let ε ∈
(
− 1

3 , 1
]
, fl : Uml → C ∈ H(Uml), l = 1, 2, · · · , n, F (Z) =

(Z1f1(Z1), Z2f2(Z2), · · · , Znfn(Zn))
′ ∈ Q∗

ε(U
N ). Then

‖DmF (0)(Zm)‖

m!

6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖Z‖m, z ∈ UN , m = 2, 3, · · · . (3.1)
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Proof Let F (Z) = (F1(Z1), F2(Z2), · · · , Fn(Zn))
′. According to the hypothesis of Theorem

3.1, for any ζ ∈ U, Z = (Z1, Z2, · · · , Zn)
′ ∈ UN , it yields that

(DF (Z))−1(F (Z)− εF (ζZ))

= ((DF1(Z1))
−1(F1(Z1)− εF1(ζZ1)), (DF2(Z2))

−1

· (F2(Z2)− εF2(ζZ2)), · · · , (DFn(Zn))
−1(Fn(Zn)− εFn(ζZn)))

′

by a simple computation. Note that

(DF (Z))−1(F (Z)− εF (ζZ))

= (0, · · · , (DFl(Zl))
−1(F1(Z1)− εF1(ζZ1)), · · · , 0)

′,

if Z = (0, · · · , Zl, · · · , 0)
′ ∈ UN , l = 1, 2, · · · , n. We set

W (Z) = (W1,W2, · · · ,Wn)
′ = (W11, · · · ,W1m1

,W21, · · · ,W2m2
, · · · ,Wn1, · · · ,Wnmn

)′

= (DF (Z))−1(F (Z)− εF (ζZ)).

Then it yields that

F ∈ Q∗
ε(U

N ) ⇔ Fl ∈ Q∗
ε(U

ml), l = 1, 2, · · · , n

from Definition 1.2. Taking into account the facts ‖DmF (0)(Zm)‖ = max
16l6n

{‖DmFl(0)(Z
m
l )‖}

and ‖Z‖ = max
16l6n

{‖Zl‖}, here ‖Zl‖ml
(resp. ‖Z‖N) is written as ‖Zl‖ (resp. ‖Z‖) for simplicity,

it is shown that (3.1) holds. This completes the proof.

Setting ε = 0 in Theorem 3.1, we get the following corollary readily.

Corollary 3.1 Let fl : U
ml → C ∈ H(Uml), l = 1, 2, · · · , n, F (Z) = (Z1f1(Z1), Z2f2(Z2),

· · · , Znfn(Zn))
′ ∈ S∗(UN ). Then

‖DmF (0)(Zm)‖

m!
6 m‖Z‖m, z ∈ UN , m = 2, 3, · · · .

Taking ε = 1 in Theorem 3.1, we also obtain the following corollary immediately.

Corollary 3.2 Let fl : U
ml → C ∈ H(Uml), l = 1, 2, · · · , n, F (Z) = (Z1f1(Z1), Z2f2(Z2),

· · · , Znfn(Zn))
′ ∈ Q(UN ) (or QA(U

N )). Then

‖DmF (0)(Zm)‖

m!
6 ‖Z‖m, z ∈ UN , m = 2, 3, · · · .

Similar to that in the proof of Corollary 2.3, it is not difficult to conclude the following

corollary (the details of the proof are omitted here).

Corollary 3.3 Let ε ∈ [0, 1], fl : U
ml → C ∈ H(Uml), l = 1, 2, · · · , n, F (Z) = (Z1f1(Z1),

Z2f2(Z2), · · · , Znfn(Zn))
′ ∈ Qε(U

N ). Then

‖F (Z)‖ 6
‖Z‖

(1− ‖Z‖)
2

1+ε

, ‖DF (Z)Z‖ 6
‖Z‖(1 + 1−ε

1+ε
‖Z‖)

(1− ‖Z‖)
2

1+ε
+1

, Z ∈ UN ,

and the above estimates are sharp for ε = 0 and ε = 1.
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Theorem 3.2 Suppose ε ∈
(
− 1

3 , 1
]
, and F (z) = (F1(z), F2(z), · · · , Fn(z))

′ ∈ H(Un).

If Re
DFj(z)z

Fj(z)−εFj(ζz)
> 0, ζ ∈ U, z ∈ Un \ {0}, where j satisfies the condition |zj| = ‖z‖ =

max
16l6n

{|zl|}, then

‖DmF (0)(zm)‖

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖z‖m, z ∈ Un, m = 2, 3, · · · .

Proof Fix z ∈ Un \ {0}, and set z0 = z
‖z‖ . Let

hj(ξ) =
‖z‖

zj
Fj(ξz0), ξ ∈ U, (3.2)

where j satisfies the condition |zj | = ‖z‖ = max
16l6n

{|zl|}. It yields that

h′
j(ξ)ξ

hj(ξ) − εhj(ζξ)
=

DFj(ξz0)ξz0
Fj(ξz0)− εFj(ζξz0)

, ζ ∈ U, ξ ∈ U \ {0}

by a direct calculation. Therefore it is shown that

Re
( h′

j(ξ)ξ

hj(ξ)− εhj(ζξ)

)

= Re
( DFj(ξz0)ξz0
Fj(ξz0)− εFj(ζξz0)

)

> 0, ζ ∈ U, ξ ∈ U \ {0}

from the condition Re
DFj(z)z

Fj(z)−εFj(ζz)
> 0, ζ ∈ U, z ∈ Un \ {0}. That is, hj ∈ S∗

ε (U).

On the other hand, it is readily shown that

ξ +
∞∑

m=2

amξm = ξ +
‖z‖

zj

∞∑

m=2

DmFj(0)(z
m
0 )

m!
ξm

from (3.2). Comparing the coefficients of the two sides in the above equality, it yields that

‖z‖

zj

DmFj(0)(z
m
0 )

m!
= am, m = 2, 3, · · · .

Consequently by Theorem 2.1 (the case of X = C, B = U), we have

|DmFj(0)(z
m
0 )|

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

, z0 ∈ ∂Un.

When z0 ∈ (∂U)n, we have

|DmFl(0)(z
m
0 )|

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

, l = 1, 2, · · · , n.

Also noticing that DmFl(0)(z
m) is a holomorphic function on Un, in view of the maximum

modulus theorem of holomorphic functions on the unit polydisk, we conclude that

|DmFl(0)(z
m
0 )|

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

, z0 ∈ ∂Un, l = 1, 2, · · · , n.
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This implies that

|DmFl(0)(z
m)|

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖z‖m, z ∈ Un, l = 1, 2, · · · , n.

Therefore it follows that

‖DmF (0)(zm)‖

m!
6

m∏

k=2

(

1 +
1− ε

(k − 1)(1 + ε) + (1 + (−1)k)ε

)

‖z‖m, z ∈ Un.

This completes the proof.

Putting ε = 0 in Theorem 3.2, we obtain the following corollary directly.

Corollary 3.4 Suppose F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un). If Re

DFj(z)z
Fj(z)

> 0, z ∈

Un \ {0}, where j satisfies the condition |zj | = ‖z‖ = max
16l6n

{|zl|}, then

‖DmF (0)(zm)‖

m!
6 m‖z‖m, z ∈ Un, m = 2, 3, · · · .

Letting ε = 1 in Theorem 3.2, we also get the following corollary easily.

Corollary 3.5 Suppose F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un). If Re

DFj(z)z
Fj(z)−Fj(ζz)

>

0, ζ ∈ U, z ∈ Un \ {0}, where j satisfies the condition |zj | = ‖z‖ = max
16l6n

{|zl|}, then

‖DmF (0)(zm)‖

m!
6 ‖z‖m, z ∈ Un, m = 2, 3, · · · .

With the analogous arguments as in the proof of Corollary 2.3, it is easy to deduce the

following corollary (the details of the proof are omitted here).

Corollary 3.6 Suppose that ε ∈ [0, 1], F (z) = (F1(z), F2(z), · · · , Fn(z))
′ ∈ H(Un). If

Re
DFj(z)z

Fj(z)−εFj(ζz)
> 0, ζ ∈ U, z ∈ Un \ {0}, where j satisfies the condition |zj| = ‖z‖ =

max
16l6n

{|zl|}, then

‖F (z)‖ 6
‖z‖

(1− ‖z‖)
2

1+ε

, ‖DF (z)z‖ 6
‖z‖(1 + 1−ε

1+ε
‖z‖)

(1− ‖z‖)
2

1+ε
+1

,

and the above estimates are sharp for ε = 0 and ε = 1.

Remark 3.1 We readily see that Theorem 2.1 is the special case of Theorem 3.2 when

X = Cn, B = Un, and Theorem 3.1 is the special case of Theorem 3.2 for m1 = n, ml = 0, l =

2, · · · , n or ml = 1, l = 1, 2, · · · , n as well.

Remark 3.2 For the estimates of all homogeneous expansions for a subclass of ε quasi-

convex mappings, ε ∈
(
− 1

3 , 1
]
is a sufficient condition in Theorems 2.1, 3.1–3.2. We do not

know the corresponding results for the case ε ∈
[
− 1,− 1

3

]
nowadays. However, concerning the

growth theorem and the upper bounds of the distortion theorem for a subclass of ε quasi-convex
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mappings, ε ∈ [0, 1] seems to be a necessary condition in Corollaries 2.3–2.4, 3.3 and 3.6. This

implies that the condition of growth theorem and the upper bounds of the distortion theorem

for a subclass of ε quasi-convex mappings is stronger than the condition of the estimates of all

homogeneous expansions for a subclass of ε quasi-convex mappings.
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