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Abstract Let D be a bounded positive (m, p)-circle domain in C
2. The authors prove

that if dim(Iso(D)0) = 2, then D is holomorphically equivalent to a Reinhardt domain; if
dim(Iso(D)0) = 4, then D is holomorphically equivalent to the unit ball in C

2. Moreover,
the authors prove the Thullen’s classification on bounded Reinhardt domains in C

2 by the
Lie group technique.
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1 Introduction

Let D be a bounded domain containing the origin in C2. Denote by Aut(D) the holomorphic

automorphism group of the domain D, Aut(D)0 the unit connected component of Aut(D),

and Iso(D) the isotropic subgroup with the origin of Aut(D) and Iso(D)0 the unit connected

component of Iso(D). Cartan [1] proved that Aut(D) is a real Lie group and Iso(D) is a compact

Lie subgroup of Aut(D). In this paper, L is called the Lie algebra of a Lie group G, if L consists

of all left invariant vector fields of the Lie group G. Moreover, aut(D) and iso(D) denote the

Lie algebras of the Lie group Aut(D) and Iso(D), respectively.

If Iso(D)0 has a 1-dimensional real Lie subgroup

x′ = xeiθ, y′ = yeiθ, 0 ≤ θ < 2π,

we call D a circle domain; if Iso(D)0 has a 2-dimensional real Lie subgroup

x′ = xeiθ, y′ = yeiϕ, 0 ≤ θ, ϕ < 2π,

we call D a Reinhardt domain; if Iso(D)0 has a 1-dimensional real Lie subgroup

x′ = xeimθ, y′ = yeipθ, 0 ≤ θ < 2π,

where m, p ∈ Z, m > p ≥ 1, g.c.d.(m, p) = 1, we call D a positive (m, p)-circle domain; if

Iso(D)0 has a 1-dimensional real Lie subgroup

x′ = xeiθ, y′ = y, 0 ≤ θ < 2π,
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we call D a semi-circle domain.

By using the Thullen condition: dim(Aut(D)) > dim(Iso(D)), Thullen [2] succeeded in

classifying bounded Reinhardt domains in C2. Any bounded Reinhardt domain with the Thullen

condition in C2 is linearly equivalent to one of the three classes:

(1) Polydisc ∆2 = {(x, y) ∈ C2 : |x| < 1, |y| < 1};
(2) Thullen domain Dλ = {(x, y) ∈ C2 : |x|2 + |y|λ < 1} (λ > 0, λ 6= 2);

(3) Unit ball B2 = {(x, y) ∈ C2 : |x|2 + |y|2 < 1}.
By adding the condition: Iso(D)0 ⊂ U2, where U2 is a unitary group of degree 2, Cartan

[3] gave some classification and realization of domains in C2. For circular domains and a part

of semi-circular domains in C2, Cartan [4] gave the classification and the realization.

Xu and Wang [5–6] gave the classification and the realization of bounded positive (m, p)-

circle domains and bounded semi-circle domains when the isotropic subgroup with the origin

is a 1-dimensional real Lie group. The holomorphic automorphism groups are also determined.

Clearly, all Reinhardt domains in C2 are semi-circle domains and positive (m, p)-circle domains.

Recently, Yamamori [7] proved that the isotropic subgroup with the origin of bounded

positive (m, p)-circle domains is a linear group when p ≥ 2. Yamamori [8] and Rong [9] also

obtained some more general results in Cn.

In this paper, we only consider bounded domains containing the origin with the Thullen

condition: dim(Aut(D)) > dim(Iso(D)).

2 The Isotropic Subgroup of Bounded Positive (m,p)-Circle Domains

In this section, we consider a bounded positive (m, p)-circle domain D with dim(Iso(D)0) =

2 or 4. By the definition, if D is a bounded positive (m, p)-circle domain, then

A = imx
∂

∂x
+ ipy

∂

∂y
∈ iso(D).

Firstly, we introduce some results of Cartan.

Lemma 2.1 (cf. [1]) Let D be a bounded domain in Cn. If the Taylor expansions at z = 0

of σ, τ ∈ Iso(D) are

σ : w = zA+ terms of z with higher degrees,

τ : w = zB + terms of z with higher degrees,

respectively, then σ = τ if and only if A = B, where A,B ∈ GL(n,C).

Lemma 2.2 (cf. [1]) Let D be a bounded domain in Cn. If the Taylor expansions at z = 0

of X = ξ(z)∂
T

∂z
, Y = η(z)∂

T

∂z
∈ iso(D) are

X = zA
∂T

∂z
+ terms of z with higher degrees,

Y = zB
∂T

∂z
+ terms of z with higher degrees,

respectively, where ∂T

∂z
=

(
∂

∂z1
, · · · , ∂

∂zn

)T
, then X = Y if and only if A = B, where A,B ∈

gl(n,C). In particular, X = 0 if and only if A = 0.
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Lemma 2.3 (cf. [1]) Let D be a bounded domain in C
n. Given a vector field X =

ξ(z)∂
T

∂z
∈ aut(D), then X, iX ∈ aut(D) if and only if X = 0. Moreover, X ∈ iso(D) if and

only if ξ(0) = 0.

Lemma 2.4 (cf. [3]) Let D be a bounded positive (m, p)-circle domain, then dim(Iso(D)0) =

1, 2, 4. When dim(Iso(D)0) = 2 or 4, there exists a homogeneous complex affine transformation

(u, v) = (x, y)Q, Q ∈ GL(n,C), which maps D onto a bounded domain D1, and Iso(D1)
0 is

(u′, v′) = (u, v)

(
eiθ 0
0 eiϕ

)
+ terms of (u, v) with higher degrees, 0 ≤ θ, ϕ < 2π,

or

(u′, v′) = (u, v)U + terms of (u, v) with higher degrees,

where U is the traversal of all unitary matrices of degree 2.

Now we can get the following theorem.

Theorem 2.1 Suppose that D is a bounded positive (m, p)-circle domain, and Q is defined

in Lemma 2.4. If dim(Iso(D)0) = 2, then

Q =

(
q1 0
0 q4

)
, q1q4 6= 0

or

Q =

(
0 q2
q3 0

)
, q2q3 6= 0.

If dim(Iso(D)0) = 4, then

Q =

(
λ1

λ2

)
U0,

where λ1, λ2 > 0, U0 is a unitary matrix of degree 2.

Proof Since Iso(D)0 has a 1-dimensional real Lie subgroup

x′ = xeimθ, y′ = yeipθ, 0 ≤ θ < 2π,

Iso(D1)
0 has a 1-dimensional real Lie subgroup

(u′, v′) = (u, v)Q−1

(
eimθ 0
0 eipθ

)
Q, 0 ≤ θ < 2π.

(I) The case of dim(Iso(D)0) = 2

Since Iso(D1)
0 is

(u′, v′) = (u, v)

(
eiθ 0
0 eiϕ

)
+ terms of (u, v) with higher degrees, 0 ≤ θ, ϕ < 2π,

by Lemma 2.1, for any fixed 0 ≤ θ < 2π, there exists a unique matrix
(
eiθ1 0
0 eiθ2

)
, such that

Q−1

(
eimθ 0
0 eipθ

)
Q =

(
eiθ1 0
0 eiθ2

)
,
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where θ1, θ2 are real continuous functions on t ∈ R. Denote Q =
(

q1 q2

q3 q4

)
, so we have

(
eimθ 0
0 eipθ

)(
q1 q2
q3 q4

)
=

(
q1 q2
q3 q4

)(
eiθ1 0
0 eiθ2

)
.

By a direct computation, we can get

eimθq1 = eiθ1q1, eimθq2 = eiθ2q2, eipθq3 = eiθ1q3, eipθq4 = eiθ2q4.

As we know, detQ 6= 0, i.e., q1q4 − q2q3 6= 0.

(1) If q4 = 0, then q2q3 6= 0, i.e., q2 6= 0 and q3 6= 0. So eimθ = eiθ2 , eipθ = eiθ1 . If q1 6= 0,

then we have eimθ = eiθ1 = eipθ. Clearly, eimθ = eipθ does not hold for any θ ∈ [0, 2π). So

q1 = 0. As the same reason, if q1 = 0, then q4 = 0.

(2) If q2 = 0, then q1q4 6= 0, i.e., q1 6= 0 and q4 6= 0. As the same reason as (1), we can get

q2 = q3 = 0.

(3) If q1q2 6= 0, according to (1) and (2), we can get q3q4 6= 0. So eimθ = eipθ holds for any

θ ∈ [0, 2π), which gives a contradiction.

(II) The case of dim(Iso(D)0) = 4.

Since Iso(D1)
0 is

(u′, v′) = (u, v)U + terms of (u, v) with higher degrees,

where U is the traversal of all unitary matrices of degree 2, by Lemma 2.1, Q−1
(
eimθ 0
0 eipθ

)
Q ∈ U2,

i.e.,

E =

(
Q−1

(
eimθ 0
0 eipθ

)
Q

)T

Q−1

(
eimθ 0
0 eipθ

)
Q

= Q
T
(
e−imθ 0
0 e−ipθ

)
Q−1

T
Q−1

(
eimθ 0
0 eipθ

)
Q.

By a direct computation, we have

QQ
T
(
eimθ 0
0 eipθ

)
=

(
eimθ 0
0 eipθ

)
QQ

T
.

Then QQ
T
= diag{α1, α2}, where α1, α2 ∈ C do not equal 0. But QQ

T
> 0, it follows that

α1, α2 > 0. Denote α1 = λ2
1, α2 = λ2

2, λ1 > 0, λ2 > 0. Hence, Q = diag{λ1, λ2}U0, where U0 is

a unitary matrix of degree 2. Note that D, D1 are bounded domains, hence λ1, λ2 are finite.

Note that for a bounded positive (m, p)-circle domain D, if dim(Iso(D)0) = 2, then Iso(D1)
0

has a 1-dimensional real Lie subgroup

u′ = ueimθ, v′ = veipθ, 0 ≤ θ < 2π

or

u′ = ueipθ, v′ = veimθ, 0 ≤ θ < 2π.

In the sense of holomorphic equivalence, we regard the two cases as the same class. If

dim(Iso(D)0) = 4,
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then Iso(D)0 is

(x′, y′) = (x, y)QUQ−1 + terms of (x, y) with higher degrees

= (x, y)

(
λ1 0
0 λ2

)
U0UU0

T
(
λ1 0
0 λ2

)−1

+ terms of (x, y) with higher degrees

= (x, y)

(
λ1 0
0 λ2

)
U

(
λ1 0
0 λ2

)−1

+ terms of (x, y) with higher degrees,

where U is the traversal of all unitary matrices of degree 2. Set κ : x̃ = λ1x, ỹ = λ2y. Then

D2 = κ(D) is a bounded positive (m, p)-circle domain, and Iso(D2)
0 is

(x̃′, ỹ′) = (x̃, ỹ)U + terms of (x̃, ỹ) with higher degrees,

where U is the traversal of all unitary matrices of degree 2. Without loss of generality, for a

bounded positive (m, p)-circle domain D, suppose that the Taylor expansion at z = 0 of any

σ ∈ Iso(D)0 is

σ : (x′, y′) = (x, y)U + terms of (x, y) with higher degrees,

where U is a unitary matrices of degree 2.

Now we can get the following lemmas.

Lemma 2.5 Let D be a bounded positive (m, p)-circle domain with dim(Iso(D)0) = 2.

If p > 1, then D is a Reinhardt domain; if p = 1, then D is holomorphically equivalent to a

Reinhardt domain.

Proof Suppose that the Lie algebra iso(D) has a group of bases A = imx ∂
∂x

+ ipy ∂
∂y

and

B =
(
(−c+ id)y +

∞∑

k=2

k∑

j=0

aj,k−jx
jyk−j

) ∂

∂x
+
(
(c+ id)x + iby +

∞∑

k=2

k∑

j=0

bj,k−jx
jyk−j

) ∂

∂y
,

where 0 6= (b, c, d) ∈ R3, aj,k−j , bj,k−j ∈ C, k ≥ 2, 0 ≤ j ≤ k. Since [A,B] ∈ iso(D), there are

λ, µ ∈ R, such that [A,B] = λA + µB.

Firstly, we want to prove that λ = µ = 0. In fact,

[A,B] = i
[
(−m+ p)(−c+ id)y +

∞∑

k=2

k∑

j=0

(m(j − 1) + p(k − j))aj,k−jx
jyk−j

] ∂

∂x

+ i
[
(m− p)(c+ id)x +

∞∑

k=2

k∑

j=0

(mj + p(k − j − 1))bj,k−jx
jyk−j

] ∂

∂y

= λA+ µB

=
[
iλmx + µ(−c+ id)y + µ

∞∑

k=2

k∑

j=0

aj,k−jx
jyk−j

] ∂

∂x

+
[
µ(c+ id)x+ i(λp+ µb)y + µ

∞∑

k=2

k∑

j=0

bj,k−jx
jyk−j

] ∂

∂y
.
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It follows that

i

k∑

j=0

(m(j − 1) + p(k − j))aj,k−jx
jyk−j = µ

k∑

j=0

aj,k−jx
jyk−j , k ≥ 2, (2.1)

i

k∑

j=0

(mj + p(k − j − 1))bj,k−jx
jyk−j = µ

k∑

j=0

bj,k−jx
jyk−j , k ≥ 2 (2.2)

and

iλmx + [µ(−c+ id)− (m− p)(d+ ic)]y = 0,

[(m− p)(ic− d)− µ(c+ id)]x− i(λp+ µb)y = 0,

hence λ = 0, µb = 0, (m− p)c = µd, (m− p)d = −µc.

Supposing that µ 6= 0, we have d(m − p) = −cµ and c(m − p) = dµ. Hence −cdµ =

d2(m− p) = −c2(m− p). When m 6= p, then c2 + d2 = 0, hence c = d = 0. By µb = 0, we have

b = 0. But (b, c, d) 6= 0, it gives a contradiction.

Suppose that λ = µ = 0, hence [A,B] = 0, c = d = 0, b 6= 0.

When p > 1, from (2.1)–(2.2), we have ajk = bjk = 0, j + k ≥ 2, B = iby ∂
∂y

. So the Lie

algebra iso(D) has a group of bases ix ∂
∂x

, iy ∂
∂y

, and D is a Reinhardt domain.

When p = 1, from (2.1)–(2.2), we have ajk = bjk = 0, j + k ≥ 2, but we do not know a0m,

B = a0mym ∂
∂x

+ iby ∂
∂y

. So the Lie algebra iso(D) has a group of bases A, B, where

A = imx
∂

∂x
+ iy

∂

∂y
, B = aym

∂

∂x
+ iy

∂

∂y
, a ∈ C.

The one-parameter subgroup exp(tB) (t ∈ R) is a unique holomorphic solution of the complex

ordinary differential equation systems

dx′

dt
= a(y′)m,

dy

dt
= iy′, t ∈ R

with the initial values x′(0) = x, y′(0) = y. So x′ = x + aym

im (eimt − 1), y′ = yeit (t ∈ R).

Therefore, Iso(D)0 is

x′ = xeimθ +
a(yeiθ)m

im
(eimϕ − 1), y′ = yei(θ+ϕ), θ, ϕ ∈ [0, 2π).

Given a holomorphic isomorphism σ : u = x− a
imym, v = y, then

A∗ = σ∗(A) = imu
∂

∂u
+ iv

∂

∂v
, B∗ = σ∗(B) = iv

∂

∂v
.

Therefore, iso(σ(D)) has a group of bases iu ∂
∂u

, iv ∂
∂v

, and σ(D) is a Renhardt domain.

Lemma 2.6 Let D be a bounded positive (m, p)-circle domain with dim(Iso(D)0) = 4.

Then D is holomorphically equivalent to the unit ball in C2.

Proof Since Iso(D)0 is

(x′, y′) = (x, y)U + terms of (u, v) with higher degrees,
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where U is the traversal of all unitary matrices of degree 2, Iso(D)0 is isomorphic to U2. By

the knowledge of Lie group, Iso(D)0 has a 2-dimensional Lie subgroup H which consists of the

elements

x′ = xeimθ, y′ = yeipθ, 0 ≤ θ < 2π.

By Lemma 2.5, the Lie algebra ofH has a group of bases ix ∂
∂x

, iy ∂
∂y

(in the sense of holomorphic

isomorphism). Cartan [3] proved that for any bounded circle domain, its isotropic subgroup is

constructed by the linear transformation, so Iso(D)0 is

(x′, y′) = (x, y)U, U ∈ U2.

Hence D is holomorphically equivalent to the unit ball in C2.

It is known that dim(Iso(∆2)0) = dim(Iso(Dλ)
0) = 2, dim(Iso(B2)0) = 4. By the Thullen’s

classification of Reinhardt domains in C2 and Lemmas 2.5–2.6, we immediately obtain the

following result.

Theorem 2.2 Let D be a bounded positive (m, p)-circle domain. If dim(Iso(D)0) = 2,

then D is holomorphically equivalent to a Reinhardt domain which is one of the two classes:

(1) Polydisc ∆2 = {(x, y) ∈ C2 : |x| < 1, |y| < 1};
(2) Thullen domain Dλ = {(x, y) ∈ C2 : |x|2 + |y|λ < 1}(λ > 0, λ 6= 2).

If dim(Iso(D)0) = 4, then D is holomorphically equivalent to the unit ball

B2 = {(x, y) ∈ C
2 : |x|2 + |y|2 < 1}.

In the next section, we use a new approach to prove Theorem 2.2. By the results of Xu

[5], the classification of bounded positive (m, p)-circle domains in the sense of holomorphic

isomorphism is given.

3 The Classification of Reinhardt Domains

In the above section, we prove that for a bounded positive (m, p)-circle domain D, if

dim(Iso(D)0) = 2, then D is holomorphically equivalent to a Reinhardt domain; if dim(Iso(D)0)

= 4, thenD is holomorphically equivalent to the unit ball in C2. Thus in order to classify bound-

ed positive (m, p)-circle domains with the isotropic subgroup of dimensions 2 or 4, we just do

the classification of bounded Reinhardt domains in C2. Thullen [3] gave the classification of

bounded Reinhardt domains in C2 by the geometric property of domains. In this section, firstly

we give the Lie algebra of holomorphic automorphism group and holomorphic automorphism

group, then prove the Thullen’s classification result again by another method.

In a way similar to [5], we assert that bounded positive (m, p)-circle domains allow holo-

morphic automorphism families

x′ =
x+ α

1 + xα
, y′ = g(x, y, α, α), |α| < 1,

where α ∈ C. The function g(x, y, α, α) is continuous on (x, y) ∈ D, |α| < 1. Then the point

set

T =
{
(0, y) ∈ C

2
∣∣∣ |y| < τ = sup

(x,y)∈D

|g(x, y,−x,−x)|
}

is in D. In fact, the point set

∆0 = {y ∈ C | (0, y) ∈ D}
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is a bounded open subset in the y-plane. Since eiθ∆0 ⊂ ∆0, ∀θ ∈ [0, 2π), the point set ∆0 is

constructed by some concentric real circle disks. We consider the sectional set of ∆0 by the

positive axis, the section set is a sequence of open intervals

[a0, a1), (a2, a3), · · · , (a2ℓ, a2ℓ+1), · · · ,

where

0 = a0 < a1 < a2 < · · · < a2ℓ < a2ℓ+1 < · · · ≤ M (a fixed postive constant).

If (x1, y1) ∈ D, then φ(x1, y1) = (0, g(x1, y1,−x1,−x1)) ∈ D, where

φ : x′ =
x− x1

1− xx1
, y′ = g(x, y,−x1,−x1).

It yields g(x1, y1,−x1,−x1) ∈ ∆0. If |g(x1, y1,−x1,−x1)| 6= 0, then there is an index k, such

that

a2k < |g(x1, y1,−x1,−x1)| < a2k+1.

Let

Dℓ = {(x, y) ∈ D | a2ℓ < |g(x, y,−x,−x)| < a2ℓ+1},
ℓ = 0, 1, 2, · · · . Then

D = D0 ∪D1 ∪D2 ∪ · · · ∪Dℓ ∪ · · · .
When j < k, we have Dj ∩Dk = ∅. Since D is a connected open subset in C2,

D = D0 = {(x, y) ∈ D | |g(x, y,−x,−x)| < a1}.

Thus

∆0 = {y ∈ C | (0, y) ∈ D} = {y ∈ C | |y| < M}.
In other words, {(0, y) ∈ C2 | |y| < M} ⊂ D, and sup

(0,y)∈D

|y| = M. ∀(x1, y1) ∈ D, we have

|g(x1, y1,−x1,−x1)| < M . So τ = sup
(x,y)∈D

|g(x, y,−x,−x)| ≤ M , the assertion holds.

In order to express bounded positive (m, p)-circle domains by the function g, we introduce

a point set

D = {(x, y) ∈ C
2 | for all α ∈ C (|α| < 1), the function g(x, y, α, α) is analysis on (x, y)}.

Clearly, D consists of bounded positive (m, p)-circle domains. Whereas, we have the following

lemma.

Lemma 3.1 Suppose that D is a bounded positive (m, p)-circle domain, for any (x1, y1) ∈
D, satisfying

g(0, g(x1, y1,−x1,−x1), x1, x1) ≡ y1.

Then D is the point set

D̂ = D ∩ {(x, y) ∈ C
2 | |g(x, y,−x,−x)| < τ, |x| < 1}.

Proof Clearly, D̂ ⊃ D. Now ∀(x0, y0) ∈ D̂, (0, g(x0, y0,−x0,−x0)) ∈ D. Now |x0| < 1.

Hence there exists a holomorphic automorphism map x′ = x+x0

1+xx0

, y′ = g(x, y, x0, x0) on D. By

the supposition, it maps (0, g(x0, y0,−x0,−x0)) to (x0, y0). That is, (x0, y0) ∈ D, thus D̂ = D.
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Lemma 3.2 If D is a bounded Reinhardt domain in C
2 with dim(Iso(D)0) = 4, then

iso(D) has a group of bases A, B, C, D, where

A = ix
∂

∂x
, B = iy

∂

∂y
, C = x

∂

∂y
− ay

∂

∂x
, D = ix

∂

∂y
+ iay

∂

∂x
, a > 0.

Proof If D is a bounded Reinhardt domain in C2, then A = ix ∂
∂x

, B = iy ∂
∂y

∈ iso(D).

Since iso(D) is a real linear space, we have

A+B = ix
∂

∂x
+ iy

∂

∂y
∈ iso(D).

Suppose

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
∈ iso(D),

where ξ(x, y) =
∞∑

j,k=0

ajkx
jyk and η(x, y) =

∞∑
j,k=0

bjkx
jyk are two power series expansion at the

origin, respectively. By Lemma 2.3, we have a00 = b00 = 0. By a direct calculation,

[A+B,X ]

=
[
ix

∂

∂x
+ iy

∂

∂y
,

∞∑

j,k=0

ajkx
jyk

∂

∂x
+

∞∑

j,k=0

bjkx
jyk

∂

∂y

]

= i
∞∑

j,k=0

(j + k − 1)ajkx
jyk

∂

∂x
+ i

∞∑

j,k=0

(j + k − 1)bjkx
jyk

∂

∂y

= i
∑

j+k≥2,j,k≥0

(j + k − 1)ajkx
jyk

∂

∂x
+ i

∑

j+k≥2,j,k≥0

(j + k − 1)bjkx
jyk

∂

∂y
∈ iso(D).

By Lemma 2.2, we obtain that [A+B,X ] = 0, so

X = (a10x+ a01y)
∂

∂x
+ (b10x+ b01y)

∂

∂y
.

Hence

[B,X ] = ia01y
∂

∂x
− ib10x

∂

∂y
∈ iso(D),

[A, [B,X ]] = a01y
∂

∂x
+ b10x

∂

∂y
∈ iso(D),

X − [A, [B,X ]] = a10x
∂

∂x
+ b01y

∂

∂y
∈ iso(D),

thus Re(a10) = Re(b01) = 0. We denote

C = [A, [B,X ]] = a01y
∂

∂x
+ b10x

∂

∂y
,

D = [A,C] = −ia01y
∂

∂x
+ ib10x

∂

∂y
.

If a01 = 0, then C = b10x
∂
∂y

∈ iso(D), D = ib10x
∂
∂y

∈ iso(D). By Lemma 2.3, we get b10 = 0.

For the same reason, if b10 = 0, then a01 = 0. Therefore if a01 6= 0, then b10 6= 0; if b10 6= 0, then
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a01 6= 0. Since ∀ζ ∈ C, ζb10x
∂
∂y

+ ζa01y
∂
∂x

∈ iso(D), without loss of generality, when b10 6= 0,

we suppose b10 = 1, a01 6= 0. By [C,D] = −2a01
(
ix ∂

∂x
− iy ∂

∂y

)
∈ iso(D), we have a01 ∈ R.

The one-parameter subgroup (x′(t), y′(t)) = exp(tC) (t ∈ R) is a unique holomorphic solu-

tion of the complex ordinary differential equation systems

dx′

dt
= a01y

′,
dy′

dt
= x′, t ∈ R

with the initial values x′(0) = x, y′(0) = y. If a01 > 0, then the solution is

(
x′

y′

)
=




ch(
√
a01t)

√
a01sh(

√
a01t)

1√
a01

sh(
√
a01t) ch(

√
a01t)




(
x
y

)
,

which transforms (x0, 0) to (ch(
√
a01t)x0,

1√
a01

sh(
√
a01t)x0). But D is a bounded domain, it is

a contraction. If a01 < 0, then the solution is

(
x′

y′

)
=




cos(
√−a01t) −√−a01 sin(

√−a01t)

1√−a01
sin(

√−a01t) cos(
√−a01t)




(
x
y

)
.

Therefore a01 < 0, denoting a = −a01 > 0, we get C = x ∂
∂y

− ay ∂
∂x

, D = ix ∂
∂y

+ iay ∂
∂x

, a > 0.

Lemma 3.3 Suppose that D is a bounded Reinhardt domain in C2, aut(D) is a direct sum

of two subspaces: one is iso(D), the other is linear combination of some vector fields as follows

X1 = (1− ρ1x
2)

∂

∂x
− ρ2xy

∂

∂y
, Y1 = i(1 + ρ1x

2)
∂

∂x
+ iρ2xy

∂

∂y
;

X2 = −λ2xy
∂

∂x
+ (1− λ1y

2)
∂

∂y
, Y2 = iλ2xy

∂

∂x
+ i(1 + λ1y

2)
∂

∂y
,

where ρ1, λ1 ≥ 0, ρ2, λ2 ≥ 0.

Proof Since D satisfies the Thullen condition, there exists (a00, b00) 6= 0, such that

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
∈ aut(D), X /∈ iso(D),

where ξ(x, y) =
∞∑

j,k=0

ajkx
jyk and η(x, y) =

∞∑
j,k=0

bjkx
jyk are two power series expansion at the

origin, respectively. By a direct calculation, we have

[A+B,X ] = i

∞∑

j,k=0

(j + k − 1)ajkx
jyk

∂

∂x
+ i

∞∑

j,k=0

(j + k − 1)bjkx
jyk

∂

∂y
,

[A+B, [A+B,X ]] = −
∞∑

j,k=0

(j + k − 1)2ajkx
jyk

∂

∂x
−

∞∑

j,k=0

(j + k − 1)2bjkx
jyk

∂

∂y
,

[A+B, [A+B, [A+B,X ]]]

= −i

∞∑

j,k=0

(j + k − 1)3ajkx
jyk

∂

∂x
− i

∞∑

j,k=0

(j + k − 1)3bjkx
jyk

∂

∂y
,

[A+B, [A+B, [A+B, [A+B,X ]]]]

=

∞∑

j,k=0

(j + k − 1)4ajkx
jyk

∂

∂x
+

∞∑

j,k=0

(j + k − 1)4bjkx
jyk

∂

∂y
.
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By

[A+B, [A+B, [A+B, [A+B,X ]]]] + [A+B, [A+B,X ]]

=

∞∑

j,k=0

(j + k − 1)2((j + k − 1)2 − 1)ajkx
jyk

∂

∂x

+

∞∑

j,k=0

(j + k − 1)2((j + k − 1)2 − 1)bjkx
jyk

∂

∂y

and Lemma 2.2, we know

[A+B, [A+B, [A+B, [A+B,X ]]]] + [A+B, [A+B,X ]] = 0,

therefore

X =
∑

j+k≤2,j,k≥0

ajkx
jyk

∂

∂x
+

∑

j+k≤2,j,k≥0

bjkx
jyk

∂

∂y
,

X + [A+B, [A+B,X ]] = (a10x+ a01y)
∂

∂x
+ (b10x+ b01y)

∂

∂y
∈ iso(D).

Without loss of generality, we suppose

X = (a00 + a20x
2 + a11xy + a02y

2)
∂

∂x
+ (b00 + b02y

2 + b11xy + b20x
2)

∂

∂y
,

then

[A,X ] = i(−a00 + a20x
2 − a02y

2)
∂

∂x
+ i(b11xy + 2b20x

2)
∂

∂y
,

[B, [A,X ]] = −2a02y
2 ∂

∂x
+ 2b20x

2 ∂

∂y
∈ iso(D).

By Lemma 2.2, we get a02 = b20 = 0. So we have

X = (a00 + a20x
2 + a11xy)

∂

∂x
+ (b00 + b02y

2 + b11xy)
∂

∂y
.

Since

[A,X ] = i(−a00 + a20x
2)

∂

∂x
+ ib11xy

∂

∂y
∈ aut(D),

[A, [A,X ]] = −(a00 + a20x
2)

∂

∂x
− b11xy

∂

∂y
∈ aut(D),

we know that aut(D) has elements

X1 = −[A, [A,X ]] = (a00 + a20x
2)

∂

∂x
+ b11xy

∂

∂y
,

Y1 = −[A,X1] = i(a00 − a20x
2)

∂

∂x
− ib11xy

∂

∂y

and

X2 = X −X1 = a11xy
∂

∂x
+ (b00 + b02y

2)
∂

∂y
,

Y2 = −[A,X1] = −ia11xy
∂

∂x
+ i(b00 − b02y

2)
∂

∂y
.
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Note that if a00 = 0, then X1 = Y1 = 0; if b00 = 0, then X2 = Y2 = 0. When a00 6= 0, denote

a−1
00 = a1+ ia2, then a1X1+ a2Y1 = (1+ (a1− ia2)a20x

2) ∂
∂x

+(a1− ia2)b11xy
∂
∂y

∈ aut(D), thus

we can suppose a00 = 1. For the same reason, when b00 6= 0, we also can suppose b00 = 1.

If a00 = 1, then we have

[X1, Y1] = −4ia20x
∂

∂x
− 2ib11y

∂

∂y
∈ iso(D),

thus there exist ρ1, ρ2 ∈ R, such that a20 = −ρ1, b11 = −ρ2. For the same reason when b00 = 1,

there exist λ1, λ2 ∈ R, such that b02 = −λ1, a11 = −λ2.

The one-parameter subgroup (x′(t), y′(t)) = exp(tX1) (t ∈ R) is a unique holomorphic

solution of the complex ordinary differential equation systems

dx′

dt
= 1− ρ1(x

′)2,
dy′

dt
= −ρ2x

′y′, t ∈ R

with the initial values x′(0) = x, y′(0) = y. If ρ1 = 0, then x′(t) = x+ t, t ∈ R, which contracts

that D is a bounded domain. If ρ1 < 0, then

x′(t) =
x cos(

√−ρ1t) +
1√
−ρ1

sin(
√−ρ1t)

cos(
√−ρ1t) +

√−ρ1x sin(
√−ρ1t)

=
x+ 1√

−ρ1

tan(
√−ρ1t)

1 +
√−ρ1x tan(

√−ρ1t)
, t ∈ R.

It is a contraction that D is a bounded domain. If ρ1 > 0, then

x′(t) =
xch(

√
ρ1t) +

1√
ρ1

sh(
√
ρ1t)

ch(
√
ρ1t) +

√
ρ1xsh(

√
ρ1t)

, y′(t) = y(ch(
√
ρ1t) +

√
ρ1xsh(

√
ρ1t))

−ρ2ρ
−1

1 , t ∈ R.

Since D is a bounded domain, it yields ρ2 ≥ 0. Therefore, we have proved ρ1 > 0, ρ2 ≥ 0. For

the same reason, we can prove λ1 > 0, λ2 ≥ 0.

Now one can prove the following theorems.

Theorem 3.1 Let D be a bounded Reinhardt domain in C2. If dim(Iso(D)0) = 2, then

aut(D) has a group of bases A = ix ∂
∂x

, B = iy ∂
∂y

and

Case (I)

X1 = (1− ρ1x
2)

∂

∂x
, Y1 = i(1 + ρ1x

2)
∂

∂x
, ρ1 > 0, ρ2 = 0,

X2 = (1− λ1y
2)

∂

∂y
, Y2 = i(1 + λ1y

2)
∂

∂y
, λ1 > 0, λ2 = 0;

Case (II)

X1 = (1− ρ1x
2)

∂

∂x
− ρ2xy

∂

∂y
, Y1 = i(1 + ρ1x

2)
∂

∂x
+ iρ2xy

∂

∂y
, ρ1, ρ2 > 0, ρ1 6= ρ2;

Case (III)

X2 = −λ2xy
∂

∂x
+ (1 − λ1y

2)
∂

∂y
, Y2 = iλ2xy

∂

∂x
+ i(1 + λ1y

2)
∂

∂y
, λ1, λ2 > 0, λ1 6= λ2.

If dim(Iso(D)0) = 4, then aut(D) has a group of bases

A = ix
∂

∂x
, B = iy

∂

∂y
, C = x

∂

∂y
− ay

∂

∂x
, D = ix

∂

∂y
+ iay

∂

∂x
,

X1 = (1− cx2)
∂

∂x
− cxy

∂

∂y
, Y1 = i(1 + cx2)

∂

∂x
+ icxy

∂

∂y
,

X2 = −acxy
∂

∂x
+ (1− acy2)

∂

∂y
, Y2 = iacxy

∂

∂x
+ i(1 + acy2)

∂

∂y
,
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where a > 0, c > 0.

Proof If X1 = (1 − ρ1x
2) ∂

∂x
− ρ2xy

∂
∂y

, X ′
1 = (1 − ρ′1x

2) ∂
∂x

− ρ′2xy
∂
∂y

∈ aut(D), where

ρ1, ρ
′
1 > 0, ρ2, ρ

′
2 ≥ 0, then

X1 −X ′
1 = (ρ′1 − ρ1)x

2 ∂

∂x
+ (ρ′2 − ρ2)xy

∂

∂y
∈ iso(D).

By Lemma 2.2, we have ρ′1 = ρ1, ρ
′
2 = ρ2.

(1) If dim(Iso(D)0) = 2, then Iso(D)0 is a real Lie group

x′ = eiθx, y′ = eiϕy, θ, ϕ ∈ [0, 2π),

and iso(D) has a group of bases A = ix ∂
∂x

, B = iy ∂
∂y

.

If a00b00 6= 0, then

[X1, X2] = −(λ2y + λ2(ρ1 − ρ2)x
2y)

∂

∂x
+ (ρ2x+ ρ2(λ1 − λ2)xy

2)
∂

∂y
∈ iso(D).

It yields ρ2 = λ2 = 0. Case (I) holds.

If (a00, b00) = (1, 0), then X1 6= 0, X2 = 0. The one-parameter subgroup (x′(t), y′(t)) =

exp(t((cos ς)X1 + (sin ς)Y1)) (t ∈ R) is a unique holomorphic solution of the complex ordinary

differential equation systems

dx′

dt
= eiς − e−iςρ1(x

′)2,
dy′

dt
= −ρ2x

′y′, t ∈ R

with the initial values x′(0) = x, x′(0) = y, where ς ∈ [0, 2π). We get the solution

x′ =
ch(

√
ρ1t)x+ (

√
ρ1)

−1eiςsh(
√
ρ1t)

ch(
√
ρ1t) + xe−iς√ρ1sh(

√
ρ1t)

, y′ = y(ch(
√
ρ1t) + xe−iς√ρ1sh(

√
ρ1t))

− ρ2
ρ1 , t ∈ R.

If ρ2 = 0, then

√
ρ1x

′ =

√
ρ1x+ eiςtgh(

√
ρ1t)

1 +
√
ρ1xe−iςtgh(

√
ρ1t)

, y′ = y, t ∈ R.

By Lemma 3.1, it yields D = {(x, y) ∈ C2 | |√ρ1x| < 1, |y| < M}. But we can see Aut(D)0

allows

x′ = x, y′ = M
y +Mβ

M + yβ
, |β| < 1,

so ρ2 = 0 does not hold.

Next we prove ρ1 6= ρ2. If ρ1 = ρ2, then

√
ρ1x

′ =

√
ρ1x+ eiςtgh(

√
ρ1t)

1 +
√
ρ1xe−iςtgh(

√
ρ1t)

, y′ = y

√
1− |tgh(√ρ1t)|2

1 +
√
ρ1xe−iςtgh(

√
ρ1t)

, t ∈ R.

By Lemma 3.1, it yields D = {(x, y) ∈ C2 | |x|2 < ρ−1
1 (1−|y|2)}. But we can see Iso(D)0 allows

(x′, y′) = (x, y)

(√
ρ1 0
0 1

)
U

(√
ρ1 0
0 1

)−1

, U ∈ U2,

so ρ1 = ρ2 does not hold. Therefore, Case (II) holds.
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If (a00, b00) = (0, 1), then X1 = 0, X2 6= 0. As the same reason as the case (a00, b00) = (1, 0),

we get λ2 6= 0, and λ1 6= λ2. Therefore, Case (III) holds.

(2) If dim(Iso(D)0) = 4, then iso(D) has a group of bases

A = ix
∂

∂x
, B = iy

∂

∂y
, C = x

∂

∂y
− ay

∂

∂x
, D = ix

∂

∂y
+ iay

∂

∂x
, a > 0.

If a00 6= 0, then X1 6= 0. By a direct computation

[C,X1] = (2ρ1 − ρ2)axy
∂

∂x
− (1 − (ρ1 − ρ2)x

2 − ρ2ay
2)

∂

∂y
,

[A, [C,X1]] = i2(ρ1 − ρ2)x
2 ∂

∂y
∈ iso(D),

we get ρ1 = ρ2. Then

− [C,X1] = −aρ1xy
∂

∂x
+ (1 − aρ1y

2)
∂

∂y
∈ aut(D),

[X1,−[C,X1]] = ρ1

(
x
∂

∂y
− ay

∂

∂x

)
= ρ1C ∈ iso(D).

Thus b00 6= 0.

If b00 6= 0, then X2 6= 0. By a direct calculation

[C,X2] = (a− λ2x
2 − a(λ1 − λ2)y

2)
∂

∂x
− (2λ1 − λ2)xy

∂

∂y
∈ aut(D),

[B, [C,X2]] = −i2a(λ1 − λ2)y
2 ∂

∂x
∈ iso(D),

we get λ1 = λ2. Then

a−1[C,X2] = (1− a−1λ1x
2)

∂

∂x
− a−1λ1xy

∂

∂y
∈ aut(D),

[a−1[C,X2], X2] = a−1λ1

(
x
∂

∂y
− ay

∂

∂x

)
= a−1λ1C ∈ iso(D).

Thus a00 6= 0.

When a00b00 6= 0, then

[X1, X2] = −λ2y
∂

∂x
+ ρ2x

∂

∂y
∈ iso(D),

there exists c ∈ R, such that λ2 = aρ2 = ac. So we have ρ1 = ρ2 = c > 0, λ1 = λ2 = ac.

Therefore, we have proved that aut(D) has a group of bases

A = ix
∂

∂x
, B = iy

∂

∂y
, C = x

∂

∂y
− ay

∂

∂x
, D = ix

∂

∂y
+ iay

∂

∂x
,

X1 = (1− cx2)
∂

∂x
− cxy

∂

∂y
, Y1 = i(1 + cx2)

∂

∂x
+ icxy

∂

∂y
,

X2 = −acxy
∂

∂x
+ (1− acy2)

∂

∂y
, Y2 = iacxy

∂

∂x
+ i(1 + acy2)

∂

∂y
,

where a > 0, c > 0.
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Theorem 3.2 Suppose that D is a bounded Reinhardt domain in C
2. Then there exists a

linear isomorphism σ, such that σ(D) is one of the three classes:

(1) Polydisc ∆2 = {(x, y) ∈ C2 : |x| < 1, |y| < 1};
(2) Thullen domain Dλ = {(x, y) ∈ C2 : |x|2 + |y|λ < 1} (λ > 0, λ 6= 2);

(3) Unit ball B2 = {(x, y) ∈ C2 : |x|2 + |y|2 < 1}.

Proof If dim(Iso(D)0) = 2, then iso(D) has a group of bases: A = ix ∂
∂x

, B = iy ∂
∂y

.

For Case (I), given a linear isomorphism σ : (u, v) = (
√
ρ1x,

√
λ1y), then aut(σ(D)) has a

group of bases

A∗ = σ∗(A) = iu
∂

∂u
, B∗ = σ∗(B) = iv

∂

∂v
,

X∗
1 =

1√
ρ1

σ∗(X1) = (1 − u2)
∂

∂u
, Y ∗

1 =
1√
ρ1

σ∗(Y1) = i(1 + u2)
∂

∂u
,

X∗
2 =

1√
λ1

σ∗(X2) = (1− v2)
∂

∂v
, Y ∗

2 =
1√
λ1

σ∗(Y2) = i(1 + v2)
∂

∂v
.

For fixed t1, t2 ∈ R, the one-parameter subgroup

(u(t), v(t)) = exp(t(t1(cos ς1X
∗
1 + sin ς1Y

∗
1 ) + t2(cos ς2X

∗
2 + sin ς2Y

∗
2 ))), t ∈ R

is a unique holomorphic solution of the complex ordinary differential equation systems

du′

dt
= t1(e

iς1 − e−iς1(u′)2),
dv′

dt2
= t2(e

iς2 − e−iς2(v′)2), t ∈ R

with the initial values u′(0) = u, v′(0) = v, where ς1, ς2 ∈ [0, 2π). We get the one-parameter

analytic transformation:

u′ =
u+ eiς1tgh(tt1)

1 + ue−iς1tgh(tt1)
, v′ =

v + eiς2tgh(tt2)

1 + ve−iς2tgh(tt2)
.

ThusD is linearly equivalent toD∗
1 = σ(D), Aut(D∗

1)
0 is a real Lie group with dim(Aut(D∗

1)
0) =

6:

u′ = eiθ
u+ α

1 + uα
, v′ = eiϕ

v + β

1 + vβ
,

where θ, ϕ ∈ [0, 2π), |α| = |eiς1tght1| < 1, |β| = |eiς2tgh t2| < 1. By Lemma 3.1, one can obtain

D∗
1 = ∆2 = {(u, v) ∈ C

2 | |u| < 1, |v| < 1}.

For Case (II), given a linear isomorphism σ : (u, v) = (
√
ρ1x, y), then aut(σ(D)) has a group

of bases

A∗ = σ∗(A) = iu
∂

∂u
, B∗ = σ∗(B) = iv

∂

∂v
,

X∗
1 =

1√
ρ1

σ∗(X1) = (1− u2)
∂

∂u
− ρ2

ρ1
uv

∂

∂v
,

Y ∗
1 =

1√
ρ1

σ∗(Y1) = i(1 + u2)
∂

∂u
+ i

ρ2
ρ1

uv
∂

∂v
.

The one-parameter subgroup (u′(t), v′(t)) = exp(t(cos ςX∗
1 + sin ςY ∗

1 )) (t ∈ R) is a unique

holomorphic solution of the complex ordinary differential equation systems

du′

dt
= eiς − e−iς(u′)2,

dv′

dt
= −e−iς ρ2

ρ1
u′v′, t ∈ R
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with the initial values u′(0) = u, v′(0) = v, where ς ∈ [0, 2π). We get the solution

u′ =
u+ α

1 + uα
, v′ = v

(√1− |α|2
1 + uα

) ρ2
ρ1
,

where α = eiςtgh t. Therefore D is linearly isomorphic to D∗
2 = σ(D), and Aut(D∗

2)
0 is a real

Lie group with dim(Aut(D∗
2)

0) = 4:

u′ = eiθ
u+ α

1 + uα
, v′ = eiϕv

(√1− |α|2
1 + uα

) ρ2
ρ1
,

where θ, ϕ ∈ [0, 2π), α ∈ C, |α| < 1. By Lemma 3.1, we can obtain

D∗
2 = {(u, v) ∈ C

2 | |u| < 1, |v|
2ρ1
ρ2 < τ(1 − |u|2)}, τ > 0.

For Case (III), given a linear isomorphism σ : (u, v) = (x,
√
λ1y), then aut(σ(D)) has a

group of bases

A∗ = σ∗(A) = iu
∂

∂u
, B∗ = σ∗(B) = iv

∂

∂v
,

X∗
2 =

1√
λ1

σ∗(X2) = −λ2

λ1
uv

∂

∂u
+ (1− u2)

∂

∂v
,

Y ∗
2 =

1√
λ1

σ∗(Y2) = i
λ2

λ1
uv

∂

∂u
+ i(1 + u2)

∂

∂v
.

The one-parameter subgroup (u′(t), v′(t)) = exp(t(cos ςX∗
2 + sin ςY ∗

2 )) (t ∈ R) is a unique

holomorphic solution of the complex ordinary differential equation systems

du′

dt
= −e−iς λ2

λ1
u′v′,

dv′

dt
= eiς − e−iς(v′)2, t ∈ R

with the initial values u′(0) = u, v′(0) = v, where ς ∈ [0, 2π). We get the solution

u′ = u
(√1− |α|2

1 + vα

)λ2

λ1

, v′ =
v + α

1 + vα
,

where α = eiςtgh t. Therefore D is linearly isomorphic to D∗
3 = σ(D), and Aut(D∗

3)
0 is a real

Lie group with dim(Aut(D∗
3)

0) = 4:

u′ = eiθu
(√1− |α|2

1 + uα

)λ2

λ1

, v′ = eiϕ
u+ α

1 + uα
, θ, ϕ ∈ [0, 2π), |α| < 1.

By Lemma 3.1, we can get

D∗
3 = {(u, v) ∈ C

2 | |u|
2λ1

λ2 < τ(1 − |v|2), |v| < 1}, τ > 0.

We can see for the domain

D1 = {(x, y) ∈ C
2 | |x|2 + |y|λ < 1}, λ > 0, λ 6= 2,

given a linear isomorphism σ : (x, y) −→ (y, x), then D1 is linearly isomorphic to

D2 = {(x, y) ∈ C
2 | |x|λ + |y|2 < 1}, λ > 0, λ 6= 2.
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Therefore we regard Case (II) and Case (III) as the same class, denote the canonical domain

Dλ = {(x, y) ∈ C
2 | |x|2 + |y|λ < 1}, λ > 0, λ 6= 2.

If dim(iso(D)) = 4, given a linear isomorphism map σ : (u, v) = (
√
cx,

√
acy), then

aut(σ(D)) has a group of bases

A∗ = σ∗(A) = iu
∂

∂u
, B∗ = σ∗(B) = iv

∂

∂v
,

C∗ =
1√
a
σ∗(C) = u

∂

∂v
− v

∂

∂u
,

D∗ =
1√
a
σ∗(D) = iu

∂

∂v
+ iv

∂

∂u
,

X∗
1 =

1√
c
σ∗(X1) = (1− u2)

∂

∂u
− uv

∂

∂v
,

Y ∗
1 =

1√
c
σ∗(Y1) = i(1 + u2)

∂

∂u
+ iuv

∂

∂v
,

X∗
2 =

1√
ac

σ∗(X2) = −uv
∂

∂u
+ (1− v2)

∂

∂v
,

Y ∗
2 =

1√
ac

σ∗(Y2) = iuv
∂

∂u
+ i(1 + v2)

∂

∂v
.

Denote z = (u, v). In fact

iso(σ(D)) =
{
zK

∂T

∂z

∣∣∣ K ∈ gl(2,C), K +K
T
= 0

}
.

The one-parameter subgroup w(t) = exp
(
t
(
zK ∂T

∂z

))
(t ∈ R) is a unique holomorphic solution

of the complex ordinary differential equation systems

dw(t)

dt
= w(t)K, t ∈ R

with the initial values w(0) = z. We get the one-parameter analytic transformation: w(t) =

zetK . Therefore Iso(σ(D))0 is a real Lie group with dim(Iso(σ(D))0) = 4:

(u′, v′) = (u, v)U, (3.1)

where U = eK ∈ U2, K =
(
it1 ζ

−ζ it2

)
, t1, t2 ∈ R, ζ ∈ C.

The one-parameter subgroup (u′(t), v′(t)) = exp(t(cos θ1X
∗
1 +sin θ1Y

∗
1 )) (t ∈ R) is a unique

holomorphic solution of the complex ordinary differential equation systems

du′

dt
= eiθ1 − e−iθ1(u′)2,

dv′

dt
= −e−iθ1u′v′, t ∈ R

with the initial values (u′(0), v′(0)) = (u, v), where 0 ≤ θ1 < 2π. Denote α1 = eiθ1tgh t, t ∈ R.

The solution is

(u′, v′) = (1 + uα1)
−1(u + α,

√
1− |α1|2v)

= (ch t · z + eiθ1sh t · e1)[e−iθ1sh t · eT1 z + E + (ch t− 1)E11]
−1,
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where e1 = (1, 0), E11 = diag{1, 0}.
The one-parameter subgroup (u′(t), v′(t)) = exp(t(cos θ2X

∗
2 +sin θ2Y

∗
2 )) (t ∈ R) is a unique

holomorphic solution of the complex ordinary differential equation systems

du′

dt
= −e−iθ2u′v′,

dv′

dt
= eiθ2 − e−iθ2(v′)2, t ∈ R

with the initial values (u′(0), v′(0)) = (u, v), where 0 ≤ θ2 < 2π. Denote α2 = eiθ2tgh t, t ∈ R.

The solution is

(u′, v′) = (1 + vα2)
−1(

√
1− |α2|2u, v + α2)

= (ch t · z + eiθ2sh t · e2)[e−iθ2sh t · eT2 z + E + (ch t− 1)E22]
−1,

where e2 = (0, 1), E22 = diag{0, 1}.
Set Ã = ch t, B̃ = eiθksh t · ek, C̃ = e−iθksh t · eTk , D̃ = E + (ch t− 1)Ekk, k = 1, 2. By [10],(

Ã B̃

C̃ D̃

)
is composed of the one-parameter subgroup of Lorentz group of type (1, 2). It determines

the Lie algebra
(

0 eiθkek
e−iθkeTk 0

)
. Take over k = 1, 2, one can get four base elements

(
0 ek
eTk 0

)
,

(
0 iek

−ieTk 0

)
, k = 1, 2. By [10], the unit connected component of the holomorphic automorphism

group of the domain σ(D), construed by the four linearly independent one-parameter subgroup

and the isotropic subgroup with the origin which is defined by (3.1), is

w = (Ãz + B̃)(C̃z + D̃)−1,

where
(
Ã B̃

C̃ D̃

)
is the traversal of Lorentz group of type (1, 2). By [10], one can get

σ(D) = {z ∈ C
2 | E − zTz > 0} = {z ∈ C

2 | ‖z‖2 = zzT < 1}.

By Lemmas 2.5–2.6 and Theorem 3.2, we immediately get Theorem 2.2 again.
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