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Endpoint Estimates for Generalized Multilinear Fractional
Integrals on the Non-homogeneous Metric Spaces*

Jiecheng CHEN! Xiaoli CHEN? Fangting JIN®

Abstract In this paper, some endpoint estimates for the generalized multilinear fractional
integrals /o, on the non-homogeneous metric spaces are established.

Keywords Generalized multilinear fractional integrals, Lipschitz space, RBMO s-
pace, Morrey space, Non-homogeneous metric space
2000 MR Subject Classification 42B25, 42B30

1 Introduction and Notation

Spaces of homogeneous type — (quasi-)metric spaces equipped with a so-called doubling
measure—were introduced by Cofiman and Weiss [7] as a general framework in which many
results from real and harmonic analysis on Euclidean spaces have their natural extensions (see
for example [6, 11-12]). Tt is now well known that a metric space (X,d) equipped with a
nonnegative Borel measure p is called a space of homogeneous type — if (X, d, i) satifies the
following measure doubling condition that there exists a positive constant C),, depending on f,
such that for any ball B(z,r) ={y € X : d(z,y) < r} with x € X and r € (0, 0),

0 < u(B(z,r)) < CNM(B(x, g)) (1.1)

The doubling condition (1.1) plays a key role in the classical theory of Calderén-Zygmund
operators.

Meanwhile, recent developments in the Calderén-Zygmund theory (which one might think
of it as “zeroth order calculus”, as only integrability of the functions on which one operator
is considered) have shown that a number of interesting problems cannot be, and need not be,
embedded into the homogeneous framework. The measure can be replaced by a less demanding
condition such as the polynomial growth condition.

Let u be a non-negative Radon measure on R™ which only satisfies the polynomial growth
condition, namely, there exist positive constants C' and k € (0, n] such that for all z € R™ and
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r € (0,00),
u({y € R™ : o —y| < 1}) < Cor™. (1.2)

The analysis associated with such nondoubling measures u is proved to play a striking role
in solving the long-standing open painlevé’s problem by Tolsa [20]. Obviously, the measure
satisfies the polynomial growth condition may not satisfy the doubling condition. To unify both
the doubling condition and polynomial growth condition, Hytonen [14] introduced a new class
of metric measure spaces satisfying so-called geometrically doubling and the upper doubling
conditions (see Definitions 1.1-1.2 respectively), which are called non-homogeneous spaces. We
refer the reader to the survey (see [21]) and the monograph (see [22]) for more progress on the
theory of Hardy spaces and singular integrals over nonhomogeneous metric measure spaces.

Definition 1.1 A metric measure space (X,d, ) is called upper doubling if p is a Borel
measure on X and there exists a dominating function

A: X x (0,00) = (0,00)

and a positive constant Cy > 1 such that for each v € X, r — A, r) is non-decreasing and,
for all z € X and r € (0,00),

w(B(x,r)) < Ax,r) < C)\/\(J?, g) (1.3)

Remark 1.1 (i) A space of homogeneous type is a special case of upper doubling spaces,
where one can take the dominating function A(x,r) = p(B(x,r)). On the other hand, a metric
space (X,d, u) satisfying the polynomial growth condition is also an upper doubling measure
space if we take \(z,7) = Cr*.

(ii) Let (X, d, u) be an upper doubling space and A be a dominating function on X x (0, +00)
as in Definition 1.1. In [15], it was showed that there exists another dominating function X such
that for all z,y € X with d(x,y) < r,

Xz, r) < CA(y, 7). (1.4)

Based on this, in this paper, we always assume that the dominating function A also satisfies
(1.4).

Definition 1.2 A metric measure space (X,d) is called geometrically doubling if there
exists a positive integer Ny such that for any ball B(xz,r) C X, there exists a finite covering
{B(xi, %) }Z. of B(x,r) such that the cardinality of this covering is at most Ny.

In this paper, we will consider the boundedness of generalized multilinear fractional integrals
on nonhomogeneous spaces. First, let us give some symbols and notation. We start with the
notion of multilinear fractional kernel of order o and regularity §.

Definition 1.3 Let 0 < o < mn and 0 < § < 1. A function Ko € L (X x -+ x X\
{(z,y1, - sYm) 1 x =y1 = -+ = ym}) 18 said to be a multilinear fractional kernel of order «
and regularity 0 if it satisfies the following two conditions:
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(i) There exists s positive constant C' such that for all x,y1, - ,ym € X with x # y; for
some j,
C
|Ko(z, 91, s ym)| < — - (1.5)
> A dw, )|

(il) For all x,2',y1,+ ,ym € X with max{d(x,y1), - ,d(x,ym)} > 2d(z, "),

|Ka(z,y1,- - ym) — Koz, y1,- - ym)|
CA(z, d(z,2"))] "

T m= g5
| 2 A d, 1))

(1.6)

Now, we will give the definition of the generalized multilinear fractional integral operator
Iy,m associated with K.

Definition 1.4 For 0 < a < mmn, the generalized multilinear fractional integral operator
Io.m associated with K, is assumed to be bounded from L'(p) x -+ x L'(p) into Lmn—a (1)
and satisfies that for all bounded functions f1, fo, -, fm with bounded support and p-almost
every x € X\ ( ﬂ supp/f;),

j=1

—

(f )_Iam(fla"'afm)( )
/ /K Tyt s ym) f1(yn) - fn(Ym)dp(yn) - dp(ym)- (1.7)

When m = 1, the operator I, defined by (1.7) is adapted from the generalized fractional
d(z,z’)
d(z,yi)

integral operator in nonhomogeneous metric spaces that appeared in [9] with [ ]5 replaced

by [%&j/m %. See also [13] for the case of Euclidean spaces associated with nondoubling
measures.

As is well-known, when (X, d, ) = (R™,|-|,dx), the classical multilinear fractional integrals
operator I, ,, is bounded from L'(R™) x --- x L'(R") into L#n=a">°(R"). However, in the
case of non-homogeneous metric spaces, it is still unknown whether I, ,, has the (L!(u) x

.- x LY (p), Ln=a"°(p1))-boundedness. It is known that many authors have been interested in
studying the boundedness of this operator on various function spaces, see [10], [16], [18] and
[5] etc. Recently, Tang [19] studied the classical multilinear fractional integral and obtained

some endpoint estimates. He proved that I, ,, is bounded from MJ!(R") x --- x MP=(R™)

to BMO(R™) with § = L 44+ L, 2 = L 4.4 Land1 < ¢ <p <oo, p=
2. In addition, he also obtained the (M (R”) - x Mpm(R™), Lip(a — 2))-boundedness
for p > % and (MZ(R") x --- x MPm(R"), Mg " (R"))-boudedness and (M (R™) x - x

Mpm (R"),WMSﬁ (R™))-boudedness with 1 = % — 2. See [8] for more information on the
theory of generalized fractional integrals and H? spaces over non-homogeneous metric measure
spaces.

Inspired by [9] and [19], we will investigate the same endpoint estimates in [19] for generalized
multilinear fractional integral on non-homogeneous metric spaces. We can formulate our main

results as follows.
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1

Theorem 1.1 Let m e N, (m —1)n < a <mn lzp%—l—---—i—i andl:q%—i----—i—q:

’p Pm q
with 1 < q; < p; <oo fori=1,---,m. If p= % and X satisfies the e-weak reverse doubling
condition with € € (O, ) Ilnin {1 + % — 1%, %}), where 0 < §; and 6 = > 0; , then
i=1,---,m K =1
||Io¢7m(f17 Ty fm)”RBMO(,u) < C 1_[1 ||fJHM5JJ (3,1)" (18)
j=

Theorem 1.2 Letm e N, 0 <a<mn, + =L 4+... 4+ L andL =L +...+ L with
p P1 Pm q q1 qm

1 <q <p; <oo fori=1,---,m. If \ satisfies the e-weak reverse doubling condition with
. 1 s 1 & 4 1 i s , ,
€€ (O,i:rlr_’l}l_"{’m{(%—a)q§,1+g+z—%,g+p—i — 1)), where 0 < ag,6;, 0 < a; — 22 <4

n

and § = > 0;, o= Zoq, then

i=1 i=1
o (f1s--+ s F)llLipa—2) < C ] Hfj”M(fjj(g_#)- (1.9)
j=1
Theorem 1.3 Let m € N, 0 < a < mn, % = p%—i-----i-z% and% = qil—i—---—i—qi
with 1 < ¢; < p; < o0 fori=1,---,m. Assume that % = % — %, p < Z and X satisfies the
e-weak reverse doubling condition with € € (O, _Jlnin {1 + % -, 1% — %}), where 0 < a; and
a=> .
i=1
(a) If each q; > 1, then
R A e | (LI (1.10)
. . 1_1 (L L =1 ...
(b) If each 1 < g; < p; and s(q p) >ql(qi pi) fori=1,--- m, then
ol ol g,y < € LTSy (111)

Without loss of generality, in this paper, we only consider the case of m = 2, and C always
means a positive constant independent of the main parameters involved, but it may be different
from line to line. The p’ is the conjugate index of p, that is to say, % + ﬁ =1

The paper is organized as follows. In Section 2, we collect some useful definitions and
lemmas. Theorems will be proved in the last section.

2 Preliminaries

In this section, we will recall some necessary notions and notation and the boundedness of
I,2 in L¥(p) which was established in [3]. We begin with the definition of («, 8)-doubling ball,
which can be found in [14].

Definition 2.1 Let«, 8 € (1,00). A ball B C X is called (o, B)-doubling if u(aB) < Bu(B).

It was proved in [14] that if a metric measure space (X,d, u) is upper doubling and S8 >
C%2% = o, then for every ball B C X, there exists some j € Z, = NU {0} such that /B
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is (a, B)-doubling. Moreover, let (X, d) be geometrically doubling, 8 > o™ with n = logy Ny
and p a Borel measure on X’ which is finite on bounded sets. Hytoénen [14] also showed that
for p-almost every = € X, there exist arbitrarily small (o, 8)-doubling balls centered at z.
Furthermore, the radius of these balls may be chosen to be of the form a~7r for j € N and
any preassigned number r € (0,00). For any a € (1,00) and ball B, B* denotes the smallest
(ar, By )-doubling ball of the form o’ B with j € N, where

Ba := max{a’™, o’} + 30" + 30" = o3ma{nrh) 4 30m 4 30V

In this paper we choose o = 6 and denote the ball B simply by B.
Next, we give the definitions of constant Kp g and regular BMO space RBMO introduced
by Bui and Duong [1].

Definition 2.2 For any two balls B C S, define

1
Kps=1+ /ZS\B —)\(CB,d(l',CB))dlu(x)’ (21)

where cp is the center of the ball B.

Remark 2.1 The following discrete version K B,s of Kp, g defined in Definition 2.2 was first
introduced by Bui and Duong [1] in non-homogeneous metric measure spaces, which is more
close to the quantity K¢ g introduced by Tolsa [20] in the setting of non-doubling measures.
For any two balls B C S, let Kp g be defined by

Np,s k
=~ 1(6”B)
Kps=1 —_
B,S + ; )\(03,6”“7“3)’

where rp and rg respectively denote the radii of the balls B and S, and Np s the smallest
integer satisfying 6V5Srg > rg. Then Kp s < CKp g, but, in general, it is not true that
Kps~Kpgs.

Now we introduce the fractional coefficient f(g,) g from [9]; see also [4] for the case of Eu-
clidean spaces associated with non-doubling measures.

Definition 2.3 For any two balls B C S, IN{;,S is defined by

Np,s 1=y
om0y (08 )
B,s * Z CB GkTB ’

where v € (0,1) and N s is defined as in Remark 2.1.

Next we give out some properties of K 23, 5 appeared in [9, Lemma 3.4], which are completely
analogous to [4, Lemma 3].

Lemma 2.1 Lety € (0,1).

(i) For all balls BC RC S, K}, p < 2K}, .

(ii) For any p € [1,00), there exists a positive constant C(,), depending only on p, such that
for all balls B C S with rg < prp, KB s S Cp-
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iii) There exists a positive constant C .y, depending on -y, such that for all balls B, KV
()
Clyy-
(iv) There ezists a positive constant ¢, depending on Cy and 7y, such that for all balls B C
RCS, K} s<Kjp+cKpg.
(v) There exists a positive constant ¢, depending on C and v, such that for all balls B C
RCS, K7, RS < K7, B.5-

U:n

Now we give the definition of regular BMO space RBMO introduced by Bui and Duong in
[1].

Definition 2.4 Let 1 < p < oo be some fized constant. A function b € L{, (p) is said to
belong to RBMO(u) if there exists a positive constant C' > 0, such that for any ball B,

pB / |b(x 5(0)ldu(z) < C, (2.2)
and for any two doubling balls B, S, such that B C S,
Imp(b) —ms(b)| < CKps, (2.3)
where
1
mp(b / du(x). 24
B(b) = (B b(z)du(x) (2.4)

The minimal constant C' appearing in (2.2), (2.3) is defined as the RBMO(u) norm of f
and denoted by ||b][+ or ||bllrBmoO(y)-

Now, we recall the definition of function space Lip(8) introduced by Zhou and Wang [23].

Definition 2.5 Suppose that 8 € (0,1], we say that the function f : X — C satisfies a
Lipschitz condition of order [ provided that

[f(x) = f(y)] < Oz, d(z,y))

3w

(2.5)
for every x,y € X and the smallest constant in this inequality will be denoted by || f||Lip(s)-

It is easy to see that the linear space with the norm ||.|[r;p(5) is @ Banach space, and we call
it Lip(8). The following Morrey MP(k, 1) and weak Morrey space W MP(k, 1) appear in [2];
see also [17].

Definition 2.6 Let k> 1 and 1 < ¢ <p < 0o. Define

Mg (k, 1) = {f € Lige : 1 fllarz (rgy < 00}, (2.6)

where
1

1 ggcen = supn(kB)s = ([ 1) (27)

Definition 2.7 Letk > 1 and 1 < g < p < oo. We say that f belongs to weak Morrey space
WMk, ) if

11w asy o = sup (kB)? ™3 supNiu({ € B |f(@)] > AP)T <00 (28)
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Cao and Zhou showed in their paper [2] that for different k& the Morrey spaces M. Lk, ) are
equivalent with each other.

Lemma 2.2 Let k,r > 1. Then
M (k, p) = ME(r, p). (2.9)

The following e-weak reverse doubling condition was introduced by Fu, Yang and Yuan in
[9].
Definition 2.8 Let € € (0,00). A dominating function X is satisfying the e-weak reverse

doubling condition if, for all v € (0,2diam(X)) and a € (1,2diam@), there exists a number

T

C(a) € [1,00), depending only on a,r and X, such that for all x € X,
Az, ar) > Ca)A(z,r), (2.10)

and moreover,

1
— < 0. (2.11)
2 T
Remark 2.2 (i) It is easy to see that if &1 < €2, then A also satisfies the eo-weak reverse
doubling condition.
(ii) Assume that diam(X') = co. For any fixed z € X, we know that
lim A(z,r) =0, lim A(z,r) = oo. (2.12)

r—0 T—00

(iii) Tt is easy to see that the e-weak reverse doubling condition is much weaker than the
assumption introduced by Bui and Duong in [1]: There exists m € (0,00) such that for all
x € X and a,r € (0,00), AN(z,ar) = a™A(x,r).

Finally, we give the (L9 (u) x L% (u), L®(1)) boundedness of general integral operator I, 2,
which can be found in [3].

Lemma 2.3 Suppose 1 < ¢; < 00, o; >0, L =

) S;

1
qi n

a=aj + ay. If I is bounded from L*(p) x L'(u) to L2n=a""(u), then there exits a positive

constant C' such that

— % fori=1,2. Let =+ L =1 and
n 1 S2

S S

[ Ta,2(f1, f2)]

Lo (n) < CHleL‘“ (M)||f2HL‘”(M)'

3 The Proofs of Theorems 1.1-1.3

In this section, we always suppose that the point x # y, B is the ball with center x and
radius r = d(z,y), obviously 2B C B(y,3r) = 3B(y,r). First, we prove Theorem 1.1.

Proof of Theorem 1.1 For any ball B C X, let fj(-J = fixem, f5° = fj — fixem, 3 =1,2,
and set
hp = mp[la2(f7°, f2) + Lo (f1, £5°) + La2(f1°, 5°))-
Then
1

WB)/BUQ,Q(fl,fz)(J?) —mz(Ia2(f1, f2))|dp(z)
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< 55y J, Mol 2)(@) = hol du(@) + s — hg|
+ |hg = mpaz(f1, f2))]
< 55y J, Mol 2)(@) = hol du(@) + s — h|
1
s [ Mol 2000) gl .

and for any two (6, 3s) doubling balls B C 5,

Imp(La,2(f1, f2)) — ms(Ia2(f1, f2))]
<|mp(la2(f1, f2)) = hel + |he = hs| + |hs — ms(la2(f1, f2))]

C
= (6B) /B [Iao(f1, f2)(x) — hpldu(z) + |h — hg]
C
+ 2(65) /s |Ia2(f1, f2)(x) — hs|du(z). 52)

Therefore, to prove Theorem 1.1, it suffices to show that for any ball B,
1
557 [ el (@) = hold(a) < © H il 5. (33)
and that for all balls B C S with S being (6, 3s)-doubling,

|hg — hs| < CKp.s H ||fJHMp] (3,m)°

Jj=1

Let us prove (3.3) firstly. Write
o a2 f2)(@) — hsldu(o)
W o,2 f1,f2 r) — hpldp(x

1 1 5o £0) ()
(GB)/ e ) @n(e) + s [ (a2, 1))

—mp(La2(f7°, ) + Lap(f7, £5°) (@ )—mB( az(f?,fzo‘)))l
+|Ia2(ffovfgo)( )_ (aQ(fl 7.f2 ))D

557 [ Mealit D @duta w//

/ | Kl - K(y,zl,mﬂm 2)ldu(z:)
X\2B

=1

2
+/X\2B/23 |Ka(x’21722)_Ko‘(y’zl’Z?)'H|fi(zz‘)|du(2¢)

i=1

/X\QB /X\QB (@, 21, 22) = Kaly, 21, 22)| H |.fi(2i)|d,u(2i))d,u(d?)d'u(y)

1=1

— B 63 / / (Ez + Es + Eq)dp(z)dp(y). (3.5)

(
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Therefore, to prove (3 3), we need only to prove that E; < C H ||fJ||M B) fori=1,---,4.
Suppose that %L — for j = 1,2, a =a; +as and 6 = (51 —i— O, Where 01,09 > 0. Let us
estimate F ﬁrst For 5= % — =, by Holder’s inequality and Lemma 2.3, we get
3 1
B < o ([ Va2 )@ duta)) ()’
1 - -
<cu6B) ([ 1htolmant) " ([ IhGlmduta)
2B 2B
1
11 a1
= (B ([ 1A du(e)
2B
1
a1 a
< ul6B)FE ([ (aCea)Pu(e)) ™
2B
2
< O Ty oy (3.6)
J:

Now we estimate Es. Fs3 can be done in the same way by notice the fact that A(z,r) <
CA(y,r) if d(x,y) < r. Using (1.6), Holder’s inequality, (2.9) and (2.11), we have

Aa, d(z,y) = | f1(21) f2(22))]
EQ < C P d Z1 d z9
/ /X\Q ZQ A, d(x, Zl))r—;‘*'; #z)du(z)

1:1

1

< CA(w, d(w, ) * p(2B)' 71 / MG dutz)) ™
% i/ |f2(22)| 7dM(Z2)

— Jyripain ANz, d(z, 22)) 250

_L )
< Ollallaszy (3,40 1(6B)' 7 A, d(w, y)) »

/

XZ(/W e mauen) FLETB

/\(JZ,ZZT)Q_%JF%
145 L
< Cllfillaezs . ||f2HM5§(27M))‘($76T) nR
Z W21 )i (212 B)i s

Mz, 2ir)2=5+%

5 Az, 21F27) “hs
< Cllftllagzs @ fellaazz 2 A ) Z Mo Zrp AT

148 L
< Cllfllagss ol Follagzz oy Mara ) 577

<D M)A o@E A

2
< CH ”fjHM;'jj(&u)' (3.7)
j=1
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By the condition (1.6), Holder’s inequality and (2.9), we also obtain

s |f1(21) f2(22)] (s
By < OAw,d(,)) ‘[;@Bja\ﬂg[fiA@derz)ﬂQ_%+%d#(lth )
) - [£5(25)] ;
< Oz, d(z,y)) Jl:[/X\w (.o E dp(z5)

s\%

< Oz, d(, 1)) () du(z) )

()

7+IB\2LB

dp(z;) A
* (/ i i 5 4 % /) !
2i+1B\2i B )\(x,d(a:,z-))( -9

8

1
/.
J

2 . L_L .
‘ (u(2772B))% 7 (u(2"*1 B))
< Oz, d(z,y)) ™ > il
'1;[11:1 P May (20 Az, 207 1r) SR

<

A

_n)\x T‘)qJ ”lf/\(x r)%

Az, 7")1_7]4‘67]

< CNz,d(z,y)) HHfJ”MpJ@,u)Z

i __J

< CNz,d(z,y) "HHfjHngj(zu ZC ’

<cIIme ) .
Jj=1

Inequalities from (3.5) to (3.8) yield (3.3).
Next, we show (3.4) for chosen hp and hg. Denote the smallest positive integer N such
that 25 C 6" B simply by N;. Write

|hp — hs|
< Imp(la2(fixen B\2s: fox2B))| + Imp(la2(fixzs, faXenv Br2B))]
+ImpLa2(fixen p\2ss f2Xen pr28))| + [Mms(Ta,2(fiXen: B\2ss fax2s))]
+ Ims(La2(fixes, foxev: py2s))] + [ms (L2 (fixen: p2s: f2Xem Br2s))]
+ Impe(La2(fixae By f2xem B)) — Ms(La2(fiXaev By f2X6m B))
+ Imp(La2(fixe™ By f2Xx\6%1 B)) — Ms(La,2(f1XeM B> f2Xx\6%1B))]
(La2(

+ mp (a2
9

— ZFZ (3.9)
i=1

By the size condition (1.5), Holder’s inequality and the fact that % =

leX\GNlBa fZXX\GNl B)) —ms(la2 (f1XX\6N1Ba fZXX\GNlB))|

11
b T
a2 (fixey pr2ss f2x28)(Y)]

Ni—1

f1(z1) f2(22)]
<C Z 3 S du(z2) dp(z1)
/k+1B\6kB ~/ZB ( ; My, d(y, Zz))) h
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|f1(21) f2(22)|
/B\QB/ Z Ay, d y,zi)))Q_%

k+2 1—
<c “Egmgl_
k=1 K

2
= Mep, 6Frp)2~ % H/ﬁk+1 | fi(zi)| dp(z;)
1— o

731

dpu(z2) dpu(z1)

o
2n

o

2

p(6°B)' 3 /
a 1 (3 d (3
R Y CB,ZTB H filz)l dpu(z)
- Pt )\(CB,Gk+2TB) (6k+QB) )\(CB 6k+2’l”B) 3
2 o
5 . ar 62B)'~ =
< [Lnte+5)% ( / Al auz)) ™+ 20D
i=1 GrriB

/\(CB, 627']3)1_%
1 2

e eE L ([, her au(=1)) " u(6B)’

N;—1

p(6*2B) 15
gc[[llfjl\M;jj(w(H Z::l (m) 2 )
< OKéns H ”fJHMpJ 3,1)°

1
_/
k3

(3.10)
Jj=1
Hence
< OK];”S H HfJ”MpJ (3,1)"
Jj=1
Similarly, we see that
I < OKéns H HfJ”MpJ (3,1)
7j=1
and

Fy+ Fs < CK H 1 £illngzs (300
Jj=1

On the other hand, it follows from (1.5), (1.3) and (1.4) that for all y € B

a2 (fixen: g\2ss f2X6M B\2) (V)]
Ni—1
<C

| f1(21) fa(22)] du(zz) du(z,
;/(61«“3\6’%‘3)2 (22: ( (%%)))2_% Iu( ) Iu( )
1=1
/ |[f1(z1) fa(22)] du(z2) dp(21)
(6B\2B)> E Ay, d(y, )))2_W
6k+2B)1
Z

k+2 31—
= w(6+T2B)

K3 1 d 1
2n )\(CB Gk’I”B H/ﬁk+1 |f “i | ,LL(Z)
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N 2
w(62B)1 2 1 /
= = i(zi)| dplz
p(62B) 2 (03727“3)2_711;[1 GB|f( )l duz:)
~ 2
CKg's H IfJHMPJ B1)’ (3.11)

which implies
Fy < CK 3 H 1730 g2 (3.
j=1
Analogously,
Fs < CKFg H 171l 0123 5.0
j=1

Now, we estimate Fg. Fr can be done in the same way. Notice that

ﬁm/}g‘/s|Io¢72(f1X6NlBaf2XX\6N1B)(y)

— Lo 2(fixem Bs fQXX\GNl B)(2)du(z) du(y),

Fg <

while, by a familiar argument similar to that used in the estimate for Fs,

a2(f1X6M B f2XX\6N1B)(y) — Lo 2(f1XeM B> f2XX\6N1B 2)| <C H ||f]||]\/[ (3,1)
Jj=1

Therefore

F8<OH||fJHM (3,1)"

Jj=1

Finally, using the same method that appeared in the estimate for E4, we can get
2
Fy < CH ”fJHM (3,1)"
j=1

Combining all the estimates for F; with¢ =1,--- |9, we get (3.9), which completes the proof
of Theorem 1.1.

Proof of Theorem 1.2 For any =,y € &, it suffices to prove

Laa(f1, f2)(@) = Laa(fr, f2) )| < CN (@, d(x,y))] %> H 1Fill a3 (3,00 (3.12)

Jj=1

Write

a2 (f1, f2)(@) = La2(f1, f2)()]

<[/ B|Ka<x,zl,zQ>|ﬁ|fi<zi>|du<zi>
S AR LV Clan(e)

=1
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2
’ ~/2B ~/X\23 (Ko (2,21, 22) = Kal(y, 21, 22)| H |fi(z:)|du(z:)

=1
2
/ / (2,21, 22) — Kaly, 21, 22)] ] 1fi(0)lduz:)

X\2B i=1

2

+ / / Kalz, 21, 22) — Kaly, 21, 22)| [] fi(z0)lda(z:)
X\ZB X\2B =1
=G1+ Gy + G334+ G4+ Gs. (313)

Suppose % = pij for j = 1,2, § = d1 + 02, where 1, J2 > 0. We estimate G firstly. Noticing
the fact (1.4), G2 can be done in the same way. Apply the size condition (1.5), Holder’s
inequality, e-weak reverse doubling condition of dominating function A\ and Lemma 2.2, we can
get

Gi < H/ 173(z3)] dp(z;)

2B A, d(z, ;)1 =+

([ e anen) ™ ( [, e us)

i1 p277TB) N
1570 00 48) )"
] 2.0 Jz::() Az, 2-9r) 1=

<
Il
—

IN
Q
Ew

J

IA
|| Ew

> 1

<C H”fJHM (J? 47’)3_%( )\($,2_j )1 (1__1) ) .

=t =0
<cTLIs —J—L(i Ly
- 7] 2 (&g !

j=1 M) im0 C(2 ) W)

g_l
< e dte 1 T Wl (.19
j=1

Secondly, we estimate G5 and G4. Using the fact that 0 < & < % + % < % + p% + 1, an
argument similar to that used in the estimate for Es, we have

146 L
Gz + Gy < C||f1||MP1 3,u)Hf2||M (2, #)/\(x r) T

x 3" Ma,r) i Tm o) e
i=1
g_l
< O, d(z,9))* anjnMpJ o (3.15)

Jj=1
Finally, we estimate G5. Applying the same method to estimate Fy, we can get

G5 < CA(z,d(x,y)) H”fJHM (2,1)

1
o0 L o
J

1% i j
T P GO AP CX

o 5
i=1 Az, r)i=5 s
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o 1% Ceg 19
< C)\(i[' d {E y H ||fJHM 2.) (il' ’f') pj n ZC(QZ) no pj n
=1 i=1
g_l
< CX(z,d(z,y))» "7 H HfjHMp] B)° (3.16)

=1

Combining inequalities (3.13) to (3.16), we finish the prove of equality (3.12), so we have
finished the prove of Theorem 1.2.

Proof of Theorem 1.3 To prove the inequalities (1.10) and (1.11), we need only to prove

1 2
pB) ([ ot )@ F) < T gy, (3.17)
j=1
and
pBB)P T SN a({w € B Lo (fr, f2)(@)] > A})*
>
2
<c]l 131l g2 (3.0 (3.18)
=1
respectively.

Let fJQ = fixen, f{°=fj — fixen, j = 1,2. Firstly, we estimate (3.17). Write

B ([ st @ P aute)

1
1

p68)2 ([ sl el dn(e))
By /lfazfl,fQ ()Isdu(x))%
23 ([ sl @ an)’

B ([ Laalf 5@ (o)

= Hy1+ Hy + Hs + Hy. (3.19)
We estimate H; to H, respectively. Using the fact that % = qil + q% — = and Lemma 2.2, we
have
11 2 =
Hy <Cu(3B)?»~ s H (/ | £5(25) (ZJ)) N
Jj=1
<C H Hfjllngj (34) S CH 1Fill a3 (3,10 (3.20)
j=1 j=1
By the same method to that used in the estimate for Fs in the case - =0 and noticing the
fact that S——+——%, %——<Oand0<a<2n we have

Lo (f7, £5°)(2)]
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Thus

Similarly

1— L
< CHleMgll(B.,,u)Hf2”M52 Q,u))‘ z,r) Z

| f1(21) f2(22)]
<c / /X . —dpu(z1)dp(z2)

2
Z Mz, d(z, 21))} !

= Az, 2”’2

= AMx,2r)

g_l
< CA(w,r)" 77 H 1308z 3.

Jj=1
< CA(w,3r)1 79+ H 1308z 3.0
< Cu(3B)a >+ H 511727 3y
2
Hy < CHHf]HMpJ(:;N
=1

i < cHHfJHMpJ(g o

j=1

735

“ b2

(3.21)

(3.22)

By the same method to that used in the estimate for F, in the case that % =% ‘;—2 =0,

one gets

So

|Ia 2(f1007fé>o)(x)|

11
a; pj

1
p(22B)T T (2 ”13)“9‘
<C | [ 1151l E
j=1 ’ M 2#) )\(1‘,27‘)1

2
g_l
< CA(z, 7)™ pH”fJHM (3,0)

2
a_ 1
< ON(w,3r)» ¥ H|\fj||MpJ(3m

2
< Cp(3B)i " H 130123 3.y

2
Hy < CTLillags 5.

j=1

Therefore (3.17) has been proved.
Next, we prove (3.18), write

u(3B)»~a sup(Np({z € B : [Ino(f1, f2)(x)] > A}))*

1
B

A>0

(3.24)

(3.25)
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1
s

s =

p(B)s~dsup (i ({o € B Ll ) (o) > %}))

+uEB) s (Va({v € B Lol )@ > 3

T =
k)

u(aB)> s sup (V{2 € B oo (777, @) > §

+u(38)7 5 sup (N ({w € B a7, 15°) ()] > %}))

A>0
= My + Mo + Mg + My. (326)
We first estimate M7. Due to the fact that + L — 2 Lemma 2.3 and Lemma 2.2,

q1 q2

Au({z € B 1aals?. 5)(a)| > 2}))é

1

<[ Waa( (a2 duta)
<o [ iaGmant)" / [ |t mdnten))

1_1
< Cu(3B)a 7 H 1 Fillagzs s

< Cu(3B)a~» HIIfJIIM B (3.27)
So
M, < CH 130125 3.0 (3.28)
7j=1

Now, we estimate My. Mj3 can be done in the same way. By Lemma 2.3 and inequality
(3.21),

Mo({o € B 1L £5)(@)| > 2}))

<O( [ ot f?)(x)lsd“(@) )

1 1i_1_1
< Cu(B)*u(3B H 151127 3.
1 1 2
< Cu(3B)i™» H 1£ill a2 (3,10 (3.29)
Hence
My <C H 1Fillar23 (3.1 (3.30)

Jj=1
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Due to inequality (3.24), we can get

)\(M({x € B [Lap(f%, f2°)(@)| > 2}))l
<0 [ Mot )@ ante)

s

Thus

2

1 1_1_1
< Cu(B) u3B)Y [T 1l o

j=1
1 1 2
< Cu(3B)a™» H ||fj||ijjf (3,p)" (8:31)
j=1
2
My < CH ||fj||M;’JJ (3.0)° (3.32)
7j=1

Therefore we have finished the prove of Theorem 1.3.
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