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A Schwarz Lemma at the Boundary of Hilbert Balls∗
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Abstract In this paper, the authors prove a general Schwarz lemma at the boundary
for the holomorphic mapping f between unit balls B and B

′ in separable complex Hilbert
spaces H and H

′, respectively. It is found that if the mapping f ∈ C1+α at z0 ∈ ∂B

with f(z0) = w0 ∈ ∂B′, then the Fréchet derivative operator Df(z0) maps the tangent

space Tz0
(∂Bn) to Tw0

(∂B′), the holomorphic tangent space T
(1,0)
z0

(∂Bn) to T
(1,0)
w0

(∂B′),
respectively.

Keywords Boundary Schwarz lemma, Separable Hilbert space, Holomorphic mapping,
Unit ball

2000 MR Subject Classification 32H02, 46E20, 30C80

1 Introduction

We begin with some notations. Let H be a separable complex Hilbert space. For any

z, w ∈ H, the inner product and the corresponding norm are given by 〈z, w〉, ‖z‖ = 〈z, z〉
1

2 .

Given c ∈ C, we have

〈cz, w〉 = c〈z, w〉, 〈z, w〉 = 〈w, z〉, |〈z, w〉| ≤ ‖z‖ · ‖w‖.

Two vectors a, b ∈ H are called orthogonal and we write a ⊥ b provided by 〈a, b〉 = 0. For a

subset E ⊂ H, the set E⊥ is defined by

E⊥ = {a ∈ H | 〈a, b〉 = 0 for all b ∈ E}.

We choose a normal orthonormal basis e1, e2, · · · for H such that 〈ei, ej〉 = δij which equals 0

for i 6= j and equals 1 for i = j. Then for each z ∈ H, we write

z =

∞
∑

j=1

zjej and z′ =

∞
∑

j=2

zjej,

or denote z = (z1, z2, · · · ) and z′ = (z2, z3, · · · ). For the other separable complex Hilbert space

H′, its normal orthonormal basis is denoted by e′1, e
′
2, · · · .
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Let V0 be an open subset of H, and f be a continuous mapping of V0 to H′. We say that f

is a holomorphic mapping if for any z ∈ V0, there is a bounded linear operator Df(z) from H

into H′ such that

lim
β∈H,‖β‖→0

‖f(z + β)− f(z)−Df(z)β‖

‖β‖
= 0,

where ‖ · ‖ is the norm of appropriate space. Df(z) denotes the Fréchet derivative of f at z,

and Df(z)β is called the Fréchet derivative of f at z in the direction β. The chain rule of the

Fréchet derivative is given as follows.

Lemma 1.1 (see [1]) Let H, H′, H′′ be Hilbert spaces. Suppose f : V0 ⊂ H → V ′
0 ⊂ H′ and

g : V ′
0 ⊂ H′ → V ′′

0 ⊂ H′′ are differentiable maps. Then the composite g ◦ f is also differentiable

and

D(g ◦ f)(u) = D(g)(f(u)) ◦Df(u), u ∈ V0.

Denote by B(H,H′) the set of all bounded linear operators from H into H′. Then the

adjoint of L ∈ B(H,H′) is the unique operator L∗ : H′ → H that satisfies

〈a, Lb〉 = 〈L∗a, b〉, b ∈ H, a ∈ H′.

From the definition of Fréchet derivative, Df(z) is a bounded linear operator, and its adjoint

is denoted by D∗f(z).

Let B = {z ∈ H | ‖z‖ < 1} be the unit ball of H, ∂B = {z ∈ H | ‖z‖ = 1} be its boundary,

and H(B,B′) be the set of all holomorphic mappings from B to B′. For an open subset V0 ⊂ H

and 0 < α < 1, Cα(V0) is the set of all functions f on V0 for which

sup
{‖f(z)− f(z′)‖

‖z − z′‖α

∣

∣

∣
z, z′ ∈ V0

}

is finite. Ck+α(V0) is the set of all functions f on V0 whose kth order partial derivatives exist

and belong to Cα(V0) for an integer k ≥ 0.

The Schwarz lemma is one of the most important results in complex analysis. A variant of

the Schwarz lemma is known as the Schwarz-Pick lemma, which tells that a holomorphic self-

mapping of the unit disk decreases the distance of points in the Poincaré metric. It has been

generalized to the derivatives of arbitrary order in [2–3]. When it comes to several complex

variables, Rudin [4] gave a first derivative estimate for the bounded holomorphic functions

on the polydisc, which is really a precursor to Schwarz-Pick lemma in high dimensions. On

the other hand, the unit ball is a distinguished bounded domain, in which many interesting

results are obtained (see [5]). For the Schwarz-Pick lemma of arbitrary order, [6–7] generalized

Schwarz-Pick lemma to the holomorphic mappings on the unit ball in C
n.

On the other hand, the Schwarz lemma at the boundary is one of the popular topics in

complex analysis (see [8]), which has been applied to geometric function theory of one complex

variable and several complex variables (see [9]). The following result is the classical boundary

version of the Schwarz lemma in one complex variable.

Theorem 1.1 (see [8]) Let D be the unit disk in C, and f be the self-holomorphic mapping

of D. If f is holomorphic at z = 1 with f(0) = 0 and f(1) = 1, then f ′(1) ≥ 1.

Some multidimensional generalizations of the Schwarz lemma at the boundary in several

complex variables were given by [9–12] recently. In [13], the high order Schwarz-Pick lemma
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for holomorphic mappings between Hilbert balls was studied. However, the boundary Schwarz

lemma for infinite dimensions Hilbert spaces is open and challenging, and in this paper, we

study it for separable complex Hilbert spaces.

For z0 ∈ ∂B, the tangent space Tz0(∂B) and holomorphic tangent space T 1,0
z0

(∂B) at z0 are

defined by

Tz0(∂B) = {β ∈ H | Re〈z0, β〉 = 0}, T (1,0)
z0

(∂B) = {β ∈ H | 〈z0, β〉 = 0}, (1.1)

respectively. In this paper, we study the mapping f ∈ H(B,B′). Our main results are listed as

follows.

Theorem 1.2 Let f ∈ H(B,B′). If f is C1+α at z0 ∈ ∂B and f(z0) = w0 ∈ ∂B′, then it

shows

(I) Df(z0)β ∈ Tw0
(∂B′) for any β ∈ Tz0(∂B), and Df(z0)β ∈ T

(1,0)
w0

(∂B′) for any β ∈

T
(1,0)
z0 (∂B).

(II) There exists λ ∈ R such that D∗f(z0)w0 = λz0 with λ ≥ |1−〈w0,a〉|
2

1−‖a‖2 > 0 where a = f(0)

and D∗f(z0) is the adjoint operator of Df(z0).

We notice that for H = H′ = C, the theorem tells f ′(z0) > 0, so the image f(∂B) at w0

is always smooth. However, it is not necessarily true for Cn with n ≥ 2. This theorem can

be regarded as a general Schwarz lemma at the boundary for holomorphic mappings between

unit balls in separable complex Hilbert spaces. It shows that the Fréchet derivative operator

preserves tangent space and holomorphic tangent space at the boundary of the unit balls. When

H = H′ = Cn, as a special case considered in this paper, Theorem 1.2 reduces (1) and (2) in

[9, Theorem 3.1]. For H = H′ = C, part (II) of the theorem gives Theorem 1.1 from [8].

2 Preliminaries

Before proving the main results, we give some preparation. Lemma 2.1 was given in [13] for

p ∈ B.

Lemma 2.1 For given p ∈ B∪∂B and q ∈ H with q 6= 0, let L(ξ) = p+ ξq for ξ ∈ C. Then

L(Dp,q) ⊂ B, L(∂Dp,q) ⊂ ∂B,

where Dp,q = {ξ ∈ C | |ξ − cp,q| < rp,q} with cp,q = − 〈p,q〉
‖q‖2 , rp,q =

√

1−‖p‖2

‖q‖2 +
∣

∣

∣

〈p,q〉
‖q‖2

∣

∣

∣

2

.

Proof Assume ‖L(Dp,q)‖
2 < 1, which means

‖p‖2 + 2Re〈p, ξq〉+ ‖ξq‖2 < 1

and
‖p‖2

‖q‖2
+ 2

Re〈p, ξq〉

‖q‖2
+ |ξ|2 <

1

‖q‖2
,

i.e.,
∣

∣

∣
ξ +

〈p, q〉

‖q‖2

∣

∣

∣

2

<
1− ‖p‖2

‖q‖2
+
∣

∣

∣

〈p, q〉

‖q‖2

∣

∣

∣

2

.

The proof is finished.
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Let φz(w) be the automorphism of B, and

φz(w) =
z − Pz(w) − sQz(w)

1− 〈w, z〉
, z, w ∈ B

with Pz being the orthogonal projection of H by

Pz(w) =
〈w, z〉

‖z‖2
z, if z 6= 0,

Qz = I − Pz with I being the identity mapping, and s =
√

1− ‖z‖2 (see [5]). It is found that

φz(0) = z, φz(z) = 0 and φz = φ−1
z . For simplicity, motivated by [14], we can rewrite φz(w) by

φz(w) = Γ
z − w

1− 〈w, z〉
, (2.1)

where Γ ∈ B(H,H) is expressed by Γ = sI + 〈·,z〉z
1+s

. Then it is easy to obtained that

Γ2 = s2I + 〈·, z〉z, Γ(z) = z.

From (2.1), for a fixed z ∈ B and any w ∈ B,

Dφz(w) =
1

1− 〈w, z〉
Γ
(

− I +
〈·, z〉(z − w)

1− 〈w, z〉

)

. (2.2)

Lemma 2.2 If f ∈ H(B,B′) and f(0) = 0, then ‖f(w)‖ ≤ ‖w‖, w ∈ B.

It is a well-known Schwarz type result (see [5]), and we give a simple proof here.

Proof The Kobayashi distances for the unit ball in H could be expressed by

KB(z, w) =
1

2
log

1 + ‖φz(w)‖

1− ‖φz(w)‖
, z, w ∈ B. (2.3)

It is the fact that the Kobayashi distance decreases under holomorphic mappings (see [15]). By

(2.3), we have KB′(0, f(w)) ≤ KB(0, w), i.e.,

1

2
log

1 + ‖f(w)‖

1− ‖f(w)‖
≤

1

2
log

1 + ‖w‖

1− ‖w‖
.

Since t → 1
2 log

1+t
1−t

is an increasing function for t ∈ [0, 1), so that ‖f(w)‖ ≤ ‖w‖.

Lemma 2.3 Given any b ∈ H and a ∈ H′, we have the operator A = 〈·, b〉a ∈ B(H,H′)

and

A∗ = 〈·, a〉b.

Proof From the definition of the inner product, it is easy to see A ∈ B(H,H′). For any

y ∈ H and x ∈ H′,

〈x,Ay〉 = 〈x, a〈y, b〉〉 = 〈y, b〉〈x, a〉 = 〈b, y〉〈x, a〉 = 〈〈x, a〉b, y〉 , 〈A∗x, y〉, (2.4)

which gives A∗ = 〈·, a〉b from the uniqueness of A∗.

If A = 〈·, b〉ac with c ∈ C, Lemma 2.3 also gives A∗ = 〈·, a〉bc.



A Schwarz Lemma at the Boundary of Hilbert Balls 699

3 Proof of Theorem 1.2

In the following, we will prove Theorem 1.2 in five steps.

Step 1 Assume z0 = e1 ∈ ∂B, and f is C1+α in a neighborhood V of z0. Moreover, we

assume f(0) = 0 and f(z0) = w0 = e′1.

Let p = z0, q = (−1 + ik)z0 for any given k ∈ R. Then p + tq = (1 − t + ikt)z0 for t ∈ R.

From Lemma 2.1, ‖p+ tq‖ < 1 ⇔ |1− t+ikt| < 1 ⇔ 0 < t < 2
1+k2 , which means that for a given

k ∈ R when t → 0+, p+ tq ∈ B∩V . For such t, taking the Taylor expansion of f((1− t+ikt)z0)

at t = 0, we have

f((1− t+ ikt)z0) = w0 +Df(z0)(−1 + ik)z0t+O(t1+α).

By Lemma 2.2,

‖f((1− t+ ikt)z0)‖
2 = ‖w0 +Df(z0)(−1 + ik)z0t+O(t1+α)‖2 ≤ ‖(1− t+ ikt)z0‖

2,

i.e.,

1 + 2Re〈w0,Df(z0)(−1 + ik)z0t〉+O(t1+α) ≤ 1− 2t+O(t2).

Substituting w0 = e′1, z0 = e1 and letting t → 0+, we have

Re〈e′1,Df(z0)(−1 + ik)e1〉 ≤ −1,

i.e.,

−Re〈e′1,Df(z0)e1〉+ kIm〈e′1,Df(z0)e1〉 ≤ −1,

which gives

kIm〈e′1,Df(z0)e1〉 ≤ Re〈e′1,Df(z0)e1〉 − 1. (3.1)

Since (3.1) is valid for any k ∈ R, we have

Im〈e′1,Df(z0)e1〉 = 0,

which implies

0 ≤ Re〈e′1,Df(z0)e1〉 − 1

and

〈e′1,Df(z0)e1〉 = Re〈e′1,Df(z0)e1〉 ≥ 1. (3.2)

Step 2 Let p = z0, q = −z0 + ikej for j ≥ 2 and k ∈ R. Then p+ tq = (1− t)z0 + iktej for

t ∈ R. By Lemma 2.1, ‖p+ tq‖ < 1 ⇔ |1− t|2 + |ikt|2 < 1 ⇔ 0 < t < 2
1+k2 . Therefore, given a

k ∈ R, when t → 0+, p+tq ∈ B∩V . Similarly, taking the Taylor expansion of f((1−t)z0+iktej)

at t = 0, we have

f((1− t)z0 + iktej) = w0 +Df(z0)(−z0 + ikej)t+O(t1+α).

By Lemma 2.2,

‖f((1− t)z0 + iktej)‖
2 = ‖w0 +Df(z0)(−z0 + ikej)t+O(t1+α)‖2

≤ ‖(1− t)z0 + iktej‖
2,



700 Z. H. Chen, Y. Liu and Y. F. Pan

i.e.,

1 + 2Re〈w0,Df(z0)(−z0 + ikej)t〉+O(t1+α) ≤ 1− 2t+O(t2).

Using w0 = e′1, z0 = e1 and letting t → 0+, it follows that

Re〈e′1,Df(z0)(−e1 + ikej)〉 ≤ −1, j ≥ 2,

i.e.,

−Re〈e′1,Df(z0)e1〉+ kIm〈e′1,Df(z0)ej〉 ≤ −1.

With a similar argument to Step 1, we have

Im〈e′1,Df(z0)ej〉 = 0, j ≥ 2.

Meanwhile, if we assume p = z0, q = −z0 + kej for j ≥ 2 and any k ∈ R. It is easy to find

Re〈e′1,Df(z0)ej〉 = 0, j ≥ 2.

Therefore

〈e′1,Df(z0)ej〉 = 0, j ≥ 2. (3.3)

Combining (3.2) and (3.3), and using the adjoint operator D∗f(z0) of Df(z0), one gets

〈D∗f(z0)e
′
1, e1〉 ≥ 1,

〈D∗f(z0)e
′
1, ej〉 = 0, j ≥ 2.

Assume D∗f(z0)e
′
1 =

∞
∑

l=1

λlel for λl ∈ C. The above equations give

〈

∞
∑

l=1

λlel, e1

〉

= λ1 ≥ 1,

〈

∞
∑

l=1

λlel, ej

〉

= λj = 0, j ≥ 2.

Therefore

D∗f(z0)w0 = λ1z0, (3.4)

where λ1 = 〈D∗f(z0)w0, z0〉 = 〈w0,Df(z0)z0〉 for w0 = e′1, z0 = e1.

Step 3 Now let z0 be any given point at ∂B which is not necessary e1. Then there exists a

unitary matrix Uz0 such that Uz0(z0) = e1. Assume f(0) = 0, f(z0) = w0 ∈ ∂B′, which is not

necessary e′1. Similarly, there is a Uw0
such that Uw0

(w0) = e′1. Denote

g(z) = Uw0
◦ f ◦ U−1

z0
(z), z ∈ B ∪ {e1}.

Then g(0) = 0, g(e1) = e′1. Moreover

Dg(z) = Uw0
◦Df(U−1

z0
z) ◦ U−1

z0
(z), z ∈ B ∪ {e1}.

From Steps 1 and 2, we have

D∗g(e1)e
′
1 = λge1
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with λg = 〈e′1,Dg(e1)e1〉 ≥ 1, which equals

(Uw0
◦Df(U−1

z0
z) ◦ U−1

z0
)∗e′1 = λge1,

i.e.,

Uz0 ◦D
∗f(z0) ◦ U

∗
w0

e′1 = λge1.

Composing operator U−1
z0

at both sides of the above equation gives

U−1
z0

◦ Uz0 ◦D
∗f(z0) ◦ U

−1
w0

e′1 = λgU
−1
z0

e1,

i.e.,

D∗f(z0)w0 = λgz0,

where λg = 〈e′1,Dg(e1)e1〉 ≥ 1.

Step 4 Let f(z0) = w0 with z0 ∈ ∂B, w0 ∈ ∂B′. If f(0) = a 6= 0, then we use the

automorphism of B′ to get the result. Assume that φa(w) is an automorphism of B′ such that

φa(a) = 0. Then φa(w0) ∈ ∂B′ and there exists a Uφa
such that Uφa

(φa(w0)) = w0. Let

h = Uφa
◦ φa ◦ f,

then h(0) = 0, h(z0) = w0. As a result of Step 3, there is a real number γ ≥ 1 such that

D∗h(z0)w0 = γz0.

According to the expression of h, it is obtained that

D∗h(z0)w0 = (Uφa
◦Dφa(w0) ◦Df(z0))

∗w0

= D∗f(z0) ◦D
∗φa(w0) ◦ U

−1
φa

w0. (3.5)

Since Uφa
(φa(w0)) = w0, we have U−1

φa

w0 = φa(w0). Therefore,

D∗φa(w0) ◦ U
−1
φa

w0 = D∗φa(w0)φa(w0).

From (2.2) and Lemma 2.3,

D∗φz(w) =
1

1− 〈w, z〉

(

− I +
〈·, z〉(z − w)

1− 〈w, z〉

)∗

Γ∗

=
1

1− 〈w, z〉

(

− I +
〈·, z − w〉z

1− 〈w, z〉

)

Γ.

It comes from (2.1) that

D∗φa(w0)φa(w0)

=
1

1− 〈w0, a〉

(

− I +
〈·, a− w0〉a

1− 〈w0, a〉

)

Γ2 a− w0

1− 〈w0, a〉

=
1

|1− 〈w0, a〉|2

(

− I +
〈·, a− w0〉a

1− 〈w0, a〉

)

(a− s2w0 − 〈w0, a〉a)

=
1

|1− 〈w0, a〉|2

[

s2w0 − (1− 〈w0, a〉)a+
〈a− s2w0 − 〈w0, a〉a, a− w0〉a

1− 〈w0, a〉

]

=
1

|1− 〈w0, a〉|2

[

s2w0 −
(

1−
‖a‖2 − 〈a, w0〉

1− 〈w0, a〉
−

1− ‖a‖2

1− 〈w0, a〉

)

(1− 〈w0, a〉)a
]

=
1− ‖a‖2

|1− 〈w0, a〉|2
w0.
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Combining with (3.5) we get

D∗f(z0)
1− ‖a‖2

|1− 〈w0, a〉|2
w0 = γz0

for some γ ≥ 1. As a result,

D∗f(z0)w0 = λz0, (3.6)

where λ = |1−〈w0,a〉|
2

1−‖a‖2 γ ≥ |1−〈w0,a〉|
2

1−‖a‖2 > 0 and a = f(0). The proof of (II) is completed.

Step 5 For any β ∈ Tz0(∂B), from the definition of tangent space given by (1.1), we have

Re〈z0, β〉 = 0.

To prove Df(z0)β ∈ Tw0
(∂B′), it is sufficient to verify

Re〈w0,Df(z0)β〉 = 0.

From (3.6), D∗f(z0)w0 = λz0 with λ > 0, which gives

Re〈w0,Df(z0)β〉 = Re〈D∗f(z0)w0, β〉 = Re〈λz0, β〉 = λRe〈z0, β〉 = 0.

On the other hand, for any β ∈ T
(1,0)
z0 (∂B), from (1.1), we have

〈z0, β〉 = 0.

It comes from the above equation that

〈w0,Df(z0)β〉 = 〈D∗f(z0)w0, β〉 = 〈λz0, β〉 = 0.

Therefore Df(z0)β ∈ T
(1,0)
w0

(∂B′). The proof of (I) is finished.

4 The Boundary Version of Schwarz Lemma on the Upper Half-Plane

We decompose H = e1C⊕ F , where F = e⊥1 . In this decomposition, z = (z1, z
′) ∈ H with

z1 ∈ C and z′ ∈ F . Then the upper half-plane H of H could be described by {z ∈ H | Imz1 >

‖z′‖2}. Similar notations are given for H′.

The tangent space T0(∂H) and holomorphic tangent space T
1,0
0 (∂H) at 0 are defined by

T0(∂H) = {β ∈ H | Re〈−ie1, β〉 = 0}, T (1,0)
z0

(∂H) = {β ∈ H | 〈−ie1, β〉 = 0},

respectively. The boundary version of Schwarz lemma on the upper half-plane is given as

follows.

Theorem 4.1 Let g ∈ H(H,H′) for H ∈ H and H
′ ∈ H′ respectively. If g is C1+α at

0 ∈ ∂H and g(0) = 0 ∈ ∂H′, then it holds that

(I) Dg(0)β ∈ T0(∂H
′) for any β ∈ T0(∂H), and Dg(0)β ∈ T

(1,0)
0 (∂H′) for any β ∈

T
(1,0)
0 (∂H).

(II) There exists λ ∈ R such that D∗g(0)(−ie′1) = λ(−ie1) with λ ≥
|1−〈e′

1
,a〉|2

1−‖a‖2 > 0, where

a = − 2g(ie1)
i+g1(ie1)

+ e′1.
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Proof First, there exists a biholomorphic mapping (Cayley transform) Φ : B → H given by

Φ(z) = i
e1 − z

1 + z1
=

(

i
1− z1

1 + z1
, i

−z′

1 + z1

)

, (w1, w
′) ∈ H.

Then it is easy to see Imw1 − ‖w′‖2 = 1−‖z‖2

|1+z1|2
> 0, and Φ(e1) = 0. Moreover,

Φ−1(w) = −
2w

i + w1
+ e1

and Φ−1(0) = e1.

Step 1 Let g(w) ∈ H(H,H′) which is also C1+α at 0. We assume g(0) = 0 and g(ie1) = ie′1.

Construct a mapping

f = Φ′−1 ◦ g ◦ Φ, (4.1)

then f ∈ H(B,B′) and f(0) = 0, f(e1) = e′1. From (3.4) we have

D∗f(e1)e
′
1 = λfe1 (4.2)

for λf = 〈e′1,Df(e1)e1〉 ≥ 1. On the other hand,

Df(e1) = D(Φ′−1 ◦ g ◦ Φ)(e1)

= DΦ′−1(0) ◦Dg(0) ◦DΦ(e1)

= (2i)I ◦Dg(0) ◦
(−i

2

)

I

= Dg(0). (4.3)

Substituting (4.3) into (4.2) gives

D∗g(0)e′1 = λf e1,

i.e.,

D∗g(0)(−ie′1) = λf (−ie1),

where λf ≥ 1 and −ie1 denotes the normal vector of H at 0.

Step 2 If g(0) = 0 and g(ie1) 6= ie′1, we assume g(ie1) = b. Consider the mapping given by

(4.1), then f(0) = Φ′−1(b) , a ∈ B
′, f(e1) = e′1. From (3.6) we have

D∗f(e1)e
′
1 = λe1,

where λ ≥
|1−〈e′

1
,a〉|2

1−‖a‖2 > 0.

In addition, from (4.3), one gets

D∗f(e1)e
′
1 = D∗g(0)e′1 = λe1,

i.e.,

D∗g(0)(−ie′1) = λ(−ie1),
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where λ ≥
|1−〈e′

1
,a〉|2

1−‖a‖2 > 0. Therefore, part (II) is proved.

The proof of part (I) is the same as that of Theorem 1.2, and it is omitted here.
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