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Keywords Hérmite learning, Gradient learning, Learning rate, Convex analysis,

Multitask learning, Differentiable reproducing kernel Hilbert space

2000 MR Subject Classification 41A25, 46E22, 68Q32, 68T05, 90C25

1 Introduction

We considered Hérmite learning with gradient vectors (see [1–4]) in this paper. It can

produce a smoothness function when the function value samples and gradient data is provided.

Let X be a compact subset of the Euclidean space R
d on which the learning or function

approximation is considered. For each x = (x1, x2, · · · , xd)T ∈ X, the gradient of function

f : X → R at x is denoted by the vector

∇xf(x) =
(∂f(x)

∂x1
, · · · , ∂f(x)

∂xd

)T

if the partial derivative for each variable exists. It is known (see [2]) that the essence of

Hérmite learning is to obtain the regression function fρ(x) =
∫
R
ydρ(y|x) from samples z =

{(xi, yi)}mi=1 with yi = (y0i , ỹi), where {(xi, y
0
i )}mi=1 are drawn independently according to

ρ(x, y) = ρ(y|x)ρX(x) and ỹi ≈ ∇f(xi).

Let K : X ×X → R be a Mercer kernel which is continuous, symmetric and positive semi-

definite, which means that the matrix (K(xi, xj))
l
i,j=1 is positive semi-definite for any finite set

of points {x1, · · · , xl} ⊂ X . The associated reproducing kernel Hilbert space (RKHS) HK is

defined (see [5–7]) as the completion of the linear span of the set of the function {Kx = K(x, ·) :
x ∈ X} with the inner product given by

〈Kx,Ky〉K = K(x, y).

Let L2(µ) be the class of all square integrable functions with respect to the mesure µ with

the norm

‖f‖L2(µ) =
(∫

X

|f(x)|2 dµ
) 1

2

< +∞.
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Define the integral operator LK as

LK(f, x) =

∫

X

f(u)K(x, u) dµ, f ∈ L2(µ).

Since K is a positive semi-definite, LK is a compact positive operator. Let λk be the

k-th positive eigenvalue of LK(f) and φk(x) be the corresponding continuous orthonormal

eigenfunction. Then, by Mercer’s theorem, for all x, y ∈ X, there holds

K(x, y) =
+∞∑

k=0

λk φk(x) φk(y), x, y ∈ X, (1.1)

where the convergence is absolute (for each x, y ∈ X) and uniform on X ×X . Then we know

(see [8–9])

HK = L
1
2

K(L2(µ)) =
{
f(x) =

∞∑

k=0

ak(f)φk(x) :

∞∑

k=0

|ak(f)|2
λk

< +∞
}

with inner product

〈f, g〉HK
=

∞∑

k=0

ak(f) ak(g)

λk

and ak(f) =
∫
X
f(y) φk(y) dµ(y).

When X is a compact set, there is a constant k > 0 such that

‖f‖∞,X ≤ k‖f‖HK
, f ∈ HK . (1.2)

Let M > 0 be a given positive real number and Y = [−M,M ]d+1. We denote by y ∈ Y as

y = (y0, ỹ) with ỹ = (y1, y2, · · · , yd)T and

−→
fρ(x) = (fρ(x), f̃ρ(x)),

where

fρ(x) =

∫

[−M, M ]

y0 dρ(y|x)

and

f̃ρ(x) =

∫

[−M, M ]d
ỹ dρ(y|x)

=
(∫

[−M, M ]d
y1 dρ(y|x), · · · ,

∫

[−M, M ]d
yd dρ(y|x)

)T

.

Let y0i ∈ [−M, M ] and ỹi = (y1i , · · · , ydi )T ∈ [−M, M ]d. Then, the Hérmite learning

algorithm corresponding to the samples z is (see [1])

fz,λ : = arg min
f∈HK

1

m

m∑

i=1

((y0i − f(xi))
2 + ‖ỹi −∇f(xi)‖2Rd) + λ ‖f‖2HK

, (1.3)

where λ > 0 is the regularization parameter, ‖ · ‖Rd is the usual norm of the Euclidean space

R
d.
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The representer theorem for scheme (1.3) was provided in [1], which showed that the mini-

mization over the possibly infinite dimensional spaceHK can be achieved in a finite dimensional

subspace generated by {Kxi
(·)} and their partial derivatives. The explicit solution to (1.3) and

an upper bound for the learning rate with the integral operator approach were given in [2].

We notice that the problem of learning multiple tasks with kernel methods has been a

developing topic (see [10–14]). The representer theorem for these frameworks have been given,

but the results of convergence quantitative analysis are relatively few, and very effective methods

for bounding the convergence rates does not appear. An aim of the present paper is to show

that model (1.3) is among the group of the multiple tasks. For this purpose, we rewrite model

(1.3) from the view of vector valued functions.

Let C(1) be the class of all the real functions f(x) defined on X with continuous partial

derivatives and C(2)(X) denote the class of all the real functions f(x) defined on X with

continuous partial derivatives ∂2f
∂xα∂yβ for α = 1, 2, · · · , d. By K ∈ C(2)(X ×X), we mean all

the partial derivatives ∂2 ∂2K(x,y)
∂(xα)2 ∂(xβ)2 that are continuous on X × X . By [15–17] we know that

if the kernels K(x, y) have the form of (1.1) and K(x, y) ∈ C(2)(X × X), then, HK can be

embedded into both C(1)(X) and C(2)(X), and for any given x ∈ X and all α = 1, 2, · · · , d, the
following relations hold:

∂Kx(·)
∂xα

∈ HK ,
∂2Kx(·)
∂(xα)2

∈ HK , (1.4)

∂f(x)

∂xα
=

〈
f,

∂

∂xα
Kx(·)

〉
HK

, f ∈ HK (1.5)

and

∣∣∣∂f(x)
∂xα

∣∣∣ ≤ k1‖f‖HK
, ∀x ∈ X, ∀α = 0, 1, 2, · · · , d, (1.6)

where ∂f
∂x0 = f(x), k1 = sup

x,y∈X
0≤α,β≤d

√∣∣∣∂2K(x,y)
∂xα∂yβ

∣∣∣.

Define

Hα
K =

{
fα(x) =

∂f(x)

∂xα
: f(x) ∈ HK

}
, α = 1, 2, · · · , d

and

−−→HK = HK ×H1
K × · · · × Hd

K

= {−→f = (f, f1, · · · , fd)T : f ∈ HK , fα ∈ Hα
K , α = 1, 2, · · · , d}.

Then, (1.3) can be rewritten as

−−→
fz,λ : = arg min

−→
f =(f,f1,··· ,fd)T∈

−−→
HK

Ez(
−→
f ) + λ ‖f‖2HK

, (1.7)

where

Ez(
−→
f ) =

1

m

m∑

i=1

‖−→yi −
−→
f (xi)‖2Rd+1 ,

−→y i = (y0i , y
1
i , · · · , ydi )T, i = 1, 2, · · · ,m
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and −−→
fz,λ = (f (z,λ), f

(z,λ)
1 , · · · , f (z,λ)

d )T.

Algorithm (1.7) is neither the same as the usual least square regression (see [18–21]), nor the

current multitask learning model since it uses the penalty ‖f‖2HK
not ‖−→f ‖2HK

. However, it is

really a concrete example of multitask learning models, the study method of its performance can

provide useful reference for the research of other multitask models. This is the first motivation

for writing this paper. On the other hand, such approaches may provide a way of thinking

for dealing with other gradient learning models. The structure of model (1.7) is close to the

usual least square learning models, this fact creates an opportunity of studying the gradient

learning with existing methods, e.g., the convex analysis method (see [20–24]). This is the

second motivation for writing this paper.

We form an improved convex method with the help of Gâteaux derivative and the optimality

conditions of convex functions and use it to bound the convergence rates of model (1.7). To

show the main results of the present paper, we restate the notion of covering number.

For a distance space S and a real number η > 0. The covering number N (S, η) is defined

to be the minimal positive integer number l such that there exists l disks in S with radius η

covering S.

We call a compact subset E of a distance space (B, ‖ · ‖B) logarithmic complexity exponent

s ≥ 0 if there is a constant cs > 0 such that the closed ball of radius R centered at origin, i.e.,

BR = {f ∈ E : ‖f‖B ≤ R}

satisfies

logN (BR, η) ≤ cs

(R
η

)s

, ∀η > 0. (1.8)

We now give the following Theorem 1.1.

Theorem 1.1 Let K(x, y) be a Mercer-like kernel satisfying K(x, y) ∈ C(2)(X ×X),
−−→
fz,λ

be the solution of (1.7) and C = 512 k41 (d+ 1)3M . If Hk has logarithmic complexity exponent

s ≥ 0 in the uniform continuity norm ‖ ·‖C(X) and λ ≤ k2
1 d

M2 ×D(
−→
fρ, λ), then, for any 0 < δ < 1

and 0 < δ < 4
ecs , with confidence 1− δ, we have

‖−−→fz,λ −−→
fρ‖2L2(ρX ) ≤

C

√
D(

−→
fρ, λ)

λ2
√
m

×
( 1√

m
+

1
2+s
√
m

)(
log

4

δ

)2

+D(
−→
fρ, λ), (1.9)

where

D(
−→
fρ, λ) = inf

−→
h∈

−−→
HK

(Eρ(
−→
h )− Eρ(

−→
fρ) + λ ‖h‖2HK

)

and

Eρ(
−→
f ) =

∫

Z

‖−→y −−→
f (x)‖2

Rd+1 dρ.

We now give some comments on (1.9).

(1) Let H1
ρX

be the Sobolev space consisting of all the functions f ∈ L2(ρX) with all partial

derivatives belonging to L2(ρX), whose norm ‖f‖H1
ρX

is induced by the inner product

〈f, g〉H1
ρX

=

∫

X

(f(x) g(x) +∇xf(x)∇xg(x)) dρX .
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If ρ is perfect (see [2]), i.e., f̃ρ(x) = ∇fρ(x), then,
−→
fρ(x) = (fρ(x),∇fρ(x)) and

‖−−→fz,λ − −→
fρ‖L2(ρX ) = ‖fz,λ − fρ‖H1

ρX
.

(2) By Lemma 2.2 afterward we have

D(
−→
fρ, λ) = inf

−→
h∈

−−→
HK

(‖−→fρ −
−→
h ‖2L2(ρX ) + λ ‖h‖2HK

).

As usual, we assume that there are given constants c > 0 and 0 < β < 4 such that D(
−→
f ρ, λ) ≤

cλβ if
−−→HK is density in L2(ρX). In this case, if s = 0, then we have by (1.9) that

‖fz,λ − fρ‖2H1
ρ,X

= O
( 1

m λ2− β
2

×
(
log

4

δ

)2

+ λβ
)
. (1.10)

Further, if λ = m−θ and 0 < θ < 2
4−β

, then, we have by (1.10) the following estimate

‖fz,λ − fρ‖2H1
ρX

= O
( (log 4

δ
)2

m1−(2− β
2
)θ

+m−βθ
)
. (1.11)

(3) Define a new integral operator

L = LK : H1
ρX

→ H1
ρX

associated with K and ρX by

LK(f, x) =

∫

X

(K(x, y) f(y) +∇yK(x, y)∇yf(y)) dρX(y), x ∈ X, f ∈ H1
ρX

.

Let Lr
K be defined as

Lr
K

(∑
ck φk(x)

)
=

∑
ck λr

k φk(x)

for r > 0. Then, by taking λ = 8(d+1) k2 log(4
δ
) m−β, with confidence 1− δ, we have (see [2])

‖fz,λ − fρ‖H1
ρX

≤ 8 log
(4
δ

)
{M + (d+ 1) ‖K‖rC2 × ‖L−r

K fρ‖H1
ρX

} m−rβ, (1.12)

where

β =





1

2r + 1
, if r >

1

2
,

1

2
, if 0 < r ≤ 1

2
.

It is easy to see that (1.11) sharps (1.12).

2 Proofs

To show Theorem 1.1, we need the notation of the Gâteaux derivative and some related

lemmas.

Let (H, ‖ · ‖H) be a Hilbert space, F (f) : H → R ∪ {∓∞} be a real function. We say F is

Gâteaux differentiable at f ∈ H, if there is a ξ ∈ H such that for any g ∈ H, there holds

lim
t→0

F (f + tg)− F (f)

t
= 〈g, ξ〉H (2.1)

and write ∇f F (f) = ξ as the Gâteaux derivative of F (f) at f .
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Lemma 2.1 Let F (f) : H → R ∪ {∓∞} be a function defined on Hilbert space H. Then,

we have following results:

(i) If F (f) is a convex function, then, F (f) attains minimal value at f0 if and only if

∇fF (f0) = 0.

(ii) If F (f) : H → R ∪ {∓∞} is a Gâteaux differentiable function, then, F (f) is a convex

on H if and only if for any f, g ∈ H we have

F (g + f)− F (f) ≥ 〈g,∇fF (f)〉H. (2.2)

Proof We have (i) from Proposition 17.4 of [25] and we have (ii) from Proposition 17.10

and Proposition 17.12 of [25].

Lemma 2.2
−→
fρ satisfies the relation

−→
fρ = arg min

−→
f =(f,f1,··· ,fd)T

Eρ(
−→
f ) (2.3)

and the equation

Eρ(
−→
f )− Eρ(

−→
fρ) =

∫

Z

‖−→fρ(x)−
−→
f (x)‖2

Rd+1 dρX . (2.4)

Proof Since equality

‖a+ b‖2
Rd+1 = ‖a‖2

Rd+1 + 2〈a, b〉Rd+1 + ‖b‖2
Rd+1

holds for any a, b ∈ R
d+1, we have

Eρ(
−→
f ) =

∫

Z

‖−→y − −→
fρ‖2Rd+1 dρ− 2

∫

Z

〈−→y −−→
fρ(x),

−→
f (x)−−→

fρ(x)〉Rd+1 dρ

+

∫

Z

‖−→f ρ(x) −
−→
f (x)‖2

Rd+1dρ

= Eρ(
−→
fρ)− 2

∫

X

〈∫

Y

(−→y −−→
fρ(x)) dρ(y|x),

−→
f (x)−−→

fρ(x)
〉
Rd+1

dρX

+

∫

Z

‖−→fρ(x)−
−→
f (x)‖2

Rd+1 dρX

= Eρ(
−→
fρ) +

∫

Z

‖−→fρ(x) −
−→
f (x)‖2

Rd+1 dρX . (2.5)

Let
−→
hλ = (h(λ), h

(λ)
1 , · · · , h(λ)

d )T be defined as

−→
hλ = arg min

−→
h=(h, h1, ··· , hd)T∈

−−→
HK

(Eρ(
−→
h ) + λ ‖h‖2HK

). (2.6)

Then, we have the following Lemma 2.3.

Lemma 2.3 Let
−→
hλ be a solution of (2.6). Then, we have

∇−→
f
(Eρ(

−→
f ))(·) = −2

∫

Z

〈∇∗
xKx(·), −→y −−→

f (x)〉Rd+1 dρ (2.7)

and

∇−→
f
(Ez(

−→
f ))(·) = − 2

m

m∑

i=1

〈∇∗
xKxi

(·), −→y i −
−→
f (xi)〉Rd+1 , (2.8)

where ∇∗
xKx(·) =

(
∂Kx(·)
∂x0 ,

∂Kx(·)
∂x1 , · · · , ∂Kx(·)

∂xd

)T
and

∂Kx(·)
∂x0 = Kx(·).
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Proof By the equality

a2 − b2 = 〈a− b, 2b〉Rd+1 + ‖a− b‖2
Rd+1, a ∈ R

d+1, b ∈ R
d+1. (2.9)

we have

lim
t→0

Eρ(
−→
f + t−→g )− Eρ(

−→
f )

t

= lim
t→0

1

t

(∫

Z

‖−→y − (
−→
f (x) + t−→g (x))‖2

Rd+1 dρ−
∫

Z

‖−→y −−→
f (x)‖2

Rd+1 dρ
)

= −2

∫

Z

〈−→g (x), −→y −−→
f (x)〉Rd+1 dρ.

Take g0(x) = g(x), f0(x) = f(x). Then, by (1.5) we have

〈−→g (x), −→y −−→
f (x)〉Rd+1 =

d∑

k=0

gk(x) × (yk − fk(x))

=
d∑

k=0

(
g,

∂Kx(·)
∂xk

)
HK

× (yk − fk(x))

=
(
g,

d∑

k=0

∂Kx(·)
∂xk

(yk − fk(x))
)
HK

= (g, 〈∇∗
xKx(·), −→y −−→

f (x)〉Rd+1)HK
. (2.10)

It follows

lim
t→0

Eρ(
−→
f + t−→g )− Eρ(

−→
f )

t
=

(
g, 2

∫

Z

〈∇∗
xKx(·),−→y −−→

f (x)〉Rd+1dρ
)
HK

.

(2.7) thus holds. (2.8) can be proved in the same way.

Lemma 2.4 Let
−→
hλ be a solution of (2.6) and let

−−→
fz,λ be a solution of (1.7). Then, we have

λh(λ)(·) =
∫

Z

〈∇∗
xKx(·), −→y −−→

hλ(x)〉Rd+1 dρ (2.11)

and

λf (z,λ)(·) = 1

m

m∑

i=1

〈∇∗
xKxi

(·), −→y i −
−−→
fz,λ(xi)〉Rd+1 . (2.12)

Proof Since
−→
h λ is the solution of (2.6), we have

∇−→
h
(Eρ(

−→
h ) + λ‖h‖2HK

)|−→
h=

−→
hλ

= ∇−→
h
Eρ(

−→
h )|−→

h=
−→
hλ

+ λ ∇−→
h
(‖h‖2HK

)|−→
h=

−→
hλ

= −2

∫

Z

〈∇∗
xKx(·), −→y −−→

hλ(x)〉Rd+1 dρ(x, y) + 2λ h(λ)(·) = 0, (2.13)

where we have used the fact that

∇−→
h
(‖h‖2HK

) = ∇h(‖h‖2HK
) = 2h.

(2.11) thus holds. (2.12) can be proved in the same way.
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Lemma 2.5 (2.6) has a unique solution
−→
hλ and (1.7) has a unique solution

−−→
fz,λ. They

satisfy the following inequalities:

‖h(λ)‖HK
≤

√
D(

−→
fρ, λ)

λ
(2.14)

and

‖f (z,λ)‖HK
≤ M√

λ
. (2.15)

Proof Let
−→
f = (f, f1, · · · , fd)T ∈ −−→HK and −→g = (g, g1, · · · , gd)

T ∈ −−→HK . Then, by the

equality (2.9) we have

Eρ(−→g )− Eρ(
−→
f ) =

∫

Z

(‖−→y − −→g (x)‖2
Rd+1 − ‖−→y −−→

f (x)‖2
Rd+1)dρ

= −2

∫

Z

〈−→g (x) −−→
f (x),−→y −−→

f (x)〉Rd+1dρ+

∫

Z

‖−→f (x)− −→g (x)‖2
Rd+1dρ

≥ −2

∫

Z

〈−→g (x) −−→
f (x),−→y −−→

f (x)〉Rd+1dρ.

Since (2.10), we have

〈−→g (x)−−→
f (x),−→y −−→

f (x)〉Rd+1 = (g − f, 〈∇∗
xKx(·), −→y −−→

f (x)〉Rd+1 )HK
.

Therefore, by (2.7) we have

Eρ(−→g )− Eρ(
−→
f ) ≥

(
g − f, −2

∫

Z

〈∇∗
xKx(·), −→y −−→

f (x)〉Rd+1dρ
)
HK

= (g − f, ∇−→
f
(Eρ(

−→
f )))HK

.

By (ii) of Lemma 2.1 we know Eρ(
−→
f ) is a convex function on

−−→HK . Since ‖f‖2HK
is a strictly

convex function on
−−→HK and λ > 0, we know

Eρ(
−→
h ) + λ ‖h‖2HK

is strictly convex on
−−→HK and the optimal solution

−→
hλ is unique. By the same way we can show

the uniqueness of
−−→
fz,λ.

By the definition of
−→
hλ we have

λ‖h(λ)‖2HK
≤ Eρ(

−→
hλ)− Eρ(

−→
fρ) + λ‖hλ‖2HK

= D(
−→
fρ, λ).

(2.14) then holds. By the definition of
−−→
fz,λ we have

Ez(
−−→
fz,λ) + λ‖fz,λ‖2HK

≤ Ez(
−→
0 ) =

1

m

m∑

i=1

‖−→y i‖2Rd+1 ≤ M2.

(2.15) thus holds.
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Lemma 2.6 Let
−→
hλ be defined as (2.6) and let

−−→
fz,λ be the solution of (1.7). Then, there

holds

‖h(λ) − f (z,λ)‖HK
≤ 2

λ

∥∥∥
∫

Z

〈∇∗
xKx(·), −→y −−→

hλ(x)〉Rd+1 dρ

− 1

m

m∑

i=1

〈∇∗
xKxi

(·), −→y i −
−→
hλ(xi)〉Rd+1

∥∥∥
HK

. (2.16)

Proof By (2.9), we have

Ez(
−−→
fz,λ)− Ez(

−→
hλ) =

1

m

m∑

i=1

‖−→y i −
−−→
fz,λ(xi)‖2Rd+1 − 1

m

m∑

i=1

‖−→y i −
−→
hλ(xi)‖2Rd+1

≥ 1

m

m∑

i=1

〈−−→fz,λ(xi)−
−→
hλ(xi), −2(−→y i −

−→
hλ(xi))〉Rd+1 .

Let f
(z,λ)
0 (x) = f (z,λ)(x) and h(λ) = h

(λ)
0 . Then, by (1.5) we have

〈−−→fz,λ(xi)−
−→
h λ(xi), −2(−→y i −

−→
h λ(xi))〉Rd+1

= −2

d∑

j=0

(∂f (z,λ)(xi)

∂xj
− h(λ)(xi)

∂xj

)
× (y

(j)
i − h

(λ)
j (xi))

= −2

d∑

j=0

(
f (z,λ) − h(λ),

∂Kxi
(·)

∂xj
× (y

(j)
i − h

(λ)
j (xi))

)
HK

=
(
f (z,λ) − h(λ),−2

d∑

j=0

∂Kxi
(·)

∂xj
× (y

(j)
i − h

(λ)
j (xi))

)
HK

= (f (z,λ) − h(λ), −2〈∇∗
xKxi

(·), (−→y i −
−→
hλ(xi))〉Rd+1)HK

.

Therefore,

Ez(
−−→
fz,λ)− Ez(

−→
hλ) ≥

(
f (z,λ) − h(λ), − 2

m

m∑

i=1

〈∇∗
xKxi

(·), (−→y i −
−→
hλ(xi))〉Rd+1

)
HK

. (2.17)

By the definition of
−−→
fz,λ we have

0 ≥ (Ez(
−−→
fz,λ) + λ‖f (z,λ)‖2HK

)− (Ez(
−→
h λ) + λ‖h(λ)‖2HK

). (2.18)

Since HK is a Hilbert space, the parallelogram law shows

‖f (z,λ)‖2HK
− ‖h(λ)‖2HK

= (f (z,λ) − h(λ), 2h(λ))K + ‖f (z,λ) − h(λ)‖2HK
.

It follows by (2.17)–(2.18) that

0 ≥
(
f (z,λ) − h(λ), − 2

m

m∑

i=1

〈∇∗
xKxi

(·), (−→y i −
−→
hλ(xi))〉Rd+1

)
HK

+ (f (z,λ) − h(λ), 2λh(λ)) + λ‖f (z,λ) − h(λ)‖2HK
.
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By (2.11) we have

0 ≥
(
f (z,λ) − h(λ), − 2

m

m∑

i=1

〈∇∗
xKxi

(·), (−→y i −
−→
h λ(xi))〉Rd+1 + 2λh(λ)

)
HK

+ λ‖f (z,λ) − h(λ)‖2HK

= 2
(
f (z,λ) − h(λ),

∫

Z

〈∇∗
xKx(·), −→y −

−−→
h(λ)(x)〉Rd+1 dρ

− 1

m

m∑

i=1

〈∇∗
xKxi

(·), (−→y i −
−→
h λ(xi))〉Rd+1

)
HK

+ λ‖f (z,λ) − h(λ)‖2HK
. (2.19)

(2.19) gives (2.16).

Lemma 2.7 Let
−→
hλ be defined as (2.6) and let

−−→
fz,λ be the solution of (1.7). Then, there

holds

‖−→hλ −−−→
fz,λ‖2L2(ρX ) ≤

4

λ
A(z) B(z), (2.20)

where

A(z) =
∥∥∥
∫

Z

〈∇∗
xKx(·), −→y −−→

hλ(x)〉Rd+1 dρ− 1

m

m∑

i=1

〈∇∗
xKxi

(·), −→y i −
−→
hλ(xi)〉Rd+1

∥∥∥
HK

and

B(z) =
∥∥∥
∫

Z

〈∇∗
xKx(·), −→y −−−→

fz,λ(x)〉Rd+1 dρ− 1

m

m∑

i=1

〈∇∗
xKxi

(·), −→y i −
−−→
fz,λ(xi)〉Rd+1

∥∥∥
HK

.

Proof By (2.9) we have

Eρ(
−→
hλ)− Eρ(

−−→
fz,λ)

=
(−→
hλ −−−→

fz,λ, −2

∫

Z

〈∇∗
xKx(·),−→y −−−→

fz,λ(x)〉Rd+1dρ
)
HK

+ ‖−→hλ −−−→
fz,λ‖2L2(ρX ). (2.21)

The definitions of
−→
hλ yields

0 ≥ (Eρ(
−→
h λ) + ‖hλ‖2HK

)− (Eρ(
−→
f z,λ) + ‖f (z,λ)‖2HK

). (2.22)

Further, by (2.21) and the equality

‖h(λ)‖2HK
− ‖f (z,λ)‖2HK

= (h(λ) − f (z,λ), 2f (z,λ))K + ‖h(λ) − f (z,λ)‖2HK
,

we have

0 ≥
(
h(λ) − f (z,λ), −2

∫

Z

〈∇∗
xKx(·), −→y −−−→

fz,λ(x)〉Rd+1 dρ
)
HK

+ λ(h(λ) − f (z,λ), 2f (z,λ))HK
+ λ ‖h(λ) − f (z,λ)‖2HK

+
∥∥∥−→h λ −−−→

fz,λ

∥∥∥
2

L2(ρX )

= 2
(
h(λ) − f (z,λ), −

∫

Z

〈∇∗
xKx(·), −→y −−−→

fz,λ(x)〉Rd+1dρ

+
1

m

m∑

i=1

〈∇∗
xKxi

(·), −→y i −
−−→
fz,λ(xi)〉Rd+1

)
HK

+ λ‖h(λ) − f (z,λ)‖2HK

+
∥∥∥−→h λ −−−→

fz,λ

∥∥∥
2

L2(ρX )
, (2.23)
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where we have used (2.12). By Cauchy’s inequality we have

λ‖h(λ) − f (z,λ)‖2HK
+ ‖−→hλ −−−→

fz,λ‖2L2(ρX )

≤ 2 ‖h(λ) − f (z,λ)‖HK
×
∥∥∥
∫

Z

〈∇∗
xKx(·), −→y −−−→

fz,λ(x)〉Rd+1dρ

− 1

m

m∑

i=1

〈∇∗
xKxi

(·), −→y i −
−−→
fz,λ(xi)〉Rd+1

∥∥∥
HK

.

Above inequality leads to

λ‖h(λ) − f (z,λ)‖HK
+

‖−→hλ −−−→
fz,λ‖2L2(ρX )

‖h(λ) − f (z,λ)‖HK

≤ 2 B(z).

It follows that

‖−→hλ −−−→
fz,λ‖2L2(ρX )

‖h(λ) − f (z,λ)‖HK

≤ 2 B(z). (2.24)

By (2.16) and (2.24) we have (2.20).

Lemma 2.8 (see [19]) Let (H, ‖·‖) be a Hilbert space and ξ be a random variable on (Z, ρ)

with values in H. Assume that ‖ξ‖H ≤ M̃ < +∞ almost surely. Let {zi}mi=1 be independent

samples drawers of ρ. For any 0 < δ < 1, with confidence 1− δ,

∥∥∥ 1

m

m∑

i=1

ξ(zi)− E(ξ)
∥∥∥
H

≤ 2M̃ log(2
δ
)√

m
. (2.25)

Lemma 2.9 (see [6]) Let F be a family of functions from a probability space Z to ℜ and

d(·, ·) be a distance on F . Let U ⊂ Z be of full measure and constants H, p > 0 such that

(i) |ξ(z)| ≤ H for all ξ ∈ F and all z ∈ U , and
(ii) |Lz(ξ1)− Lz(ξ2)| ≤ p d(ξ1, ξ2) for all ξ1, ξ2 ∈ F and all z ∈ Um, where

Lz(ξ) =

∫

Z

ξ(z)− 1

m

m∑

i=1

ξ(zi).

Then, for all ǫ > 0,

Probz∈Zm

{
sup
ξ∈F

|Lz(ξ)| ≤ ǫ
}
≥ 1−N

(
F ,

ǫ

2p

)
× 2 exp

(
− m ǫ2

8 H2

)
. (2.26)

Lemma 2.10 Under the conditions of Theorem 1.1, we have the following two estimates:

(1) For any δ ∈ (0, 1), with confidence 1− δ
2 , we have

A(z) ≤
16 k21 d

√
D(

−→
fρ, λ)√

mλ
× log

4

δ
. (2.27)

(2) For any δ ∈ (0, 1) and 0 < δ < 4
ecs , with confidence 1− δ

2 , we have

B(z) ≤ 4k21 (d+ 1)2M√
λ

×
( 1√

m
+

1
2+s
√
m

)
log

4

δ
. (2.28)
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Proof of (2.27) Take

ξ(x,−→y , ·) = 〈∇∗
xKx(·), −→y −−→

hλ(x)〉Rd+1 , (x,−→y ) ∈ X × Y.

Since

∇∗
xKx(·) =

(∂Kx(·)
∂x0

,
∂Kx(·)
∂x1

, · · · , ∂Kx(·)
∂xd

)T

,
∂Kx(·)
∂x0

= Kx(·),

we have

〈∇∗
xKx(·), −→y −−→

hλ(x)〉Rd+1 =

d∑

i=0

∂Kx(·)
∂xi

× (yi − h
(λ)
i (x)). (2.29)

By (1.5), we have

‖ξ(x,−→y , ·)‖2HK
= (ξ(x,−→y , ·), ξ(x,−→y , ·))HK

=

d∑

i,j=0

(∂Kx(·)
∂xi

,
∂Kx(·)
∂xj

)
HK,ρX

× (yi − h
(λ)
i (x)) × (yj − h

(λ)
j (x))

=

d∑

i,j=0

∂2Kx(x)

∂xi∂xj
× (yi − h

(λ)
i (x)) × (yj − h

(λ)
j (x))

≤ k21 d2
d∑

i=0

|yi − h
(λ)
i (x)|2

= k21 d2 ‖−→y −−→
hλ(x)‖2Rd+1

≤ 4 k21 d2 (M2 + ‖−→hλ(x)‖2Rd+1). (2.30)

Furthermore, by (2.14) we have

‖−→hλ(x)‖2Rd+1 =

d∑

i=0

∣∣∣∂h
(λ)(x)

∂xi

∣∣∣
2

≤ k21 d ‖h(λ)‖2HK
≤ k21 d D(

−→
fρ, λ)

λ
. (2.31)

Therefore, if λ ≤ k2
1d D(

−→
fρ,λ)

M2 , then

‖ξ(x,−→y , ·)‖2HK
≤ 4k21

(
M2 +

k21d D(
−→
fρ, λ)

λ

)

≤ 8k41d D(
−→
fρ, λ)

λ
. (2.32)

By (2.32) and (2.25), we have (2.27).
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Proof of (2.28) By the definition of ‖ · ‖HK
, we have

B = sup
‖g‖HK

≤1

∣∣∣
(
g,

∫

Z

〈∇∗
xKx(·),−→y −−−→

fz,λ(x)〉Rd+1 dρ

− 1

m

m∑

i=1

〈∇∗
xKxi

(·),−→y i −
−−→
fz,λ(xi)〉Rd+1

)
HK

∣∣∣

= sup
‖g‖HK

≤1

∣∣∣
∫

Z

(
g, 〈∇∗

xKx(·),−→y −−−→
fz,λ(x)〉Rd+1 dρ

)
HK

−
(
g,

1

m

m∑

i=1

〈∇∗
xKxi

(·),−→y i −
−−→
fz,λ(xi)〉Rd+1

)
HK

∣∣∣.

By (2.10), we have

B = sup
‖g‖HK

≤1

∣∣∣
∫

Z

〈−→g (x),−→y −−→
f z,λ(x)〉Rd+1dρ− 1

m

m∑

i=1

〈−→g (xi),
−→y i −

−→
f z,λ(xi)〉Rd+1

∣∣∣.

Define

η(x,−→y ) = 〈−→g (x),−→y −−→
f z,λ(x)〉Rd+1 .

Then

|η(x,−→y )| ≤ ‖−→g (x)‖Rd+1 × ‖−→y −−→
f z,λ(x)‖Rd+1 . (2.33)

By (1.6), we have

‖−→g (x)‖Rd+1 =
( d∑

i=0

|gi(x)|2
) 1

2

=
( d∑

i=0

∣∣∣∂g(x)
∂xi

∣∣∣
2) 1

2

≤ (d+ 1)k1 ‖g‖HK

≤ (d+ 1) k1, (2.34)

and by (2.15), we have

‖−→y −−→
f z,λ(x)‖Rd+1 ≤ ‖−→y ‖Rd+1 + ‖−→f z,λ(x)‖Rd+1

≤ (d+ 1)(M + k1‖f (z,λ)‖HK
)

≤ (d+ 1)M
(
1 +

k1√
λ

)
.

Therefore,

|η(x,−→y )| ≤ (d+ 1)2k1M
(
1 +

k1√
λ

)

≤ H =
2(d+ 1)2k21M√

λ
(2.35)

if λ ≤ k21 .
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Take

F = {η(x,−→y ) ∈ C(Z) : |η(x,−→y )| ≤ H}.
Then,

B = sup
η∈F

∣∣∣
∫

Z

η(x,−→y )dρ−
m∑

i=1

η(xi,
−→y i)

∣∣∣

= sup
η∈F

|Lz(η)|, (2.36)

where

Lz(η) =

∫

Z

η(x,−→y )dρ− 1

m

m∑

i=1

η(xi,
−→y i), z = (x,−→y )

satisfies the inequality

|Lz(η1)− Lz(η2)| ≤ 2‖η1 − η2‖C(Z), η1 ∈ F , η2 ∈ F .

By Lemma 2.9, we have for any ε > 0

Probz∈Zm(|Lz(η)| ≤ ε) ≥ 1−N
(
F ,

ε

4

)
2 exp

(
− mε2

8H2

)

≥ 1− 2 exp
(
cs

(4H
ε

)s

− mε2

8H2

)
.

Take

2 exp
(
cs

(4H
ε

)s

− mε2

8H2

)
= δ.

Then, we have

ε2+s − 8H2ε2

m
log

4

δ
− 8× 4scsH

2+s

m
= 0. (2.37)

Notice that there is the famous lemma (see [26]).

Let c1 > 0, c2 > 0 and u > t > 0. Then the equation

xu − c1x
t − c2 = 0

has a unique positive zero x∗. In addition,

x∗ ≤ max{(2 c1)
1

u−t , (2 c2)
1
u }. (2.38)

By (2.37)–(2.38), we have

ε ≤
√

16H2

m
log

4

δ
+

2+s

√
16× 4scsH2+s

m

=
8(d+ 1)2k21√

λ

(√ 1

m
log

4

δ
+ 2+s

√
cs

m

)
. (2.39)

By (2.36) and (2.39), we have (2.28).

Lemma 2.11 For any δ ∈ (0, 1), with confidence 1− δ, we have

‖−−→fz,λ −−→
hλ‖2L2(ρX ) ≤

512 k41 (d+ 1)3 M

√
D(

−→
fρ, λ)

λ2
√
m

×
( 1√

m
+

1
2+s
√
m

)
×
(
log

4

δ

)2

. (2.40)
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Proof By (2.20), we have

λ

4
‖−→hλ −−−→

fz,λ‖2L2(ρX ) ≤ A(z) B(z).

Then,

{
z ∈ Zm :

λ

4
‖−−→fz,λ −−→

hλ‖2L2(ρX ) ≤
128 k41 (d+ 1)3 M

√
D(

−→
fρ, λ)

mλ
×
(
log

4

δ

)2}

⊃
{
z ∈ Zm : A(z) ≤

16 k21 d

√
D(

−→
fρ, λ)√

mλ
× log

4

δ

}

∩
{
z ∈ Zm : B(z) ≤ 8 k21 (d+ 1)2 M√

λ
×
( 1√

m
+

1
2+s
√
m

)
× log

4

δ

}
. (2.41)

By (2.27)–(2.28) and (2.41), we have (2.40).

Proof of (1.9) By the definition of
−→
hλ, (2.3)–(2.4) we have

‖−→fρ −
−−→
fz,λ‖2L2(ρX ) ≤ 4‖−→hλ −−−→

fz,λ‖2L2(ρX ) + 4‖−→fρ −
−→
hλ‖2L2(ρX )

≤ 4‖−→hλ −−−→
fz,λ‖2L2(ρX ) + 4(‖−→fρ −

−→
hλ‖2L2(ρX ) + λ‖hλ‖2HK

)

= 4‖−→hλ −−−→
fz,λ‖2L2(ρX ) + 4(Eρ(

−→
hλ)− E(−→f ρ) + λ ‖hλ‖2HK

)

= 4‖−→h λ −−−→
fz,λ‖2L2(ρX ) + 4D(

−→
fρ, λ). (2.42)

(2.40) and (2.42) give (1.9).
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