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Hessian Comparison and Spectrum Lower Bound of
Almost Hermitian Manifolds*
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Abstract The authors obtain a complex Hessian comparison for almost Hermitian man-
ifolds, which generalizes the Laplacian comparison for almost Hermitian manifolds by
Tossati, and a sharp spectrum lower bound for compact quasi Kahler manifolds and a
sharp complex Hessian comparison on nearly Kahler manifolds that generalize previous
results of Aubin, Li Wang and Tam-Yu.
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1 Introduction

A triple (M, J, g) is called an almost Hermitian manifold if J is an almost complex structure
and ¢ is a J-invariant Riemannian metric. There are two connections, one is the Levi-Civita
connection and the other one is the canonical connection, on almost Hermitian manifolds, that
play important roles on the geometry of almost Hermitian manifolds. The canonical connection
is an extension of the Chern connection [6] on Hermitian manifolds. It was first introduced by
Ehresmann-Libermann [9].

Geometers were used to use the Levi-Civita connection for the study of the geometry of
almost Hermitian manifolds, see for example [1, 13-16]. However, later researches show that
canonical connection is useful for the study of the geometry of almost Hermitian manifolds.
For example, canonical connection is crucial for the study of the structure of nearly Kahler
manifolds in [3, 24-25]. In [30], Tossati, Weinkove and Yau used the canonical connection to
solve the Calabi-Yau equation on almost Kahler manifolds. The problem that Tossati, Weinkove
and Yau considered is part of a program proposed by Donaldson [7-8] on sympletic topology. In
[29], Tossati obtained a Laplacian comparison result about the canonical connection on almost
Hermitian manifolds using the second variation of arc length and obtained a Schwartz lemma
on almost Hermitian manifolds which is a generalization of the Schwartz lemma by Yau [31].

In this paper, by applying the same Bochner technique as in [22], we obtain a Hessian
comparison on almost Hermitian manifolds which generalises Tossati’s Laplacian comparison
(see [29]). More precisely, we obtain the following result.
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Theorem 1.1 Let (M, J,g) be a complete almost Hermitian manifold with holomorphic
bisectional curvature bounded from below by —K with K > 0, torsion bounded by Ay and the
(2,0) part of the curvature tensor bounded by As. Let o be a fized point in M and p be the
distance function to o. Then

Pz = (% + C)gij (1.1)

1
within the cut-locus of o where C' = ((8\/54— 2)A% +4A5 + 2K) *. Here p;z means the complex
Hessian of p with respect to the canonical connection.

Moreover, with the same technique, we obtain the following sharp diameter estimate for
almost Hermitian manifolds.

Theorem 1.2 Let (M, J,g) be a complete almost Hermitian manifold with quasi holomor-

phic sectional curvature not less than K > 0. Then d(M) < #

For the definition of quasi holomorphic sectional curvature, see Definition 3.2. It extends the
notion with the same name for Hermitian manifolds in [4] to almost Hermitian manifolds. In
fact, the above diameter estimate was disguised with a seemingly different curvature assumption
in [14]. However, one can show that the two curvature assumptions are the same by using the
curvature identities derived in [32]. The same diameter estimate for Hermitian manifolds was
also obtained in [4].

Our method to prove Theorem 1.1 and Theorem 1.2 is different from those in [4, 14, 29] where
the authors all used the second variation of arc length. Our method here is first to compute
the evolution ordinary differential equation of the Hessian of p along a normal geodesic which
turns out to be a matrix Riccati equation. Then the comparison theorems for matrix Riccati
of Royden [27] gives us the conclusions directly. The technique was used in [22].

Furthermore, by using a similar technique as in [2, 11], we have the following sharp spectrum
lower bound for compact quasi Kahler manifolds.

Theorem 1.3 Let (M, J,g) be a compact quasi Kihler manifold with the quasi Ricci cur-
vature bounded from below by a positive constant K. Then Ay > 2K, where \1 is the first
eigenvalue for the Laplacian operator of (M, g).

For the definition of quasi Ricci curvature, see Definition 4.1. In fact, this result gener-
alizes the corresponding result of Aubin [2] on compact Kéhler manifolds to compact quasi
Kéhler manifolds. Moreover, note that the equality in the result is not only achieved by CP"
with Fubini-Study metric but also be achieved by non-K&hler manifolds. For example, the
six dimensional sphere with the standard complex structure and standard metric. Moreover,
one should note that the quasi Kéhler structure is crucial for the sharp spectrum lower bound
above. By a classical result of Lichnerowicz [23], the specturm lower bound for n dimensional
compact Riemannian manifolds with Ricci curvature not less than (n — 1)K is nK. It was
shown by Obata [26] that the equality holds if and only if the manifold is a round sphere. The
sharp spectrum lower bound of Lichnerowicz is not sharp for quasi Kéahler manifolds.

Finally, we obtain a sharp Hessian comparison on nearly Kahler manifolds which generalizes
some results in [22, 28] on Kédhler manifolds.
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Theorem 1.4 Let (M, J,g) be a complete nearly Kihler manifold and o be a fized point in
M. Let B,(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic
bisectional curvature on B,(R) is not less than K, where K is a constant. Then

| K K
5 cot ( Ep) (95 — 2pip;) + V2K cot (Vv 2Kp)pip;-, K >0,

1
Pij < ;(gij — piP7); K =0, (1.2)
K K
\/ 5 coth ( —Ep) (9:5 — 2pip;) + V—2K coth(V—2Kp)pip;, K <0

in Bo(R) with equality holds all over B,(R) if and only if B,(R) is holomorphic and isometric
equivalent to the geodesic ball with radius R in the Kdhler space form of constant holomorphic

bisectional curvature K, where p is the distance function to the fixed point o.

For the definition of quasi holomorphic bisectional curvature, see Definition 5.1. By the
application of the Hessian comparison above, we can obtain eigenvalue comparison and volume
comparison on nearly Kdhler manifolds by classical arguments. Please see Section 5 for details.

Note that in [30], Tossati, Weinkove and Yau introduced a new notion of curvature that
couples up the (1, 1)-part of the curvature tensor and the torsion of the canonical connection on
almost Kéhler manifolds and is crucial for solving the Calabi-Yau equation on almost Kéahler
manifolds. In this paper, the new notions of curvature defined are different with that of Tossati,
Weinkove and Yau. We hope that the new notions of curvature introduced here for almost
Hermitian manifolds, quasi Ké&hler manifolds and nearly Kéhler manifolds have some further
applications.

The outline of the paper is as follows. In Section 2, we recall some preliminaries in almost
Hermitian geometry and generalized Kahler geometry. In Section 3, we prove Theorem 1.1 and
Theorem 1.2. In Section 4, we prove Theorem 1.3. Finally, in Section 5, we prove Thereom 1.4
and present some of its corollaries.

2 Preliminaries

In this section, we recall some definitions and known results for almost Hermitian manifolds,
quasi Kéhler manifolds and nearly Kéhler manifolds.

Definition 2.1 (see [12, 19-20]) Let (M, .J) be an almost complex manifold. A Rieman-
nian metric g on M such that g(JX,JY) = g(X,Y) for any two tangent vectors X and Y is
called an almost Hermitian metric. The triple (M, J, g) is called an almost Hermitian manifold.
The two form wy, = g(JX,Y) is called the fundamental form of the almost Hermitian manifold.
A connection V on an almost Hermitian manifold (M, J,g) such that Vg =0 and V.J =0 is
called an almost Hermitian connection.

Note that the torsion 7 of the connection V is a vector-valued two form defined as
7(X,Y)=VxY - VyX — [X,Y]. (2.1)

An almost Hermitian connection is uniquely determined by its (1, 1)-part. In particular, there
is a unique almost Hermitian connection with vanishing (1, 1)-part. Such a connection is called
the canonical connection which was first introduced by Ehresman and Libermann [9].
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Definition 2.2 (see [19-20]) The unique almost Hermitian connection V on an almost
Hermitian manifold (M, J,g) with vanishing (1,1)-part of the torsion is called the canonical
connection of the almost Hermitian manifold.

For sake of convenience, we adopt the following conventions in the remaining part of this
paper:

(1) Without further indications, the manifold is of real dimension 2n.

(2) D denotes the Levi-Civita connection and R* denotes its curvature tensor and “,” means
taking covariant derivatives with respect to D.

(3) V denotes the canonical connection, R denotes the curvature tensor of V and “;” means
taking covariant derivatives with respect to V.

(4) Without further indications, a, b, ¢,d denote indices in {1,1,--- ,n,n}.

(5) Without further indications, i, j, k, [ denote indices in {1,2,--- ,n}.

(6) Without further indications, a, 8, A, u, v denote summation indices going through {1,
2,--,n}.

Recall the definition of curvature operator:
R(X,Y)Z =VxVyZ -VyVxZ —VxyZ. (2.2)

The curvature tensor is defined as

R(X,Y,Z,W) = (R(Z,W)X,Y). (2.3)
Fixed a unitary (1,0)-frame (e1, €9, - ,e,), since VJ = 0, we have
Rijas =R/, =0 (2.4)

for all indices 7, j and a, b. Moreover, similarly as in the Riemannian case, we have the following

symmetries of the curvature tensor:
Rabcd = _Rbacd = _Rabdc (25)

for all indices a,b, ¢ and d. Recall that R/, = ngmab and R;’j = gﬁ’\Rﬁ s are called the first
and the second Ricci curvature of the almost Hermitian metric g respectively.

The following first Bianchi identities for almost Hermitian manifolds are frequently used in
the computations of the remaining part of this paper. One can find them in [19, 30, 32].

Proposition 2.1 Let (M, J,g) be an almost Hermitian manifold. Fized a unitary frame,

we have
(1) Rijpg — By = fki — T Ty
(2) Rz]kl Rzlk] = ﬁk - TkAT}\l’
(3) Rigi — szm = T+ T~ T TR T
(4) Ry = st T Tkl

The following general Ricci identity for commuting indices of covariant derivatives is useful
for computation. One can find it in [10].
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Lemma 2.1 Let M™ be a smooth manifold, and E be a vector bundle on M. Let D be a
connection on E and V be a connection on M with torsion 7. Then

D*s(X,Y) — D*s(Y,X) = —R(X,Y)s + D,(x,y)s

for any cross section s of E, and tangent vector fields X and Y .
Applying Lemma 2.1 to £ = ®"T*M, we have the following corollary.
Corollary 2.1 Let (M",g) be a Riemannian manifold and D be a connection on M com-

patible with g and with torsion 7. Let Ty, qy...a, be a tensor on M. Then

Talagvvvar;bc - Ta1a2"'ar§6b

= Raxbe0™ Thas-ar + Ragaved™ Tayppar, + -+ Rayxoed™ Tayan-p + T Taras--apin-  (2.6)
Directly by the Corollary 2.1, we have
(s (27)
and
Jig — Jii :Ti)\jf)\_FTng (2.8)

for any smooth function f on almost Hermitian manifolds since T% =0.
Moreover, recall the following difference of Levi-Civita connection and another compatible
connection on Riemannian manifolds.

Lemma 2.2 (see [10, 12, 30]) Let (M,g) be a Riemannian manifold and D be the Levi-
Clivita connection. Let V be another connection on M compatible with g and with torsion T.
Then

(Dy X — Vy X, Z) = %(@(x, V), 2) + (+(Y, 2), X) — (r(Z, X), Y)).

By using Lemma 2.2 directly, we have the following relation of the Hessian and divergence
operators with respect to the Levi-Civita connection and another compatible connection.

Lemma 2.3 Let (M, g) be a Riemannian manifold and D be the Levi-Civita connection.
Let V be another connection on M compatible with g and with torsion 7. Let f be a smooth
function. Then

V2f(X,Y) - D?*f(X,Y)

= %KT(X, V), V) + (Y, V), X) = (7(Vf,X),Y)]. (2.9)

Proof By the definition of Hessian, we have
V2f(X.Y) - D*f(X,Y) = (DyX — Vy X, V). (2.10)
Then, Lemma 2.2 gives us the conclusion directly.

Applying Lemma 2.3 to almost Hermitian manifolds, we get the following corollaries.
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Corollary 2.2 On an almost Hermitian manifold, fixed a unitary frame,

Lo 7
fig = L5 = 5 (TS5 + 75500, (2.11)
1 X J i
fiz = fag = §(Tz§fA+T$fx+TfAfx+TjAfX) (2.12)
and
Af =AM =T+ 75 (2.13)
where “,” means taking covariant derivatives with respect to the Levi-Civita connection and A"

is the Laplacz'an operator with respect to the Levi-Civita connection.
Similarly, we have the following comparison of divergence operators.

Lemma 2.4 Let X be a vector field on an almost Hermitian manifold M and fixed a unitary
frame. Then

div X —div X = X 7! +Xk# (2.14)

A’
where div X = X)g\ + XA— is the divergence of X with respect to the canonical connection and
div 1 X 1is the dwergence of X with respect to the Levi-Civita connection.

Next, recall the definition of quasi K&hler manifolds.

Definition 2.3 An almost Hermitian manifold (M, J, g) is called a quasi Kdhler manifold
if Owy = (dwy)™? = 0.

The following criterion for quasi Kahlerity is well known.

Proposition 2.2 (see [19, 30]) Let (M, J,g) be an almost Hermitian manifold. Then, it is
quasi Kdhler if and only if Tikj =0 for any i,j and k.

Applying Proposition 2.2 to Proposition 2.1, we have the following first Bianchi identities
on quasi Kahler manifolds.

Corollary 2.3 Let (M, J,g) be an quasi Kdahler manifold. Fized a unitary frame, we have

(1) R — Rk}ﬂ = _Tiil\chJ—A;
(2

) R
S S (S S
(3) Rijpp — kli} = _ch,\Tjﬁ Ty
(4) R

Applying Proposition 2.2 to Corollary 2.2 and Lemma 2.4, we have the following corollary.

R A
ijkl zlkj_ TxT5p
1gkl kl;;'

Corollary 2.4 Let (M,g,J) be a quasi Kihler manifold. Then [ = fﬁ, Af=ALf and
divX =divp X.

Finally, recall the definition of nearly Kéahler manifolds.

Definition 2.4 Let (M, J,g) be an almost Hermitian manifold. It is called nearly Kdahler
if (DxJ)X =0 for any tangent vector X.
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For nearly Kéhler manifolds, the difference between canonical connection and Levi-Civita
connection becomes simpler.

Lemma 2.5 (see [16]) Let (M, J,g) be a nearly Kihler manifold. Then

1
VXY:DXY—gJ(DXJ)(Y) (2.15)
for any tangent vector fields X and Y. In particular,
VxX =DxX

for any tangent vector field X .
The following criterion for nearly Kéahler manifold is well known, see for example [24-25].

Lemma 2.6 An almost Hermitian manifold (M, J, g) is nearly Kahler if and only if Tikj =

and TE = jk for alli,j and k when we fiz a (1,0)-frame.

Nearly Kéahler manifolds have an important property, that is, the torsion of the canonical
connection is parallel.

Theorem 2.1 (see [18, 32]) Let (M, J,g) be a nearly Kdihler manifold. Then VT = 0.

Applying Lemma 2.6 and Theorem 2.1 to Proposition 2.1, we have the following first Bianchi
identities for nearly Kéhler manifolds.

Corollary 2.5 Let (M, J,g) be a nearly Kihler manifold and fized a unitary frame. Then
(1) Rﬁkz =0;

A

( ) igkl k]zl —TikT5 g’

— by )\

( ) igkl zlk] = T TikT bk
( ) z]kl kle

By (4) of the above corollary, the first Ricci curvature and second Ricci curvature for nearly
Kéhler manifolds coincides, so we simply denote them as R,;.

3 Hessian Comparison and Diameter Estimate on Almost
Hermitian Manifolds

In this section, we generalize the results in [22, 28-29] to almost Hermitian manifolds. The
same as in Tosatti [29], we make the following definition about the bound-ness of the curvatures
of an almost Hermitian manifold.

Definition 3.1 Let (M, J, g) be an almost Hermitian manifold. We say that the holomor-
phic bisectional curvature of (M, J, g) is bounded from below by K if

R(X,X,Y,Y) > K| X|]*|Y]? (3.1)
for any X, Y € TYOM. We say that the torsion of (M, J,g) is bounded by Ay if

(X V) < A XY (3.2)
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for any X, Y € TYOM. We say that the (2,0) part of the curvature tensor of (M,J,g) is

bounded by As if
[R(X,Y,Y, X)| < Ao X |2 Y]

for any X,Y € THOM.

(3.3)

Let (M, J, g) be an almost Hermitian manifold. We denote its distance function to a fixed

point o as p. Similarly as in Li-Wang [22], we have the following.

Lemma 3.1 Fized a unitary frame (e1,ea, -+ ,€y,), we have
Prapx + PAPx, = 0.
Proof Note that pypy = % Hence
0= (pPrpx)a = PraPx + PAPX.-
Lemma 3.2 Fized a unitary frame (e1,ea, -+ ,ey,), we have

PrivP7 + PrimPv
= —PPTk = PETIPAL — PRXTIsPr — PukPyT — PAKTAPY — PETOLPST

A v oA
— Ry, + 7077 )p—p— (Ryzo7 + Tiu T ) papy — (Bxuq + i ey + Tfszﬁ)pApv.

Proof Note that p,py = % Hence

0= (Pupv)ki

= PukPo + PLIPTE T P PT T PoiiPy

= pukPoy + PPk + (v + ToWpx + Tgkﬁ)zﬁ + Pmpu

= PukPyi + Pyiook + (i + ) oeiPA T T ToRPx T, oeiPx T o) Py
+ (pii + Rysogpr + 72 lpm +7 lpkA)py
= PukPyi + Pyipok + (D7, + Rysyipr + Toiox + 70 2 iPx F ToRPxs T TowPx)Pm
+ (P43 + Rizzon + T,me + T,Zpk;)py

= pukPpi + Pyipok + [Py, + Ryxpior — Tky/’/\ + (Rpyn + T T D)Px + TORPAT
+ 1% (o7 + T + TP P+ (D43 + Rixoapa + T40kN + T305) Py

= (D107 + PrioPv) + PyiPok + PEToRPAL + PRSPy + Dok + PINTN P + PITRPT
+ BpnPspr + Bixgioape + B xaoape

(3.6)

= (pkz,,pv + PyipPy) + PP+ PETOPAL + PRxToyPy  PukPyg + (P + TiAPu T PE) TP

+ puTon (31 + Thpu + Them) + Rispxw + Rispioane + Rzaoapy
= (D107 + PripPv) + PPk + PETON + PIxTa Py T PukPoi  PAKTL00 + PP
+ (Rpyp + 775 )P‘Pu + (Ryxor + Tkung)p)\pV + (R,zp5 + T + T ZH)PAP—

where we have used Proposition 2.1 and Corollary 2.1. This completes the proof.

(3.7)
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Theorem 3.1 Let (M, J,g) be a complete almost Hermitian manifold with holomorphic
bisectional curvature bounded from blow by —K with K > 0, torsion bounded by Ai and the
(2,0) part of the curvature tensor bounded by As. Then

pij < (% + C)gij (3.8)

within the cut-locus of o, where C' = ((8y/n + 2)A? + 44, + 2K)%.

Proof Let v be a normal geodesic starting from o. Let (e, es,- -+, e,) be a parallel unitary
frame along . Let

N
Il
A

ol
3

LA =12, ,n
Ryxot + Thp ) PAPY ) =1 ..

(

R ~-+ no_v + v >\) 7)l:l72,---7n
(B x4+ T P51+ Tk T ) PAPE) k=1 3,
Then, by Lemma 3.2, we know that

(ii—X+X2+AX+XA*
P

=-B*B-B*C-C*B—(D+D*)—E
=—-(B"+C)(B+C)+CC—-(D+D")-FE
<C*C—-(D+D*)-E. (3.9)

Moreover, for any column vector u, we have

1
uw*C*Cu = ||Cul|* < §A%Hu|\2, (3.10)
n B 1 )
> WBygapapsu| < 5 As]jul (3.11)
kL )\ v=1
and
’ Uk Ty PAT 7P UL ’
kL p,v=1
(X X wrdum] ) (2] 3 apou])
p=1 k=1 p=1 lv=1
1 n n %
<= (X [Xmm] ) < Zs il
\/5 Ap=1 k=1 \/5
< ARl (3.12)
So,

—u*(D + D*)u < (Az + vnA?)||ul?. (3.13)
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Furthermore,

n

_ 1
= > WRyggpspun < SKul?
kA pu=1

and, similar as in (3.12)

n

S wlrl s+ e < VaAdul

kA p,v=1
Hence
1
B (51( + \/EA%) 2.
Combining (3.9)—(3.10), (3.13) and (3.16), we get

ax

1 + X2+ AX + XA* < €I,
P

where
(2\/_+ )A2+A2+2K.

Moreover, by Corollary 2.2, and that

—_

P~ ;(% = Prpy)

as p — 0T (see for example [28]), we have

as p— 0.
Let Y = (L 42¢2)1,. Note that

(A+ A%) > —V2A,1,, ¢&>243

and (3.17). We have

(;—Y+Y2+AY+YA*

( ) (—+2§%)(A+A*)

l(452 CVBAL, + (46 — 23 A,
Zﬂn

X
Zd—+X2+AX+XA*.
P

Moreover,

C. J Yu

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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as p — 07 by (3.20). By comparison of matrix Ricatti equations in [27], we have
X(p) <Y(p) (3.23)

for all p within the cut-locus of 0. This completes the proof of the theorem.

In the following, we give a sharp diameter estimate for almost Hermitian manifolds. We
first extend the notion of quasi-holomorphic sectional curvature in [4] for Hermitian manifolds

to almost Hermitian manifolds.

Definition 3.2 Let (M, J,g) be an almost Hermitian manifold. Let X be a real unit vector
on M. Define the quasi holomorphic sectional curvature QH(X) as

QH(X) = Ryqy7 — Z A+ AP (3.24)

where we have fized a unitary frame (e1,ea,: -+ ,e,) with e; = %(X —v-1JX).

Remark 3.1 When the complex structure is integrable, the definition of quasi holomorphic
sectional curvature is the same as that in [4].

Theorem 3.2 Let (M, J,g) be a complete almost Hermitian manifold and the quasi holo-

™

morphic sectional curvature is not less than K > 0. Then d(M) < 7K

Proof Fixed a unitary frame (e, ez, - ,e,), using Lemmas 3.1-3.2, noting that 7 and R
are both skew symmetric, we have

L (. paps)
dp PogPalPB

= (PagPars)upi + (PagPars)upu
= (PaguPm + PugpPu) Paps + Pog(Panpi + Pampu)Ps + PappalPsupm + Peupy)
= —(p, 3P0 + PET PG + paxrﬁ%p# + ol + PaATIGPu T PRl
+ B3, aPxPi + RoxpaPrpu + R 5.503Pp)Paps
+ pog(PumpE + PrEpu + TopPAPL + rg—upxpu)pﬁ
+ PoaPa(Pup P+ TRuPAPE + Tguﬂxﬂﬁ + PrpPw)
= —(p,30TaPsPE + PuaPizPaPs) — R 5a5Papapaps + pop(Tanos + TP Pubs
+ Lozl (TP + ThuP5)PR
= —[p,aPEaPsPE + (—papum + Thaprpa + N p3pa) (—pgpsm + ETOVERS T%pxpﬁ)]
— R 50BPaPAPa0s + Pog(TaaPh + TagPx)Pups + PugPa(T3uon + T2.03) 05
= ~20a7p, 50805 — (TraPAPT + T 50%) (T25PAP5 + T505P8)
— R 5o PioAPaps + 205 (TagPr + TapPx)Pups + 20,50a(Tu03 + 3,03 P (3.25)

Assume that e; = %(Vp —+/—=1JVp). Then

, pi=p;=0 fori>1. (3.26)

Sl

PL=PT=
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Let f = p,goaps = p%, by (3.25), we know that

% = —4f* - iRﬁu
- Z: (losil? ~ 2Re{w\/;ﬁl)} - ilnﬁ +h 1)
< —Af7 - E(Rﬁﬁ - i |Ti11 + Ti1_1|2)
=2
< —4ff - %- (3.27)

Moreover, by Corollary 2.2, we have

1 . 1
PaBPEPB = P oBPaPE T §(T¢f>\pX + TEPA)PEPB = P o BPEPE ™ P (3.28)
as p — 0. By comparison of Riccati equation in [27], we know that
K
f< % cot(VKp). (3.29)

Hence, by a classical argument (see for example [21]), we get the conclusion.

Remark 3.2 The diameter estimate above was disguised with a seemingly different curva-
ture assumption in [14]. Indeed, using the curvature identities in [32], one can find that the two
curvature assumptions in [14] and in the above are the same.

4 First Eigenvalue Estimate for Quasi Kahler Manifolds

In this section, we give a sharp first eigenvalue estimate for compact quasi Kahler manifolds.

By Corollary 2.4, we know that A coincides with A’ for quasi Kéhler manifolds. By the
same technique as in [2, 11], we have the following sharp spectrum lower bound for compact
quasi Kéhler manifolds which generalizes a similar estimate on compact Kéhler manifolds of
Aubin [2]. Before stating the result, we need the following definition of quasi Ricci curvature.

Definition 4.1 Let (M, J,g) be a quasi Kdhler manifold and let

Riz =R — §(T%ﬁ7'fi + T)\MT%) - ZT)\MT%H. (4.1)

We call Rﬁ the quasi Ricci curvature.

Theorem 4.1 Let (M, J,g) be a compact quasi Kdhler manifold with quasi Ricci curvature
bounded from below by a positive constant K. Then A1 > 2K, where Ay is the first eigenvalue
for the Laplacian operator of (M, g).

Proof Let f be an first eigenfunction for the Laplacian operator. Then

Af=—M\f. (4.2)
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Fixed a unitary frame (e, es,- -+, e,), using the Corollaries 2.1 and 2.3-2.4, we know that
[ 19,
M
= —2)\1/ fafadVy
M
2 [ fpadadVy+2 [ frpafad,
Y BB 9 v BB g
=2 [ (fgus = Fanas Vs +2 [ gy = Rpsap )V
=2 (f@af&)ﬁd‘/g + 2/ (fBafa)Ed‘/g - 2/ f,@afaﬁd‘/g - 2/ fBafaBqu
M M M

M

—2 (Rﬁxaﬁf)\fa"i_ RE)\anXfa)d‘/g

= =2 [ (o + g0V =2 [ (4 ) Vs

I
o

||
,4;
S~ & :\s\:\s\z\

[(Roxsp — TBAﬁTga)fAfa + (Bygps — T@ﬂé%)fxfa]d‘/

fa,@fagdv +4/ Re{faBTé\Bf)\}d‘/g

1 n o
—4 [ (R — 302 R+ TS| S5V
=—4 Z faﬁ - ETéﬂfx} dVg
a,f=1
4 [Raﬁﬁ - §(Tf,Tfa + TfNTfﬂ) 473\” T }fafng
<t [ Rzfataa,
M
<2k [ [f%ay;, (4.3)
M

Hence
A > 2K. (4.4)

For the equality case, we come to show that the equality can also be achieved by non-Kahler
manifolds. Let S® be equipped with the standard almost complex structure and standard
Riemannian metric. Then, S® becomes a nearly Kéhler manifold. For this nearly Kahler
manifold, Ri% = 50,5, and by [32], R = 0. By the curvature identity

5 - -
a2 i
+ 4 Z RISV
Ap=1
in [32], we have

Z AT S = 4015 (4.5)

A p=1
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Therefore, the quasi Ricci curvature
3 )
Ri=Rg+7 > 7 =35, (4.6)

where we have used Lemma 2.6. So, the constant K in the last theorem is 3. It is clear that the
first eigenvalue of the standard metric on S® is 6. So, equality of the last theorem is achieved
by the nearly Kihler manifold S°.

5 Sharp Hessian Comparison on Nearly Kahler Manifolds

In this section, by using the Bochner technique in [22], we obtain a sharp Hessian comparison
on nearly Kéhler manifolds generalizing the results of [22, 28].

Lemma 5.1 Let (M, J,g) be a complete nearly Kihler manifold, o be a fized point and p(x)
be the distance from x to o. Let v be a normal geodesic starting from o. Let (e1,ea, - ,e,) be

a unitary frame parallel along ~ with respect to the canonical connection with e; = %(7’(0) —

J~'(0)). Then e; = %(7’ —V/=1J%") all over v, p1 = py = %, pi=p; =0 foralli>1 and

pi1 = —p;1 in the cut-locus of o, for all i > 1.

Proof By Lemma 2.5, V7' = Dy = 0. So e; = %(”y’ — Jv') is parallel along v with
respect to the canonical connection. It is clear that e; is also parallel along ~ with respect to
the Leiv-Civita connection. Moreover e; = == (Vp — JVp). Hence

\/5
o= (Voo = — (5.1)
and
pi = (Vp,e) =0 (5.2)

for all ¢ > 1. By these and Lemma 3.1, we know that

Pit = =P (5.3)

for all ¢ > 1.
Before stating the sharp Hessian comparison on nearly Kéhler manifolds, we introduce the
following notion of quasi holomorphic bisectional curvature.

Definition 5.1 On a nearly Kahler manifold, define
R(X,X,Y,T) = RX, X, Y, V) + |r(X, V)| (5.4)

for any (1,0) vectors X and Y. We say that the quasi holomorphic bisectional curvature of M
is not less than K if

R(X,X,Y,Y)
2 2 V|2 ZK
[ XY )2 + (X, V)

(5.5)

for any two nonzero (1,0) vectors X and Y .
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Theorem 5.1 Let (M,J,g) be a complete nearly Kihler manifold and o be a fized point in
M. Let B,(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic
bisectional curvature on B,(R) is not less than K where K is a constant. Then

\/g cot (\/gp) (9:7 — 2pip7)

+V2K cot(V2Kp)pips, K >0,
1

\/g coth (\/gp) (955 = 2pir7)

+v—2K Coth(\/—ZKp)pipj, K <0

in B,(R) with equality holds all over B,(R) if and only if B,(R) is holomorphic and isometric
equivalent to the geodesic ball with radius R in the Kdhler space form of constant holomorphic
bisectional curvature K, where p is the distance function to the fixed point o.

Proof Let 7 be a geodesic starting from o, and (eq,ea,- -« ,e,) be the same as in Lemma
5.1. Then, by Lemmas 2.6, 3.2 and 5.1, and Corollary 2.5, we know that

PrivP7 + PimPv

= —p,iPvk — PukPyi — PXKTP — PrTorpst — (B xiq + Thu ey + T T ) PAPe

= 1 T 1 T
= =P 1Pvk — P1kPT] — Z PakpPz + E(P,\Wﬁ + T)\lkpﬁ) - §(R1Iki + 2TA11J%)

a=2

n 1 n n _
= TPkuPyl — Pr1Pil — Z PakPgi t ﬁ ( Z pakTéz + Z Tclykpaz)
a=2 a=2 a=2
1 T
= (Rug +2 3 mers)- (5.7)
a=2

Let

1
% kl/k=2,3 n’
1 n T 1=1,2,-,n
D= (_ E(R”kl * Z;To‘kTal))k 1,2, n
and X7 be the first column of X. Then

dX 2 * * * *

d—+X + X, X{=-B"B+BC+C"B+D
P

= (B-C)*(B-C)+C*C+D
<C*'C+D
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1 & _ayl=1,2,+n
= _§(R1Tki + leTﬁ)k:Lz,--- n
-K 0
= K
0 ——1I,_
5 In—1
At this position, by the same argument as in [28], we have
V2K
5 cot(v2Kp) 0
7 7 , K>0
1 0 ”ECOt (”Ep)jn_l
— 0
x<{[ ¥ : K =0,
0 —in-1
—2K
5 coth(v/—2Kp) 0
, K <O0.
0 K coth ( K )I
V2 V2 P) it

This is the inequality in the conclusion of the theorem.

If the equality holds, we have py; = %Tgl for k,1=2,3,--- ,n. By (2.8), we have

X L ST
Pkl = Pk + TilPx = 7ok + Vol 0

for all k,1 =2,3,---,n. Hence

TEZ =0
for all k,1 =1,2,--- ,n. In particular, we have
7(0) = 0.

C. J Yu

(5.8)

(5.10)

(5.11)

(5.12)

By Theorem 2.1, we know that 7 = 0 and hence (M, J, g) is Kahler. Then by the equality case
of the sharp Hessian comparison for K&hler manifolds in [28], we obtain the conclusion when

equality holds.

By the Hessian comparison, we have the following direct corollary on Laplacian comparison.

Corollary 5.1 Let (M, J,g) be a complete nearly Kdahler manifold and o be a fixed point in
M. Let B,(R) be a geodesic ball within the cut-locus of 0. Suppose that the quasi holomorphic

bisectional curvature on B,(R) is not less than K where K is a constant. Then

\/ﬁ(cot(\/ﬁp)—i—(n—l)cot (\/gp)), K >0,
Ap < 2np—1’ K=o,
\/W(coth(mm—i—(n—l)coth (\/gp)), K <0

(5.13)

in B,(R) with equality holds all over B,(R) if and only if B,(R) is holomorphic and isometric
equivalent to the geodesic ball with radius R in the Kdhler space form of constant holomorphic

bisectional curvature K, where p is the distance function to the fixed point o.
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By the same argument as in [5] (see also [21]), we have the following comparison of first
eigenvalue and volume comparison for nearly Kéhler manifolds.

Corollary 5.2 Let (M, J,g) be a complete nearly Kihler manifold and o be a fixed point in
M. Let B,(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic
bisectional curvature on Bo(R) is not less than K where K is a constant. Then

AM(Bo(R)) < M(Bk(R)), (5.14)

where B (R) is the geodesic ball with radius R in the Kdahler space form with constant holo-
morphic bisectional curvature K. Moreover, if the equality holds, then B,(R) and Bk (R) are
holomorphically isometric to each other.

Corollary 5.3 Let (M, J,g) be a complete nearly Kihler manifold and o be a fixed point in
M. Let B,(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic
bisectional curvature on Bo(R) is not less than K where K is a constant. Then

Vo(R) < Vi (R), (5.15)

where Vi (R) is the volume of Bi (R). Moreover, if the equality holds, then B,(R) and Bk (R)
are holomorphically isometric to each other.

Corollary 5.4 Let (M, J,g) be a complete nearly Kdhler manifold with quasi holomorphic
bisectional curvature > K with K > 0. Then

V(M) < V(CPL), (5.16)

where CP% means CP" equipped with a Kdahler metric with constant holomorphic bisectional
curvature K. Moreover, if the equality holds, M is holomorphically isometric to CP .

Acknowledgement The author would like to thank the referees for helpful comments and
suggestions.

References

[1] Apostolov, Vestislav and Draghici, Tedi, The curvature and the integrability of almost-Ké&hler manifolds:
a survey, Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC,
2001), Fields Inst. Commun., 35, Amer. Math. Soc., Providence, RI, 2003, 25-53.

[2] Aubin, Thierry, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 1998.

[3] Butruille, Jean-Baptiste, Classification des variétés approximativement kéhleriennes homogénes (in
French), (Classification of nearly-K&hler homogeneous manifolds), Ann. Global Anal. Geom., 27(3), 2005,
201-225.

[4] Chen, Z. H. and Yang, H. C., Estimation of the upper bound on the Levi form of the distance function on
Hermitian manifolds and some of its applications, Acta Math. Sinica, 27(5), 1984, 631-643 (in Chinese).

[5] Cheng, S. Y., Eigenvalue comparison theorems and its geometric applications, Math. Z., 143(3), 1975,
289-297.

[6] Chern, S. S., Characteristic classes of Hermitian manifolds, Ann. of Math., 47(1), 1946, 85-121.

[7] Donaldson, S. K., Remarks on gauge theory, complex geometry and 4-manifold topology, Fields Medallists’
Lectures, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997, 384-403.

[8] Donaldson, S. K., Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern, 153-172,
Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006.



772
9]
[10]
[11]
[12

13]
14]

(15]
[16]
(17]

(18]
(19]
20]

21]
(22]

(23]
[24]
25]
[26]

[27]
28]
[29]
[30]

31]
32]

C. J Yu

Ehresmann, C. and Libermann, P., Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci.
Paris, 232, 1951, 1281-1283.

Fan, X. Q., Tam, Luen-Fai and Yu, C. J., Product of almost Hermitian manifolds, J. Geom. Anal., 24(3),
2014, 1425-1446.

Futaki, A., Kahler-Einstein Metrics and Integral Invariants, Lecture Notes in Mathematics, 1314, Berlin:
Springer-Verlag, 1988.

Gauduchon, P., Hermitian connections and Dirac operators, Boll. Unione Mat. Ital. B., 11(2), 1997,
suppl., 257-288.

Goldberg, S. I., Integrability of almost Kaehler manifolds, Proc. Amer. Math. Soc., 21, 1969, 96-100.

Gray, Alfred, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J., 28(4),
1976, 601-612.

Gray, Alfred, The structure of nearly Kéhler manifolds, Math. Ann., 223(3), 1976, 233-248.
Gray, Alfred, Nearly Kahler manifolds, J. Differential Geometry, 4, 1970, 283-309.

Gray, Alfred, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geometry, 7,
1972, 343-369.

Kirichenko, V. F., K-spaces of maximal rank, Mat. Zametki, 22(4), 1977, 465-476.
Kobayashi, S., Almost complex manifolds and hyperbolicity, Results Math., 40(1-4), 2001, 246-256.

Kobayashi, S., Natural connections in almost complex manifolds, Explorations in complex and Riemannian
geometry, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2003, 153-169.

Li, Peter, Lecture notes on geometric analysis, Lecture Notes Series, 6, Seoul National University, Research
Institute of Mathematics, Global Analysis Research Center, Seoul, 1993.

Li, P. and Wang, J. P., Comparison theorem for Kédhler manifolds and positivity of spectrum, J. Differential
Geometry, 69(1), 2005, 43-74.

Lichnerowicz, A., Géometrie des Groupes de Transformations, Dunod, Paris, 1958.
Nagy, Paul-Andi, Nearly Kahler geometry and Riemannian foliations, Asian J. Math., 6(3), 2002, 481-504.
Nagy, Paul-Andi, On nearly-Kéahler geometry, Ann. Global Anal. Geom., 22(2), 2002, 167-178.

Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc.
Japan, 14, 1962, 333-340.

Royden, H. L., Comparison theorems for the matrix Riccati equation, Comm. Pure Appl. Math., 41(5),
1988, 739-746.

Tam, Luen-Fai and Yu, C. J., Some comparison theorems for Kahler manifolds, Manuscripta Math.,
137(3-4), 2012, 483-495.

Tosatti, V., A general Schwarz lemma for almost-Hermitian manifolds, Comm. Anal. Geom., 15(5), 2007,
1063-1086.

Tosatti, V., Weinkove, B. and Yau, S. T., Taming symplectic forms and the Calabi-Yau equation, Proc.
London Math. Soc., 97(3), 2008, 401-424.

Yau, S. T., A general Schwarz lemma for Kihler manifolds, Amer. J. Math., 100(1), 1978, 197-203.

Yu, C. J., Curvature identities on almost Hermitian manifolds and applications, Science in China,
Mathamatics, 60(2), 2017, 285-300.



