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Abstract Let A and B be two factor von Neumann algebras. For A,B ∈ A, define
by [A,B]∗ = AB − BA∗ the skew Lie product of A and B. In this article, it is proved
that a bijective map Φ : A → B satisfies Φ([[A,B]∗, C]∗) = [[Φ(A),Φ(B)]∗,Φ(C)]∗ for
all A,B,C ∈ A if and only if Φ is a linear ∗-isomorphism, or a conjugate linear ∗-
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1 Introduction

LetA be a ∗-algebra and η be a non-zero scalar. ForA,B ∈ A, define the Jordan η-∗-product

of A and B by A♦ηB = AB + ηBA∗. The Jordan (−1)-∗-product, which is customarily called

the skew Lie product, was extensively studied because it naturally arises in the problem of

representing quadratic functionals with sesquilinear functionals (see [9–11]) and in the problem

of characterizing ideals (see [2, 8]). We often write the Jordan (−1)-∗-product by [A,B]∗, that

is [A,B]∗ = AB −BA∗. A not necessarily linear map Φ between ∗-algebras A and B is said to

preserve the Jordan η-∗-product if Φ(A♦ηB) = Φ(A)♦ηΦ(B) for all A,B ∈ A. Recently, many

authors have started to pay more attention to the maps preserving the Jordan η-∗-product

between ∗-algebras (see [1, 3, 6–7]). In [3], Dai and Lu proved that if Φ is a bijective map

preserving the Jordan η-∗-product between two von Neumann algebras, one of which has no

central abelian projections, then Φ is a linear ∗-isomorphism if η is not real and Φ is a sum of

a linear ∗-isomorphism and a conjugate linear ∗-isomorphism if η is real.

Recently, Huo et al. [5] studied a more general problem. They considered the Jordan triple η-

∗-product of three elements A,B and C in a ∗-algebra A defined by A♦ηB♦ηC = (A♦ηB)♦ηC

(we should be aware that ♦η is not necessarily associative). A map Φ between ∗-algebrasA and

B is said to preserve the Jordan triple η-∗-product if Φ(A♦ηB♦ηC) = Φ(A)♦ηΦ(B)♦ηΦ(C)

for all A,B,C ∈ A. Clearly a map between ∗-algebras preserving the Jordan η-∗-product also
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preserves the Jordan triple η-∗-product. However, the map Φ : C → C, Φ(α+βi) = −4(α3+β3i)

is a bijection which preserves the Jordan triple (−1)-∗-product and Jordan triple 1-∗-product,

but it does not preserve the Jordan (−1)-∗-product or Jordan 1-∗-product. So, the class of

those maps preserving the Jordan triple η-∗-product is, in principle wider than the class of

maps preserving the Jordan η-∗-product.

In [5], let η 6= −1 be a non-zero complex number, and let Φ be a bijection between two von

Neumann algebras, one of which has no central abelian projections, satisfying Φ(I) = I and

preserving the Jordan triple η-∗-product. Huo et al. showed that Φ is a linear ∗-isomorphism if

η is not real and Φ is the sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism

if η is real. On the one hand, Huo et al. did not consider the case η = −1. However, the Jordan

(triple) (−1)-∗-product is the most meaningful and important in Jordan (triple) η-∗-products.

On the other hand, it is easy to see that a map Φ preserving the Jordan triple η-∗-product does

not need to satisfy Φ(I) = I. Indeed, let Φ(A) = −A for all A ∈ A. Then Φ preserves the Jordan

triple η-∗-product but Φ(I) = −I. Because of the above two reasons, in this paper, we will

discuss maps preserving the Jordan triple (−1)-∗-product without the assumption Φ(I) = I.

We mainly prove that a bijective map Φ between two factor von Neumann algebras preserves

the Jordan triple (−1)-∗-product if and only if Φ is a linear ∗-isomorphism, or a conjugate linear

∗-isomorphism, or the negative of a linear ∗-isomorphism, or the negative of a conjugate linear

∗-isomorphism.

As usual, R and C denote respectively the real field and complex field. Throughout, algebras

and spaces are over C. A von Neumann algebra A is a weakly closed, self-adjoint algebra of

operators on a Hilbert space H containing the identity operator I. A is a factor von Neumann

algebra means that its center contains only the scalar operators. It is clear that if A is a factor

von Neumann algebra, then A is prime, that is, for A,B ∈ A if AAB = {0}, then A = 0 or

B = 0.

2 The Main Result and Its Proof

To complete the proof of main theorem, we need two lemmas.

Lemma 2.1 Let A be an arbitrary factor von Neumann algebra with the identity operator

I and A ∈ A. If AB = BA∗ for all B ∈ A, then A ∈ RI.

Proof In fact, take B = I, then A = A∗. So AB = BA for all B ∈ A, which implies A

belongs to the center of A. Note that A is a factor, it follows that A ∈ RI.

Lemma 2.2 (see [4, Problem 230]) Let A be a Banach algebra with the identity I. If

A,B ∈ A and λ ∈ C are such that [A,B] = λI, where [A,B] = AB −BA, then λ = 0.

The main result in this paper is as follows.

Theorem 2.1 Let A and B be two factor von Neumann algebras. Then a bijective map

Φ : A → B satisfies Φ([[A,B]∗, C]∗) = [[Φ(A),Φ(B)]∗,Φ(C)]∗ for all A,B,C ∈ A if and only if

Φ is a linear ∗-isomorphism, or a conjugate linear ∗-isomorphism, or the negative of a linear

∗-isomorphism, or the negative of a conjugate linear ∗-isomorphism.

Proof Clearly, we only need to prove the necessity. First we give a key technique. Suppose
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that A1, A2, · · · , An and T are in A such that Φ(T ) =
n
∑

i=1

Φ(Ai). Then for all S1, S2 ∈ A, we

have

Φ([[S1, S2]∗, T ]∗) = [[Φ(S1),Φ(S2)]∗,Φ(T )]∗ =
n
∑

i=1

Φ([[S1, S2]∗, Ai]∗), (2.1)

Φ([[S1, T ]∗, S2]∗) = [[Φ(S1),Φ(T )]∗,Φ(S2)]∗ =

n
∑

i=1

Φ([[S1, Ai]∗, S2]∗) (2.2)

and

Φ([[T, S1]∗, S2]∗) = [[Φ(T ),Φ(S1)]∗,Φ(S2)]∗ =

n
∑

i=1

Φ([[Ai, S1]∗, S2]∗). (2.3)

In the following, we will complete the proof of Theorem 2.1 by proving several claims.

Claim 1 Φ(0) = 0.

Since Φ is surjective, there exists A ∈ A such that Φ(A) = 0. Then we obtain Φ(0) =

Φ([[0, A]∗, A]∗) = [[Φ(0),Φ(A)]∗,Φ(A)]∗ = 0.

Claim 2 Φ(RI) = RI, Φ(CI) = CI and Φ preserves self-adjoint elements in both directions.

Let λ ∈ R be arbitrary. Since Φ is surjective, there exists B ∈ A such that Φ(B) = I. By

Claim 1, we have that

0 = Φ([[λI,A]∗, B]∗)

= [[Φ(λI),Φ(A)]∗, I]∗

= Φ(λI)Φ(A) − Φ(A)Φ(λI)∗ − Φ(A)∗Φ(λI)∗ +Φ(λI)Φ(A)∗

holds true for all A ∈ A. That is,

Φ(λI)(Φ(A) + Φ(A)∗) = (Φ(A) + Φ(A)∗)Φ(λI)∗

holds true for all A ∈ A. So

Φ(λI)B = BΦ(λI)∗

holds true for all B = B∗ ∈ B. Since for every B ∈ B, B = B1 + iB2 with B1 = B+B∗

2
and

B2 = B−B∗

2i
, it follows that

Φ(λI)B = BΦ(λI)∗

holds true for all B ∈ B. It follows from Lemma 2.1 that Φ(λI) ∈ RI. Note that Φ−1 has the

same properties as Φ. Similarly, if Φ(A) ∈ RI, then A ∈ RI. Therefore, Φ(RI) = RI.

Let A = A∗ ∈ A. Since Φ(RI) = RI, there exists λ ∈ R such that Φ(λI) = I. Then

0 = Φ([[A, λI]∗, λI]∗) = [[Φ(A), I]∗, I]∗

= 2Φ(A)− 2Φ(A)∗.

Hence Φ(A) = Φ(A)∗. Similarly, if Φ(A) = Φ(A)∗, then A = A∗ ∈ A. Therefore Φ preserves

self-adjoint elements in both directions.

Let λ ∈ C be arbitrary. For every A = A∗ ∈ A, we obtain that

0 = Φ([[A, λI]∗, C]∗)

= [[Φ(A),Φ(λI)]∗,Φ(C)]∗
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holds true for all C ∈ A. It follows from Lemma 2.1 that

[Φ(A),Φ(λI)]∗ ∈ RI.

Since A = A∗, we have Φ(A) = Φ(A)∗. Hence

[Φ(A),Φ(λI)] ∈ RI.

It follows from Lemma 2.2 that

[Φ(A),Φ(λI)] = 0,

and then

BΦ(λI) = Φ(λI)B

for all B = B∗ ∈ B. Thus for every B ∈ B, since B = B1 + iB2 with B1 = B+B∗

2
and

B2 = B−B∗

2i
, we get

Φ(λI)B = BΦ(λI)

holds true for all B ∈ B. Hence Φ(λI) ∈ CI. Similarly, if Φ(A) ∈ CI, then A ∈ CI. Therefore,

Φ(CI) = CI.

Claim 3 Φ
(

1

2
I
)

= ± 1

2
I, Φ

(

1

2
iI
)

= ± 1

2
iI, Φ(iA) = iΦ(A) (∀A ∈ A) or Φ(iA) = −iΦ(A) (∀A ∈

A), where i is the imaginary unit.

By Claim 2, we have

Φ
(

−
1

2
I
)

= αI, Φ
(1

2
I
)

= βI

and

Φ
(

−
1

2
iI
)

= (γ1 + γi)I, Φ
(1

2
iI
)

= (ω1 + ωi)I,

where α, β, γ, ω, γ1, ω1 ∈ R and αβγω 6= 0. It follows from 0 =
[[

− 1

2
iI,− 1

2
iI
]

∗
,− 1

2
I
]

∗
that

0 =
[[

Φ
(

−
1

2
iI
)

,Φ
(

−
1

2
iI
)]

∗

,Φ
(

−
1

2
I
)]

∗

= [[(γ1 + γi)I, (γ1 + γi)I]∗, αI]∗ = 4αγγ1iI.

So γ1 = 0. Similarly, by the equality 0 =
[[

1

2
iI, 1

2
iI
]

∗
,− 1

2
I
]

∗
, we get that ω1 = 0.

Now we get

Φ
(

−
1

2
I
)

= αI, Φ
(1

2
I
)

= βI, Φ
(

−
1

2
iI
)

= γiI, Φ
(1

2
iI
)

= ωiI.

It follows from − 1

2
iI =

[[

− 1

2
iI,− 1

2
I
]

∗
,− 1

2
I
]

∗
that

γiI = Φ
(

−
1

2
iI
)

=
[[

Φ
(

−
1

2
iI
)

,Φ
(

−
1

2
I
)]

∗

,Φ
(

−
1

2
I
)]

∗

= 4α2γiI. (2.4)

Also the equality 1

2
iI =

[[

− 1

2
iI,− 1

2
I
]

∗
, 1
2
I
]

∗
implies

ωiI = Φ
(1

2
iI
)

=
[[

Φ
(

−
1

2
iI
)

,Φ
(

−
1

2
I
)]

∗

,Φ
(1

2
I
)]

∗

= 4αβγiI, (2.5)

the equality 1

2
I =

[[

− 1

2
iI,− 1

2
I
]

∗
,− 1

2
iI
]

∗
implies

βI = Φ
(1

2
I
)

=
[[

Φ
(

−
1

2
iI
)

,Φ
(

−
1

2
I
)]

∗

,Φ
(

−
1

2
iI
)]

∗

= −4αγ2I (2.6)
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and − 1

2
IA =

[[

− 1

2
iI,− 1

2
I
]

∗
, 1

2
iI
]

∗
ensures that

αI = Φ
(

−
1

2
I
)

=
[[

Φ
(

−
1

2
iI
)

,Φ
(

−
1

2
I
)]

∗

,Φ
(1

2
iI
)]

∗

= −4αγωI. (2.7)

Now (2.4)–(2.7) ensures that

α2 = γ2 =
1

4
, α = −β, γ = −ω. (2.8)

For every A ∈ A, it follows from iA =
[[

− 1

2
iI,− 1

2
I
]

∗
, A

]

∗
that

Φ(iA) =
[[

Φ
(

−
1

2
iI
)

,Φ
(

−
1

2
I
)]

∗

,Φ(A)
]

∗

= 4αγiΦ(A), (2.9)

which together with (2.8) implies that Φ(iA) = iΦ(A) (∀A ∈ A) or Φ(iA) = −iΦ(A) (∀A ∈ A).

Choose an arbitrary nontrivial projection P1 ∈ A, and write P2 = I − P1. Denote Aij =

PiAPj , i, j = 1, 2, then A =
2
∑

i,j=1

Aij . For every A ∈ A, we may write A =
2
∑

i,j=1

Aij . In all that

follows, when we write Aij , it indicates that Aij ∈ Aij . The following Claims 4–9 are devoted

to the additivity of Φ.

Claim 4 For every A11 ∈ A11 and B22 ∈ A22, we have

Φ(A11 +B22) = Φ(A11) + Φ(B22).

Since Φ is surjective, we may find an element T =
2
∑

i,j=1

Tij ∈ A such that

Φ(T ) = Φ(A11) + Φ(B22).

Since [[iP1, I]∗, A22]∗ = 0, it follows from (2.1) and Claim 1 that

Φ([[iP1, I]∗, T ]∗) = Φ([[iP1, I]∗, A11]∗).

By the injectivity of Φ, we obtain that

2i(P1T + TP1) = [[iP1, I]∗, T ]∗ = [iP1, I]∗, A11]∗ = 4iA11,

and then we get T11 = A11, T12 = T21 = 0. Similarly, T22 = B22, proving the claim.

Claim 5 For every A12 ∈ A12, B21 ∈ A21, we have

Φ(A12 +B21) = Φ(A12) + Φ(B21).

Choose T =
2
∑

i,j=1

Tij ∈ A such that

Φ(T ) = Φ(A12) + Φ(B21).

Since

[[i(P2 − P1), I]∗, A12]∗ = [[i(P2 − P1), I]∗, B21]∗ = 0,

it follows from (2.1) that

Φ([[i(P2 − P1), I]∗, T ]∗) = 0.
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From this, we get [[i(P2 − P1), I]∗, T ]∗ = 0. So T11 = T22 = 0.

Since [[A12, P1]∗, I]∗ = 0, it follows from (2.3) that

Φ([[T, P1]∗, I]∗) = Φ([[B21, P1]∗, I]∗).

By the injectivity of Φ, we obtain that

2(TP1 − P1T
∗) = [[T, P1]∗, I]∗ = [[B21, P1]∗, I]∗ = 2(B21 −B∗

21).

Hence T21 = B21. Similarly, T12 = A12, proving the claim.

Claim 6 For every A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, D22 ∈ A22, we have

Φ(A11 +B12 + C21) = Φ(A11) + Φ(B12) + Φ(C21)

and

Φ(B12 + C21 +D22) = Φ(B12) + Φ(C21) + Φ(D22).

Let T =
2
∑

i,j=1

Tij ∈ A be such that

Φ(T ) = Φ(A11) + Φ(B12) + Φ(C21).

It follows from (2.1) and Claim 5 that

Φ(2i(P2T + TP2))

= Φ([[iP2, I]∗, T ]∗)

= Φ([[iP2, I]∗, A11]∗) + Φ([[iP2, I]∗, B12]∗) + Φ([[iP2, I]∗, C21]∗)

= Φ(2iB12) + Φ(2iC21)

= Φ(2i(B12 + C21)).

Thus P2T + TP2 = B12 + C21, which implies T22 = 0, T12 = B12, T21 = C21. Now we get

T = T11 +B12 + C21.

Since

[[i(P2 − P1), I]∗, B12]∗ = [[i(P2 − P1), I]∗, C21]∗ = 0,

it follows from (2.1) that

Φ([[i(P2 − P1), I]∗, T ]∗) = Φ([[i(P2 − P1), I]∗, A11]∗),

from which we get T11 = A11. Consequently, Φ(A11 +B12+C21) = Φ(A11)+Φ(B12)+Φ(C21).

Similarly, we can get that Φ(B12 + C21 +D22) = Φ(B12) + Φ(C21) + Φ(D22).

Claim 7 For every A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, D22 ∈ A22, we have

Φ(A11 +B12 + C21 +D22) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).

Let T =
2
∑

i,j=1

Tij ∈ A be such that

Φ(T ) = Φ(A11) + Φ(B12) + Φ(C21) + Φ(D22).
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It follows from (2.1) and Claim 6 that

Φ(2iP1T + 2iTP1) = Φ([[iP1, I]∗, T ]∗)

= Φ([[iP1, I]∗, A11]∗) + Φ([[iP1, I]∗, B12]∗)

+ Φ([[iP1, I]∗, C21]∗) + Φ([[iP1, I]∗, D22]∗)

= Φ(4iA11) + Φ(2iB12) + Φ(2iC21)

= Φ(4iA11 + 2iB12 + 2iC21).

Thus

P1T + TP1 = 2A11 +B12 + C21,

it follows that T11 = A11, T12 = B12, T21 = C21. Similarly, we can get

Φ(2iP2T + 2iTP2) = Φ(4iD22 + 2iB12 + 2iC21).

From this, we get T22 = D22, proving the claim.

Claim 8 For every Ajk, Bjk ∈ Ajk, 1 ≤ j 6= k ≤ 2, we have

Φ(Ajk +Bjk) = Φ(Ajk) + Φ(Bjk).

Since
[[ i

2
I, Pj +Ajk

]

∗

, Pk +Bjk

]

∗

= i(Ajk +Bjk) + i(A∗
jk) + i(BjkA

∗
jk),

we get from Claim 7 that

Φ(i(Ajk +Bjk)) + Φ(iA∗
jk) + Φ(i(BjkA

∗
jk))

= Φ
([[ i

2
I, Pj +Ajk

]

∗

, Pk +Bjk

]

∗

)

=
[[

Φ
( i

2
I
)

,Φ(Pj +Ajk)
]

∗

,Φ(Pk +Bjk)
]

∗

=
[[

Φ
( i

2
I
)

,Φ(Pj) + Φ(Ajk)
]

∗

,Φ(Pk) + Φ(Bjk)
]

∗

=
[[

Φ
( i

2
I
)

,Φ(Pj)
]

∗

,Φ(Pk)
]

∗

+
[[

Φ
( i

2
I
)

,Φ(Pj)
]

∗

,Φ(Bjk)
]

∗

+
[[

Φ
( i

2
I
)

,Φ(Ajk)
]

∗

,Φ(Pk)
]

∗

+
[[

Φ
( i

2
I
)

,Φ(Ajk)
]

∗

,Φ(Bjk)
]

∗

= Φ(iBjk) + Φ(i(Ajk +A∗
jk)) + Φ(i(BjkA

∗
jk))

= Φ(iBjk) + Φ(iAjk) + Φ(iA∗
jk) + Φ(i(BjkA

∗
jk)),

which implies Φ(i(Ajk+Bjk)) = Φ(iBjk)+Φ(iAjk). By Claim 3, we obtain that Φ(Ajk+Bjk) =

Φ(Ajk) + Φ(Bjk).

Claim 9 For every Ajj ∈ Ajj and Bjj ∈ Ajj , 1 ≤ j ≤ 2, we have

Φ(Ajj +Bjj) = Φ(Ajj) + Φ(Bjj).

Let T =
2
∑

i,j=1

Tij ∈ A be such that

Φ(T ) = Φ(Ajj) + Φ(Bjj).
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For 1 ≤ j 6= k ≤ 2, it follows from (2.1) that

Φ([[iPk, I]∗, T ]∗) = Φ([[iPk, I]∗, Ajj ]∗) + Φ([[iPk, IA]∗, Bjj ]∗) = 0.

Hence PkT + TPk = 0, which implies Tjk = Tkj = Tkk = 0. Now we get T = Tjj .

For every Cjk ∈ Ajk, j 6= k, it follows from (2.2) and Claim 8 that

Φ(2iTjjCjk) = Φ([[iPj , Tjj ]∗, Cjk]∗)

= Φ([[iPj , Ajj ]∗, Cjk]∗) + Φ([[iPj , Bjj ]∗, Cjk]∗)

= Φ(2iAjjCjk) + Φ(2iBjjCjk)

= Φ(2i(AjjCjk +BjjCjk)).

Hence

(Tjj −Ajj −Bjj)Cjk = 0

for all Cjk ∈ Ajk. By the primeness of A, we get that Tjj = Ajj +Bjj , proving the claim.

Claim 10 Φ is ∗-additive.

The additivity of Φ is an immediate consequence of Claims 7–9. For every A ∈ A, A =

A1 + iA2, where A1 = A+A∗

2
and A2 = A−A∗

2i
are self-adjoint elements. By Claims 2–3 , if for

every A ∈ A, Φ(iA) = iΦ(A), then

Φ(A∗) = Φ(A1 − iA2) = Φ(A1)− Φ(iA2)

= Φ(A1)− iΦ(A2) = Φ(A1)
∗ − iΦ(A2)

∗

= Φ(A1)
∗ + (iΦ(A2))

∗ = Φ(A1 + iA2)
∗

= Φ(A)∗.

Similarly, if Φ(iA) = −iΦ(A) (∀A ∈ A), we also have Φ(A∗) = Φ(A)∗.

By Claims 3 and 10, we get that Φ(I) = I or Φ(I) = −I. In the rest of this section, we deal

with these two cases respectively.

Case 1 If Φ(I) = I, then Φ is either a linear ∗-isomorphism or a conjugate linear ∗-

isomorphism.

If Φ(I) = I, by (2.8)–(2.9) and Claim 10, then α = − 1

2
, β = 1

2
, γ = −ω, Φ(iI) = 2ωiI and

Φ(iA) = −2γiΦ(A) for all A ∈ A. For all A,B ∈ A, we can obtain that

−4γiΦ(AB +BA∗) = 2Φ(i(AB +BA∗)) = Φ(2i(AB +BA∗))

= Φ([[iI, A]∗, B]∗) = [[Φ(iI),Φ(A)]∗,Φ(B)]∗

= 4ωi(Φ(A)Φ(B) + Φ(B)Φ(A)∗).

From this, we get

Φ(AB +BA∗) = Φ(A)Φ(B) + Φ(B)Φ(A)∗. (2.10)

For all A,B ∈ A, it follows from Claim 3 that

Φ(AB −BA∗) = Φ((iA)(−iB) + (−iB)(iA)∗)

= Φ(iA)Φ(−iB) + Φ(−iB)Φ(iA)∗

= −Φ(iA)Φ(iB) − Φ(iB)Φ(iA)∗

= Φ(A)Φ(B) − Φ(B)Φ(A)∗. (2.11)
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Summing (2.10) with (2.11), we get that Φ(AB) = Φ(A)Φ(B).

For every rational number q, we have Φ(qI) = qI. Indeed, since q is a rational number,

there exist two integers r and s such that q = r
s
. Since Φ(I) = I and Φ is additive, we get that

Φ(qI) = Φ
(r

s
I
)

= rΦ
(1

s
I
)

=
r

s
Φ(I) = qI.

Let A be a positive element in A. Then A = B2 for some self-adjoint element B ∈ A. It

follows from Claim 11 that Φ(A) = Φ(B)2. By Claim 2, we get that Φ(B) is self-adjoint. So

Φ(A) is positive. This shows that Φ preserves positive elements.

Let λ ∈ R. Choose sequence {an} and {bn} of rational numbers such that an ≤ λ ≤ bn for

all n and lim
n→∞

an = lim
n→∞

bn = λ. It follows from

anI ≤ λI ≤ bnI

that

anIB ≤ Φ(λI) ≤ bnI.

Taking the limit, we get that Φ(λIA) = λIB. Hence for all A ∈ A,

Φ(λA) = Φ((λI)A) = Φ(λI)Φ(A) = λΦ(A).

Hence Φ is real linear. Therefore, if Φ(iA) = iΦ(A) (∀A ∈ A), then Φ is a linear ∗-isomorphism.

If Φ(iA) = −iΦ(A) (∀A ∈ A), then Φ is a conjugate linear ∗-isomorphism.

Case 2 If Φ(I) = −I, then Φ is either the negative of a linear ∗-isomorphism or the negative

of a conjugate linear ∗-isomorphism.

Consider that the map Ψ : A → B defined by Ψ(A) = −Φ(A) for all A ∈ A. It is easy to

see that Ψ satisfies Ψ([[A,B]∗, C]∗) = [[Ψ(A),Ψ(B)]∗,Ψ(C)]∗ for all A,B,C ∈ A and Ψ(I) = I.

Then the arguments for Case 1 ensure that Ψ is either a linear ∗-isomorphism or a conjugate

linear ∗-isomorphism. So Φ is either the negative of a linear ∗-isomorphism or the negative of

a conjugate linear ∗-isomorphism.

Combining Cases 1–2, the proof of Theorem 2.1 is finished.
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