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On Bounded Positive (m, p)-Circle Domains*

Hongjun LI' Chunhui QIU? Yichao XU?

Abstract Let D be a bounded positive (m,p)-circle domain in C2%. The authors prove
that if dim(Iso(D)?) = 2, then D is holomorphically equivalent to a Reinhardt domain; if
dim(Iso(D)°) = 4, then D is holomorphically equivalent to the unit ball in C?. Moreover,
the authors prove the Thullen’s classification on bounded Reinhardt domains in C? by the
Lie group technique.

Keywords (m,p)-Circular domain, Reinhardt domain, Holomorphically equivalent
2000 MR Subject Classification 32A10

1 Introduction

Let D be a bounded domain containing the origin in C2. Denote by Aut(D) the holomorphic
automorphism group of the domain D, Aut(D)" the unit connected component of Aut(D),
and Iso(D) the isotropic subgroup with the origin of Aut(D) and Iso(D)° the unit connected
component of Iso(D). Cartan [1] proved that Aut(D) is a real Lie group and Iso(D) is a compact
Lie subgroup of Aut(D). In this paper, £ is called the Lie algebra of a Lie group G, if £ consists
of all left invariant vector fields of the Lie group G. Moreover, aut(D) and iso(D) denote the
Lie algebras of the Lie group Aut(D) and Iso(D), respectively.

If Iso(D)? has a 1-dimensional real Lie subgroup

o =z’ ' =ye?, 0<0<2n,

we call D a circle domain; if Iso(D)° has a 2-dimensional real Lie subgroup

o=z, Y =y, 0<6,p<2m,

we call D a Reinhardt domain; if Iso(D)? has a 1-dimensional real Lie subgroup

/ im@

o =xe™ oy =ye??’ 0<0<2m,
where m,p € Z, m > p > 1, g.c.d.(m,p) = 1, we call D a positive (m,p)-circle domain; if
Iso(D)Y has a 1-dimensional real Lie subgroup

=z’ =y, 0<6<2m,
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we call D a semi-circle domain.

By using the Thullen condition: dim(Aut(D)) > dim(Iso(D)), Thullen [2] succeeded in
classifying bounded Reinhardt domains in C2. Any bounded Reinhardt domain with the Thullen
condition in C? is linearly equivalent to one of the three classes:

(1) Polydisc A? = {(z,y) € C*: |z| <1, |y| <1}

(2) Thullen domain Dy = {(z,y) € C?: |z> +|y|* <1} (A >0, X # 2);

(3) Unit ball B2 = {(z,y) € C*: |z> +|y|> < 1}.

By adding the condition: Iso(D)? C Us, where Uj is a unitary group of degree 2, Cartan
[3] gave some classification and realization of domains in C2. For circular domains and a part
of semi-circular domains in C2?, Cartan [4] gave the classification and the realization.

Xu and Wang [5-6] gave the classification and the realization of bounded positive (m, p)-
circle domains and bounded semi-circle domains when the isotropic subgroup with the origin
is a 1-dimensional real Lie group. The holomorphic automorphism groups are also determined.
Clearly, all Reinhardt domains in C? are semi-circle domains and positive (m, p)-circle domains.

Recently, Yamamori [7] proved that the isotropic subgroup with the origin of bounded
positive (m, p)-circle domains is a linear group when p > 2. Yamamori [8] and Rong [9] also
obtained some more general results in C".

In this paper, we only consider bounded domains containing the origin with the Thullen
condition: dim(Aut(D)) > dim(Iso(D)).

2 The Isotropic Subgroup of Bounded Positive (m, p)-Circle Domains
In this section, we consider a bounded positive (m, p)-circle domain D with dim(Iso(D)°) =

2 or 4. By the definition, if D is a bounded positive (m, p)-circle domain, then

.0 .0 .
A= imz o + 1py8—y € iso(D).

Firstly, we introduce some results of Cartan.

Lemma 2.1 (cf. [1]) Let D be a bounded domain in C™. If the Taylor expansions at z =0
of o,7 € Iso(D) are

o: w=zA+terms of z with higher degrees,

T: w=zB+termsof z with higher degrees,

respectively, then o = 7 if and only if A = B, where A, B € GL(n,C).

Lemma 2.2 (cf. [1]) Let D be a bounded domain in C™. If the Taylor expansions at z =0
of X = 5(2)%, Y = n(z)% € iso(D) are

aT
X = ZA8_ + terms of z with higher degrees,
z
aT
Y = zBa— + terms of z with higher degrees,
z
respectively, where g—z = (8%1’ e ,%)T, then X =Y if and only if A = B, where A,B €

gl(n,C). In particular, X =0 if and only if A= 0.
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Lemma 2.3 (cf. [1]) Let D be a bounded domain in C". Given a vector field X =
{(z)% € aut(D), then X, iX € aut(D) if and only if X = 0. Moreover, X € iso(D) if and
only if £(0) = 0.

Lemma 2.4 (cf. [3]) Let D be a bounded positive (m, p)-circle domain, then dim(Iso(D)°) =
1,2,4. When dim(Iso(D)%) = 2 or 4, there exists a homogeneous complex affine transformation
(u,v) = (2,9)Q, Q € GL(n,C), which maps D onto a bounded domain D1, and Iso(D1)° is

i0
(u',v") = (u,v) <eO e?s") + terms of (u,v) with higher degrees, 0<0,p <2,

or
(u',v") = (u,v)U + terms of (u,v) with higher degrees,
where U is the traversal of all unitary matrices of degree 2.
Now we can get the following theorem.

Theorem 2.1  Suppose that D is a bounded positive (m, p)-circle domain, and Q is defined
in Lemma 2.4. If dim(Iso(D)°) = 2, then

qgq 0
p— 5 0
Q ( 0 q4) q1q4 7
or

0 q2
<q3 0 ) ) 4243

Q:(Al AQ)UO’

where A1, A2 > 0, Uy is a unitary matriz of degree 2.

If dim(Iso(D)®) = 4, then

Proof Since Iso(D)" has a 1-dimensional real Lie subgroup
/ im6

o =ze™ y =ye??, 0<0<2nm,

Iso(D1)Y has a 1-dimensional real Lie subgroup

ime 0

(u',v") = (u,v)Q* <eo eiP9> Q, 0<60<2r.

(I) The case of dim(Iso(D)°) = 2
Since Iso(D1)° is

i0
(W, v'") = (u,v) <e0 e?“’) + terms of (u,v) with higher degrees, 0 <6, < 2,

by Lemma 2.1, for any fixed 0 < 6 < 27, there exists a unique matrix (eigl ei%2), such that

imé i6
1 (e 0 et 0
Q < 0 eip9 ) Q = ( 0 ei02 > )
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q1 g2
q3 g4

eim? 0 o oe\_(a ¢ el 0
0 elr? g3 qa q3 Qs 0 eif2 )"

By a direct computation, we can get

where 01,6 are real continuous functions on ¢ € R. Denote Q = ( ), so we have

Mg =g, €Mgy =g, Mgy =elgs, gy = ey

As we know, det @ # 0, i.e., q1q4 — g2q3 # 0.

(1) If g4 = 0, then gag3 # 0, i.e., g2 # 0 and g3 # 0. So ™? = ei%2 ¢Pf = i1 If ¢ # 0,
then we have e™? = eif1 = P9, (Clearly, e™? = ¢? does not hold for any 0 € [0,27). So
q1 = 0. As the same reason, if ¢; = 0, then ¢4 = 0.

(2) If go = 0, then g1q4 # 0, i.e., g1 # 0 and g4 # 0. As the same reason as (1), we can get
g2 = q3 = 0.

(3) If g1g2 # 0, according to (1) and (2), we can get gsqs # 0. So e
6 € ]0,27), which gives a contradiction.

(IT) The case of dim(Iso(D)?) = 4.

Since Iso(D1)? is

im0 — P9 holds for any

(' ,v") = (u,v)U + terms of (u,v) with higher degrees,

me

where U is the traversal of all unitary matrices of degree 2, by Lemma 2.1, Q! (cio CS)@) Q € Uy,

eim0 0 T 1 ei7n€ 0
FE = (Q_l ( 0 eipg) Q) Q_ < 0 eip9> Q
o —im0 im0
o' (7,7 e)amer () W )e

By a direct computation, we have

. im6 0 imé 0 .
QQ (eo eipe) = <e0 ew) QQ'.

Then Q@T = diag{a1,as}, where aj,as € C do not equal 0. But Q@T > 0, it follows that
ag,ag > 0. Denote a; = A2, ag = A3, A1 > 0, Ay > 0. Hence, Q = diag{A1, \2}Up, where Uy is
a unitary matrix of degree 2. Note that D, D, are bounded domains, hence A1, Ay are finite.

i.e.,

Note that for a bounded positive (m, p)-circle domain D, if dim(Iso(D)?) = 2, then Iso(D;)°
has a 1-dimensional real Lie subgroup

u =ue™ v =wve? 0<0<2n

or
u =, v =™ 0<6<2n.

In the sense of holomorphic equivalence, we regard the two cases as the same class. If

dim(Iso(D)?) = 4,
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then Iso(D)? is
(2',y') = (z,y)QUQ ™" + terms of (x,y) with higher degrees

1
= (x,y) <)E)1 /{) > UOUﬁoT (?)1 )E) > + terms of (z,y) with higher degrees
2 2

MO a0\
= (z,y) < 01 /\2> U < 01 /\2> + terms of (z,y) with higher degrees,

where U is the traversal of all unitary matrices of degree 2. Set x: = = Az, ¥y = Aoy. Then
Do = 1(D) is a bounded positive (m, p)-circle domain, and Iso(Ds)° is

(@',9') = (Z,9)U + terms of (7,y) with higher degrees,

where U is the traversal of all unitary matrices of degree 2. Without loss of generality, for a
bounded positive (m, p)-circle domain D, suppose that the Taylor expansion at z = 0 of any
o € Iso(D)? is

o: (2,y) = (z,y)U + terms of (z,y) with higher degrees,

where U is a unitary matrices of degree 2.

Now we can get the following lemmas.

Lemma 2.5 Let D be a bounded positive (m,p)-circle domain with dim(Iso(D)%) = 2.
If p > 1, then D is a Reinhardt domain; if p = 1, then D is holomorphically equivalent to a
Reinhardt domain.

Proof Suppose that the Lie algebra iso(D) has a group of bases A = imxa—am + ipya% and

:( —c+1id) y—l—ZZajk jaly” J)aax—l—((c—kld)x—klby—l—Zijk jadyk= J)Bay

k=2 j=0 k=2 j=0

where 0 # (b,c,d) € R3, aj—;,bjk—j € C, k>2, 0<j <k. Since [4, B] € iso(D), there are
A, i € R, such that [A, B] = A\A + uB.
Firstly, we want to prove that A = u = 0. In fact,

. 10
o . . . k—
[A,B]—l[(—m+p c+1dy+zz =1 +pk—j))ajr—;z’y 7]%

k=2 j=0
ook . 10
+illm = p)etid)+ 305 0mg +ph = = Dby 5
k=2 j=0

= A+ uB

o k 10

= [i,\mx +p(—c+id)y + p ;; aj)k—jzjyk_q ox
o k

+ [u(c +id)z 4 i(Ap + ub)y + Mg; bm—jxjyk_j} a%
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It follows that

k k
Y (m( = 1)+ pk = j)ajr—a?y" T = pd a2y, k> 2, (2.1)
=0 =0
. . k . .
iy (mj+plk = j = D)bja—ga’y" ™ = n Y bjaga’y* 7, k=2 (2:2)
Jj=0 j=0

and

iAmz + [u(—c +id) — (m — p)(d + ic)]y = 0,
[(m —p)(ic = d) — p(c +id)]z —i(Ap + pb)y =0,

hence A =0, ub =0, (m — p)c = pd, (m — p)d = —pc.

Supposing that p # 0, we have d(m — p) = —cu and c¢(m — p) = du. Hence —cdp =
d*(m —p) = —c?(m — p). When m # p, then ¢? +d? = 0, hence ¢ = d = 0. By ub = 0, we have
b= 0. But (b,c,d) # 0, it gives a contradiction.

Suppose that A = =0, hence [A,B] =0,c=d =0, b #0.

When p > 1, from (2.1)—(2.2), we have aj; = bjr =0, j+k > 2, B = ibya%. So the Lie
algebra iso(D) has a group of bases ix%, iya%, and D is a Reinhardt domain.

When p =1, from (2.1)-(2.2), we have aj; = b, =0, j+ k > 2, but we do not know agm,
B= aOmym% + ibya%. So the Lie algebra iso(D) has a group of bases A, B, where

m_

.0
8x+1y6_y’ a € C.

0 0
A=imz— +iy—, B=
1mx oz + 1y 5y’ ay
The one-parameter subgroup exp(tB) (t € R) is a unique holomorphic solution of the complex
ordinary differential equation systems

da’ rm Ay ,

_— = ) — = 5 t 6 R

e =
with the initial values 2/(0) = z, ¥/(0) = y. So 2’ = x + (e — 1), ¢/ = ye' (t € R).
Therefore, Iso(D)? is

aye)"

(™ —1), y' =yl 9 e 0,2m).
m

CEI _ xelme 4

Given a holomorphic isomorphism ¢ : u =z — 2y, v =y, then
m

B* = 0.(B) = v

A* =0,(A) :imuﬁ—i—iv2 50"

ou ov’

Therefore, iso(o(D)) has a group of bases iu%, iva%, and o(D) is a Renhardt domain.

Lemma 2.6 Let D be a bounded positive (m,p)-circle domain with dim(Iso(D)%) = 4.
Then D is holomorphically equivalent to the unit ball in C2.

Proof Since Iso(D)° is

(«',y") = (z,y)U + terms of (u,v) with higher degrees,



On Bounded Positive (m,p)-Circle Domains 671

Y is isomorphic to Us. By

where U is the traversal of all unitary matrices of degree 2, Iso(D)
the knowledge of Lie group, Iso(D)? has a 2-dimensional Lie subgroup H which consists of the
elements

o =xe™ .y =ye?? 0<6<2m.

By Lemma 2.5, the Lie algebra of H has a group of bases ixa%, iya% (in the sense of holomorphic
isomorphism). Cartan [3] proved that for any bounded circle domain, its isotropic subgroup is
constructed by the linear transformation, so Iso(D)° is

(:E/ay/) = (Jf,y)U, Ue UQ'
Hence D is holomorphically equivalent to the unit ball in C2.

It is known that dim(Iso(A?)%) = dim(Iso(Dx)°?) = 2, dim(Iso(B?)°) = 4. By the Thullen’s
classification of Reinhardt domains in C? and Lemmas 2.5-2.6, we immediately obtain the
following result.

Theorem 2.2 Let D be a bounded positive (m,p)-circle domain. If dim(Iso(D)°) = 2,
then D is holomorphically equivalent to a Reinhardt domain which is one of the two classes:
(1) Polydisc A% = {(z,y) € C?: |z| <1, |y| <1}
(2) Thullen domain Dy = {(z,y) € C?: |z + |y|* < 1}(A >0, A # 2).
If dim(Iso(D)Y) = 4, then D is holomorphically equivalent to the unit ball

B? = {(z,y) € C*: |2 + |y|* < 1}.

In the next section, we use a new approach to prove Theorem 2.2. By the results of Xu
[5], the classification of bounded positive (m,p)-circle domains in the sense of holomorphic
isomorphism is given.

3 The Classification of Reinhardt Domains

In the above section, we prove that for a bounded positive (m,p)-circle domain D, if
dim(Iso(D)") = 2, then D is holomorphically equivalent to a Reinhardt domain; if dim(Iso(D)?)
= 4, then D is holomorphically equivalent to the unit ball in C2. Thus in order to classify bound-
ed positive (m,p)-circle domains with the isotropic subgroup of dimensions 2 or 4, we just do
the classification of bounded Reinhardt domains in C2. Thullen [3] gave the classification of
bounded Reinhardt domains in C? by the geometric property of domains. In this section, firstly
we give the Lie algebra of holomorphic automorphism group and holomorphic automorphism
group, then prove the Thullen’s classification result again by another method.

In a way similar to [5], we assert that bounded positive (m, p)-circle domains allow holo-
morphic automorphism families

/ T+« , _
i — = s Iy B ’ < 17
¥ =1 Y =9@yan), o
where o € C. The function g(z,y, a, @) is continuous on (z,y) € D, |a] < 1. Then the point
set

={0vec|bl<r= s loy.—2 -}
z,y)E

isin D. In fact, the point set
Ao={yeC|(0,y) € D}
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is a bounded open subset in the y-plane. Since el? Ay C Ag, VO € [0,27), the point set A is
constructed by some concentric real circle disks. We consider the sectional set of Ag by the
positive axis, the section set is a sequence of open intervals

[a()va’l)v (a27a3)7 Tty (aQEaaQE—i-l)a R
where
O0=ap<ar <az <- - <ag <ag1 <+ <M (a fixed postive constant).

If (z1,91) € D, then ¢(z1,y1) = (0, 9(z1,y1, —21, —T1)) € D, where

’r r — X1

¢ x » Y =g(w,y, —x1, —T1).

a 1-— $El
It yields g(z1,y1, —21,—T1) € Ao. If [g(x1,y1, —21, —T1)| # O, then there is an index k, such
that

azr < |g(@1,y1, =1, —T1)| < azpq1-
Let

Dy ={(z,y) € D | az <|g(z,y,—=,-7)| < aze41},

¢=0,1,2,---. Then

D=DyuDiUDyU---UDpU---.

When j < k, we have D; N Dy, = (. Since D is a connected open subset in C?,
D = DO = {(!E,y) €D | |g(x7y7 -, _E)l < al}'

Thus
Ag={yeC|(0,y) e D} ={yeC| |yl < M}.

In other words, {(0,y) € C? | |[y| < M} C D, and sup |y| = M. ¥(z1,y1) € D, we have
(0,y)eD
lg(z1,y1, —21, —T1)| < M. SoT= sup |g(x,y,—x,—T)| < M, the assertion holds.
(z,y)eD
In order to express bounded positive (m, p)-circle domains by the function g, we introduce

a point set
D = {(x,y) € C? | for all « € C (|a| < 1), the function g(x,y, o, @) is analysis on (z,y)}.

Clearly, ® consists of bounded positive (m, p)-circle domains. Whereas, we have the following
lemma.

Lemma 3.1  Suppose that D is a bounded positive (m,p)-circle domain, for any (z1,y1) €
D, satisfying
9(0,9(z1,y1, —21, —T1), 21, T1) = Y1

Then D is the point set
D=9n{(z,y) € C’||g(z,y, ~z,~F)| <7, |2| <1},

Proof Clearly, D > D. Now Y(zo,50) € D, (0, g(zo,y0, —0, —T0)) € D. Now |zo| < 1.

Hence there exists a holomorphic automorphism map =’ = %1%00’ y = g(x,y,x0,To) on D. By

the supposition, it maps (0, g(xo, Yo, —Zo, —To)) to (zo,yo). That is, (xg,yo) € D, thus D=D.
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Lemma 3.2 If D is a bounded Reinhardt domain in C? with dim(Iso(D)°) = 4, then
iso(D) has a group of bases A, B, C, D, where
0 0 0

0 0 0
A=izx—, B=iy—, C=z— —ay—, D=iz— +iay— 0.
mcax, 1yay, xay ayax, 1x8y+1ay3x’ a >

Proof If D is a bounded Reinhardt domain in C?, then A = iz 61, B = iya% € iso(D).
Since iso(D) is a real linear space, we have

A+B= i;zc3 + iy(% € iso(D).

ox
Suppose
X = €a,9) 2 4l y) - € iso(D)
=&(v,y)=— x,y)=— € iso(D),
W)gg Ty 5
00 . S} .
where (z,y) = Y. ajp2’y* and n(z,y) = Y. bjra’y* are two power series expansion at the
§,k=0 3,k=0

origin, respectively. By Lemma 2.3, we have agp = bgp = 0. By a direct calculation,

[A+ B, X]

= [1xaﬁ+1y8 Z ara’y —+ ;Objkﬂﬁj (;?y}
2

> ) o

) , - 8 , , R0
=i Z (j"’k—l)ajkl;jyk%‘Fl Z (j +k'—1)bjk$jyka_ € iso(D).
JHk>2,5,k>0 JHk>2,5,k>0 y

By Lemma 2.2, we obtain that [A + B, X| =0, so

0
+ (bl()ZIJ + b()ly)—

0
X = (aloiE + CLQly)— ay

ox

Hence

: o . a .
B, X] = a1y 5 — 1b10xa—y € iso(D),

0 0
A B, X]] = — + bigr—
[ ) [ ) ]] aOlyax + 0107

By € iso(D),

X — [A, [B,X]] = 10T — 0

0
I + bmya— € iso(D),

thus Re(a10) = Re(bp1) = 0. We denote

0 0
C= [Av [BaX]] = aOly% + bror -,

dy
. 0 0
=1[A,C) = —lao1y5— + 1b10x6—y

If agr = 0, then C = bigz £ € iso(D), D = ibigz £ € iso(D). By Lemma 2.3, we get big = 0.
For the same reason, if b1g = 0, then ag; = 0. Therefore if ag; # 0, then by # 0; if byg # 0, then
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ap1 # 0. Since V(¢ € C, leoxa% + Zamy% € iso(D), without loss of generality, when b1y # 0,
we suppose big = 1, ag1 # 0. By [C, D] = —2a¢: (iz 2 — iya%) € iso(D), we have ag; € R.
The one-parameter subgroup (z'(t),y’(t)) = exp(tC) (¢t € R) is a unique holomorphic solu-
tion of the complex ordinary differential equation systems
/ !/
i—xt:amy', (ii—i:x’, teR
with the initial values 2'(0) = z, ¥'(0) = y. If ag1 > 0, then the solution is

ch(yant)  yaosh(yat)
Tl ehya) <y>

which transforms (x¢,0) to (ch(y/aort)zo, ﬁsh(\/amt)xo). But D is a bounded domain, it is
a contraction. If agy < 0, then the solution is

) cos(y/—ao1t) —v/—ap1 sin(y/—ap1t)
( y ) - \/_1701 sin(v=aort)  cos(v=aort) ( y ) '
e}

Therefore ag; < 0, denoting a = —ag; > 0, we get C' = Ty, — ay%, D= 1:1:a + 1ayaw, a > 0.

Lemma 3.3 Suppose that D is a bounded Reinhardt domain in C?, aut(D) is a direct sum
of two subspaces: one is iso(D), the other is linear combination of some vector fields as follows

9 9 : o . 0
Xi=(01- P1$2)% — Py Yi=i(l+ ple)% iy g

0 0
Yz = idoay— +i(l+ My’ 5,

0 0
Xo = —/\2902/% + (1= y?H) =, By

dy
where p1, A1 >0, p2, A2 > 0.

Proof Since D satisfies the Thullen condition, there exists (ago, boo) # 0, such that

0 0
X =¢y) g+ n(x,y)a—y € aut(D), X ¢iso(D),
where &(z,y) = > ajpafy® and n(x,y) = S bjpa’yk are two power series expansion at the
J,k=0 7,k=0

origin, respectively. By a direct calculation, we have

Ry R0 s 0
[A+BvX]:1- (j+k—1)ajkiﬂjyk%+l_z(J+k—1)bjkif]yka—y,
J,k=0 7,k=0
[A+ B A+ B X)) == 3 (G+k=1apaly* oo = >0 (j+k=1)° bira'y" 5
7,k=0 7,k=0
[A+ B,[A+ B,[A+ B, X]]]
e i)
:—IHZ(]—Fk—l)?’ajka ——12 (j 4k —1)%bpaiy* 3y
J,k=0 j,k=0
[A+ B,[A+ B,[A+ B,[A+ B, X]|]]

> . C e 0 - 0
= (G +k — 1) *anaiy® %—i— Z (j+k-1) bjkxjyka—y.
J,k=0 7,k=0
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By
[A+B,[A+B,[A+B,[A+ B, X]]]| + [A+ B,[A+ B, X]]

Z (j+k—1)° j+k—1)2—1)ajkxjyk%

7,k=0

+ i G+E=—1D*(G+k—1)7°- 1)b»kxjyk£
4,k=0 ’ 9y

and Lemma 2.2, we know
[A+B,[A+ B,[A+ B,[A+ B, X]|]]]+[A+ B,[A+ B, X]| =0,
therefore
X = Z a-kxjykg + Z b'lﬂjykg
_ / J oxr / J oy’
J+k<2,5,k>0 J+k<2,5,k>0

0
+ (bl(ﬂ? + boly)— € iSO(D).

0
—I—[A—I—B, [A—|—B,X]]:(a10x—|—a01y)— By

ox

Without loss of generality, we suppose

0 0
X = (aoo + a202* + a112y + apay?) = + (boo + bo2y? + br1wy + baor?) =

ox oy’
then
[A, X] = i(—ago + agz? — Clo2y2)3 +i(br1zy + 2b20$2)£7
Ox Jy
[B,[A, X]] = —2a02y23 + 2b20x2£ € iso(D).
T Ox oy

By Lemma 2.2, we get ags = bayg = 0. So we have

0 0
X = (agy + azz® + annzy) = + (boo + bo2y? + brizy) =—

ox oy’
Since
[A, X] = i(—ago + LLQOJ:2)2 + ibua:y2 € aut(D),
Ox oy
[A, [A, X]] = —(aoo + azoiliz)g - buxyg € aut(D)
Y Ox dy ’

we know that aut(D) has elements

0 0
Xl = —[A, [A, X]] = (CLQ() + a20$2)% + b11$ya—y,

0
}/1 [A Xl] = 1(a00 — a0 )

0
or lblliliya

and

0 0
Xo=X—-X; = allffya— + (boo + b02y2)8_y’

. 0
—[A, X4] = —16111562/8— +i(boo — bo2y2)a—y~
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Note that if agg = 0, then X7 = Y7 = 0; if bgp = 0, then X5 = Yo = 0. When agg # 0, denote
aaol = ay +iag, then a1 X1 +azY: = (1+ (a1 —iaz)azz? )6‘1 + (a1 — iag)bllxya% € aut(D), thus
we can suppose agg = 1. For the same reason, when bgy # 0, we also can suppose bgy = 1.

If ago = 1, then we have

[Xl s Yl] —41@20{E 86

thus there exist p1, p2 € R, such that asg = —p1, by = —p2. For the same reason when bpg = 1,
there exist A1, Ao € R, such that bgs = —\1, a11 = —Xo.
The one-parameter subgroup (2'(t),y'(t)) = exp(tX1) (¢ € R) is a unique holomorphic

- 211)11y(;9 € iso(D),

solution of the complex ordinary differential equation systems
da’ dy’
- =1- N2, = =—pozly/, teR
dz p1(z’) at p2xY
with the initial values 2'(0) = z, y'(0) = y. If p1 = 0, then 2/(t) = z+¢, t € R, which contracts
that D is a bounded domain. If p1 < 0, then
, x cos(y/—pit) + _p sin(y=pit) @+ \/_17p1 tan(y/—p1t) R
_ — , teR.
—cos(y/—pit) +/—prasin(y/—pit) 1+ /—prztan(y/—pit)
It is a contraction that D is a bounded domain. If p; > 0, then
weh(y/pit) + —=sh(y/pit)

) = 0 T oemn(py Y = V(AT + pish(vpn) ', teR

Since D is a bounded domain, it yields pa > 0. Therefore, we have proved p; > 0, p2 > 0. For

/

the same reason, we can prove A\; > 0, Ay > 0.
Now one can prove the following theorems.

Theorem 3.1 Let D be a bounded Reinhardt domain in C2. If dim(Iso(D)%) = 2, then
aut(D) has a group of bases A = 1x6 , B= iya% and

Case (I)
Xi=(-pme) L, vizi(l+pat) 2 >0, pp=0
1 — pP1T axa 1 — pP1T axv P1 , P2 = U,
0 . 0
Xo = (1—)\1y2)a—y, }/221(1+)\1y2)6—y, A1 >0, Ay =0;
Case (II)
0 0 0 0
1= (1= pat) o Py i i1+ pz )3x+1pzwyay, p1,p2 >0, p1 # pa;
Case (IIT)
0 0 . 0 0
Xy = —/\23598 +(1 - )\1?J2)6—y7 Yo = 1)\2$ya— +i(1+ /\1y2)8_y’ A1, A2 >0, A1 # A
If dim(Iso(D)Y) = 4, then aut(D) has a group of bases
0 0 0 0 0 0
lx@x’ 1y8y, x@y ayax, mcay + 1ay8x,

0 0 0 d
X =01~ cx2)% - cxya—y, Y1 =i(1+ ch)% + icocya—y7

X, = —acxyaa +(1- acyQ)%, Yo = iacacya2 +i(1+ acy%(%,
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where a > 0, ¢ > 0.
Proof If X; = (1 — plzz:2)6% — pzxya%, Xi=(01- p&x%% - p’gxya% € aut(D), where
php/]_ >0, P27p/2 >0, then
!/ / 2 8 / 8 :
X1 =Xy = (o —pr)a” 5+ (o2 — pz)xya—y € iso(D).

By Lemma 2.2, we have p} = p1, ph = pa.
(1) If dim(Iso(D)?) = 2, then Iso(D)° is a real Lie group

o =e%, Y =%y, 0,0 c]0,27),

and iso(D) has a group of bases A = ixa—ar, B= iya%.

If aooboo 7é 0, then

5,0 0 0 .
[X1, Xo] = =Ry + Aa(p1 — p2)27y) 5 + (P22 + p2(M1 — Az)zy )B_y € iso(D).

It yields pa = A2 = 0. Case (I) holds.

If (ago,boo) = (1,0), then X7 # 0, Xo = 0. The one-parameter subgroup (2'(t),y'(t)) =
exp(t((cos¢) X1 + (sing)Y7)) (¢t € R) is a unique holomorphic solution of the complex ordinary
differential equation systems

o
dt

. . dy/
= —e 7o (a)?, d_yt =—pa'y, teR

with the initial values 2/(0) = z, 2’(0) = y, where ¢ € [0,27). We get the solution

_ P2

C T —leisg .

If po = 0, then

x + e'tgh t
S = YRy
1+ /pree~istgh(\/pit)

By Lemma 3.1, it yields D = {(z,y) € C? | |\/p1z| < 1, |y| < M}. But we can see Aut(D)°
allows

M
2 =z, y’:My+ E, 18] < 1,
M +yp

so p2 = 0 does not hold.
Next we prove p; # pa. If p1 = pa, then

iStgh t 1 — [tgh DIE
S = \/P_lx—i—e_ig(\/P_l) oy =y |g_i(\/ﬁ)| _ teR
1+ /prreistgh(y/pit) 1+ /prxeistgh(,/p1it)

By Lemma 3.1, it yields D = {(x,y) € C? | |z|> < p; *(1—|y|?)}. But we can see Iso(D)° allows
-1
@)= (VD)o Y) L ven

50 p1 = pa does not hold. Therefore, Case (II) holds.
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If (a0, boo) = (0,1), then X7 =0, X5 # 0. As the same reason as the case (agg, boo) = (1,0),
we get Ay # 0, and A\; # Aa. Therefore, Case (IIT) holds.
(2) If dim(Iso(D)%) = 4, then iso(D) has a group of bases

9 o ,_,0 0

A=zl B=iyl 9
o’ lyay’ oy Yoz

0 0
D= ixa—y —I—iay%, a > 0.
If agy # 0, then X; # 0. By a direct computation

0 0
[C, X0] = (201 = pa)azy - — (1 = (p1 — p2)z* — pzayQ)a—y,

A, [C.X]] = i2(p1 p2>x2§y € iso(D),

we get pP1 = pP2. Then
— [C X ] = —ap1TY— + (1 —ap 2)— S aut(D)

0 0 .
- ay%) = p1C € iso(D).

X1, -10. 50 = i (v,

Thus boo 75 0.
If bop # 0, then X2 # 0. By a direct calculation

0 0
[C, X3] = (a — Xoz? —a(N — )\Q)yQ)% —(2M1 — )\Q)xya—y € aut(D),

[B,[C, X3]] = —i2a(M\ — )\2)y2% € iso(D),

we get A1 = Aa. Then
-1 “1y 2y 9 —1 0
a ' [C,Xs]=(1—a " Mz*)=— —a Alxya—y € aut(D),

oz
[a™'[C, X,], Xo] =a™ '\ (ZEQ 0

— N — -1 1
a9 ayax) a” "\ C €iso(D).

Thus agg # 0.
When aooboo 7é 0, then

0 o .
(X1, Xo] = —/\Qy% + Py € iso(D),

there exists ¢ € R, such that Ay = aps = ac. So we have py = ps =c¢ >0, \y = Ay = ac.
Therefore, we have proved that aut(D) has a group of bases

0 0 0 0 0 0
A=zl B=iyl =22 _wl Do iiwl
oz 1y8y’ xay Yor e Ay + R

0 0 0 0
X1 =(1- ch)% - cxya—y, Y, =i(l+ ch)% + icxya—y,

0 0 0 0
Xo = —acry o +(1- acy2)a—y, Y, = iacxy% +i(1+ acy2)8—y,

where a > 0, ¢ > 0.
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Theorem 3.2  Suppose that D is a bounded Reinhardt domain in C2. Then there exists a
linear isomorphism o, such that o(D) is one of the three classes:

(1) Polydisc A% = {(z,y) € C?: |z| <1, |y| <1}

(2) Thullen domain Dy = {(z,y) € C?: |z|> + |[y|* < 1} (A >0, X #2);

(3) Unit ball B*> = {(z,y) € C? : |z> + |y|? < 1}.

Proof If dim(Iso(D)) = 2, then iso(D) has a group of bases: A =iz Z, B = iya%.

For Case (I), given a linear isomorphism o : (u,v) = (\/p12, VA1), then aut(c(D)) has a
group of bases

. _ .0 . _ .90
A —U*(A)—luau, B _U*(B)_wﬁv’

* 1 _ 2 d * 1 o 2 0
X] = —pla*(Xl) =(1-u )—8u, Y= —plo*(Yl) =i(l4+u )—au,
X;= = (X)—(l—vz)—a vy = (1/)—1(1+v2)—a

2T T MY, VG e Er

For fixed t1, t2 € R, the one-parameter subgroup
(u(t),v(t)) = exp(t(ti(cos 1 X] +sing1Y7") + ta(cos X5 + singYy))), teR
is a unique holomorphic solution of the complex ordinary differential equation systems
du’ dv’
dt dts
with the initial values v/ (0) = u, v'(0) = v, where <1, 2 € [0,27). We get the one-parameter
analytic transformation:

=1 (ei<1 o e—i<1 (u/)2), _ t2(ei<2 _ e—ig'g (,U/)Q)’ teR

, u + e'itgh(tt) , v+ elS2tgh(tts)
u = : , v = : .
1 + ue—isitgh(tt; ) 1+ ve 12 tgh(tt)

Thus D is linearly equivalent to D7 = o(D), Aut(Dj)" is a real Lie group with dim(Aut(Dj)?) =
6:
’U/: i@U‘f’OZ_’ ’U/:eiwv—’—ﬁ_,
1+ ua 1+vp
where 0, ¢ € [0,27), |a| = |e*ttght;| < 1, |3] = |e!?tghts| < 1. By Lemma 3.1, one can obtain

D =A% = {(u,v) € C* | |u| < 1, |v] < 1}.

For Case (II), given a linear isomorphism o : (u,v) = (\/p12,¥), then aut(c(D)) has a group
of bases

x 0 . 0
A —a*(A)—lu%, B —a*(B)—w%,
1 0 P2 0
Xi= —o (X)) =(1-u)—~= -2,
1 \/m ( 1) ( )a 1 v
1 . . P2 0
= o) = i(1 4 u?) = +iPuw
| pla( 1) =1( +u)8u+lp1uvav

The one-parameter subgroup (u/(t),v’(t)) = exp(t(cos¢X; + singYy*)) (¢t € R) is a unique
holomorphic solution of the complex ordinary differential equation systems
du’ do’

— = e, — = —e_k@u’v’, teR
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with the initial values u'(0) = u, v/(0) = v, where ¢ € [0,27). We get the solution

) Ut U/_U(\/1_|O‘|2)/%

YT T ua 1+ uw

where a = e'“tght. Therefore D is linearly isomorphic to Dj = o(D), and Aut(D3) is a real
Lie group with dim(Aut(D3)%) = 4:

P2
o U+ ; V1—la|2\ 5
’U,/ _ e10 ’U/ _ eupv( | | ) ,

T 14 ua’ 1+ ua

where 0, € [0,27), a € C, |a| < 1. By Lemma 3.1, we can obtain
2p
Dy ={(u,v) €C? | Ju| <1, [v| 72 <7(1—|u)}, 7>0.

For Case (III), given a linear isomorphism o : (u,v) = (x,4/A1y), then aut(o(D)) has a
group of bases

A —cr*(A)—lu%, B —a*(B)—w%,
1 Ao O 9 0
X3 = ——0u(Xo) = - 2w 4 (1 —u?) <,
2 = o Xe) = —Fruvgn + (L —w) 5

1 A2 0 9 0

Y = 0. (Ya) = i 2w 4 i(1 + u?)—.

2 = o (e) = w4 5

The one-parameter subgroup (u/(t),v’(t)) = exp(t(cos¢X; + singY5")) (¢t € R) is a unique
holomorphic solution of the complex ordinary differential equation systems

du’ A do’ . )
TSR, =t oe ) teR
1

with the initial values u'(0) = u, v/(0) = v, where ¢ € [0,27). We get the solution

A
oW YEEEYE e

1+ v T 14va’

where o = e'“tght. Therefore D is linearly isomorphic to D3 = o(D), and Aut(D})° is a real
Lie group with dim(Aut(D3)%) = 4:

A
- V1= laf2\ 52 Lu+a
19u( | | ) 1’ UI:elga

1+ ua 14 ua’

u=e 0,0 €[0,27), |af < 1.

By Lemma 3.1, we can get
* 2 2 2
D3 ={(u,v) € C* | Ju|>2 <7(1—v|]"), |v|] <1}, 7>0.
We can see for the domain
Dy ={(z,y) € C*| 2> + [yl <1}, A>0, A#2,
given a linear isomorphism o : (z,y) — (y, ), then Dj is linearly isomorphic to

Dy ={(z,y) € C* [ [a]* +]yl* <1}, A>0, A#2.
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Therefore we regard Case (IT) and Case (III) as the same class, denote the canonical domain
Dy={(z,y) €C* |z’ + yI* <1}, A>0, A#2.

If dim(iso(D)) = 4, given a linear isomorphism map o : (u,v) = (y/cx,/acy), then
aut(o(D)) has a group of bases

A" =0, (A) = mﬁﬁu’ B* =0,(B) = w(%,
0= L0y

D* = %@(D) = iuz +iva%,

X; = %U*(xl) =(1- u2)6% — uv(%,
Y= %U*(}/l) =i(1 +u2)8g +1uv%,
X; = \/%a*()@) - —uv% (- “2)3%’
Yy = \/%a*(y?) = iuv% +i(1 +v2)%.

Denote z = (u,v). In fact
. or —T
iso(o(D)) = {zKE \ Kegl2C), K+K' = o}.

The one-parameter subgroup w(t) = exp (t(zK %)) (t € R) is a unique holomorphic solution
of the complex ordinary differential equation systems
dw(t)
—— =w()K, teR
5 = v
with the initial values w(0) = z. We get the one-parameter analytic transformation: w(t) =
ze!X. Therefore Iso(o (D))" is a real Lie group with dim(Iso(o(D))%) = 4:

(', v") = (u,v)U, (3.1)

where U = e € Uy, K = (l_tlZ ifz), t1,t2 € R, ¢ eC.
The one-parameter subgroup (u'(t),v'(t)) = exp(t(cos 61 X7 +sin6,1Y7")) (¢ € R) is a unique
holomorphic solution of the complex ordinary differential equation systems

v
dt

!
du 0,

dt

—i6q, 1,1

S (TR =—e v, teR

with the initial values (u'(0),2'(0)) = (u,v), where 0 < 6; < 27. Denote oy = e1tght, t € R.
The solution is

(', v") = (14 uay) " Hu+ o, V1 — |og|?0)

= (cht-z+e%sht-ey)e sht-elz+ F + (cht —1)E11] 7},
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where e; = (1,0), Fy; = diag{1,0}.
The one-parameter subgroup (u'(t),v'(t)) = exp(t(cos 62.X5 +sin6:Y5")) (¢ € R) is a unique
holomorphic solution of the complex ordinary differential equation systems

du’ ‘ dv’ ‘ .
_ _e—192u/v/ e192 o e—102 (’U/)Q, teR

dt LAt
with the initial values (u'(0),2'(0)) = (u,v), where 0 < 65 < 27. Denote ap = e¥2tght, t € R.
The solution is

(u',v") = (1 4+var) " (/1 — |az|?u, v + a)
(cht-z+e%sht-ey)fe™%sht-elz+ E+ (cht —1)Fa] 71,

where es = (0,1), Eoo = diag{0, 1}.

Set A =cht, B =el%sht e, C =e %sht-el, D=FE+ (cht —1)Ey, k =1,2. By [10],
(g g) is composed of the one-parameter subgroup of Lorentz group of type (1,2). It determines
the Lie algebra (c ol

k
“ifkeT )

") Take over k = 1,2, one can get four base elements (GOE 60)

(—ioe;f izk), k =1,2. By [10], the unit connected component of the holomorphic automorphism

group of the domain o (D), construed by the four linearly independent one-parameter subgroup
and the isotropic subgroup with the origin which is defined by (3.1), is

w=(Az+ B)(Cz+ D)™,

where (2 g) is the traversal of Lorentz group of type (1,2). By [10], one can get
o(D)={2€C*|E-ZT2>0}={2€C?||2)?> =2=zF < 1}.
By Lemmas 2.5-2.6 and Theorem 3.2, we immediately get Theorem 2.2 again.
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