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1 Introduction

A triple (M,J, g) is called an almost Hermitian manifold if J is an almost complex structure

and g is a J-invariant Riemannian metric. There are two connections, one is the Levi-Civita

connection and the other one is the canonical connection, on almost Hermitian manifolds, that

play important roles on the geometry of almost Hermitian manifolds. The canonical connection

is an extension of the Chern connection [6] on Hermitian manifolds. It was first introduced by

Ehresmann-Libermann [9].

Geometers were used to use the Levi-Civita connection for the study of the geometry of

almost Hermitian manifolds, see for example [1, 13–16]. However, later researches show that

canonical connection is useful for the study of the geometry of almost Hermitian manifolds.

For example, canonical connection is crucial for the study of the structure of nearly Kähler

manifolds in [3, 24–25]. In [30], Tossati, Weinkove and Yau used the canonical connection to

solve the Calabi-Yau equation on almost Kähler manifolds. The problem that Tossati, Weinkove

and Yau considered is part of a program proposed by Donaldson [7–8] on sympletic topology. In

[29], Tossati obtained a Laplacian comparison result about the canonical connection on almost

Hermitian manifolds using the second variation of arc length and obtained a Schwartz lemma

on almost Hermitian manifolds which is a generalization of the Schwartz lemma by Yau [31].

In this paper, by applying the same Bochner technique as in [22], we obtain a Hessian

comparison on almost Hermitian manifolds which generalises Tossati’s Laplacian comparison

(see [29]). More precisely, we obtain the following result.
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Theorem 1.1 Let (M,J, g) be a complete almost Hermitian manifold with holomorphic

bisectional curvature bounded from below by −K with K ≥ 0, torsion bounded by A1 and the

(2, 0) part of the curvature tensor bounded by A2. Let o be a fixed point in M and ρ be the

distance function to o. Then

ρij ≤
(1

ρ
+ C

)

gij (1.1)

within the cut-locus of o where C =
((

8
√
n+2

)

A2
1 +4A2 +2K

)
1

2 . Here ρij means the complex

Hessian of ρ with respect to the canonical connection.

Moreover, with the same technique, we obtain the following sharp diameter estimate for

almost Hermitian manifolds.

Theorem 1.2 Let (M,J, g) be a complete almost Hermitian manifold with quasi holomor-

phic sectional curvature not less than K > 0. Then d(M) ≤ π√
K
.

For the definition of quasi holomorphic sectional curvature, see Definition 3.2. It extends the

notion with the same name for Hermitian manifolds in [4] to almost Hermitian manifolds. In

fact, the above diameter estimate was disguised with a seemingly different curvature assumption

in [14]. However, one can show that the two curvature assumptions are the same by using the

curvature identities derived in [32]. The same diameter estimate for Hermitian manifolds was

also obtained in [4].

Our method to prove Theorem 1.1 and Theorem 1.2 is different from those in [4, 14, 29] where

the authors all used the second variation of arc length. Our method here is first to compute

the evolution ordinary differential equation of the Hessian of ρ along a normal geodesic which

turns out to be a matrix Riccati equation. Then the comparison theorems for matrix Riccati

of Royden [27] gives us the conclusions directly. The technique was used in [22].

Furthermore, by using a similar technique as in [2, 11], we have the following sharp spectrum

lower bound for compact quasi Kähler manifolds.

Theorem 1.3 Let (M,J, g) be a compact quasi Kähler manifold with the quasi Ricci cur-

vature bounded from below by a positive constant K. Then λ1 ≥ 2K, where λ1 is the first

eigenvalue for the Laplacian operator of (M, g).

For the definition of quasi Ricci curvature, see Definition 4.1. In fact, this result gener-

alizes the corresponding result of Aubin [2] on compact Kähler manifolds to compact quasi

Kähler manifolds. Moreover, note that the equality in the result is not only achieved by CP
n

with Fubini-Study metric but also be achieved by non-Kähler manifolds. For example, the

six dimensional sphere with the standard complex structure and standard metric. Moreover,

one should note that the quasi Kähler structure is crucial for the sharp spectrum lower bound

above. By a classical result of Lichnerowicz [23], the specturm lower bound for n dimensional

compact Riemannian manifolds with Ricci curvature not less than (n − 1)K is nK. It was

shown by Obata [26] that the equality holds if and only if the manifold is a round sphere. The

sharp spectrum lower bound of Lichnerowicz is not sharp for quasi Kähler manifolds.

Finally, we obtain a sharp Hessian comparison on nearly Kähler manifolds which generalizes

some results in [22, 28] on Kähler manifolds.
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Theorem 1.4 Let (M,J, g) be a complete nearly Kähler manifold and o be a fixed point in

M . Let Bo(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic

bisectional curvature on Bo(R) is not less than K, where K is a constant. Then

ρij ≤



































√

K

2
cot

(

√

K

2
ρ
)

(gij − 2ρiρj) +
√
2K cot(

√
2Kρ)ρiρj , K > 0,

1

ρ
(gij − ρiρj), K = 0,

√

−K

2
coth

(

√

−K

2
ρ
)

(gij − 2ρiρj) +
√
−2K coth(

√
−2Kρ)ρiρj , K < 0

(1.2)

in Bo(R) with equality holds all over Bo(R) if and only if Bo(R) is holomorphic and isometric

equivalent to the geodesic ball with radius R in the Kähler space form of constant holomorphic

bisectional curvature K, where ρ is the distance function to the fixed point o.

For the definition of quasi holomorphic bisectional curvature, see Definition 5.1. By the

application of the Hessian comparison above, we can obtain eigenvalue comparison and volume

comparison on nearly Kähler manifolds by classical arguments. Please see Section 5 for details.

Note that in [30], Tossati, Weinkove and Yau introduced a new notion of curvature that

couples up the (1, 1)-part of the curvature tensor and the torsion of the canonical connection on

almost Kähler manifolds and is crucial for solving the Calabi-Yau equation on almost Kähler

manifolds. In this paper, the new notions of curvature defined are different with that of Tossati,

Weinkove and Yau. We hope that the new notions of curvature introduced here for almost

Hermitian manifolds, quasi Kähler manifolds and nearly Kähler manifolds have some further

applications.

The outline of the paper is as follows. In Section 2, we recall some preliminaries in almost

Hermitian geometry and generalized Kähler geometry. In Section 3, we prove Theorem 1.1 and

Theorem 1.2. In Section 4, we prove Theorem 1.3. Finally, in Section 5, we prove Thereom 1.4

and present some of its corollaries.

2 Preliminaries

In this section, we recall some definitions and known results for almost Hermitian manifolds,

quasi Kähler manifolds and nearly Kähler manifolds.

Definition 2.1 (see [12, 19–20]) Let (M,J) be an almost complex manifold. A Rieman-

nian metric g on M such that g(JX, JY ) = g(X,Y ) for any two tangent vectors X and Y is

called an almost Hermitian metric. The triple (M,J, g) is called an almost Hermitian manifold.

The two form ωg = g(JX, Y ) is called the fundamental form of the almost Hermitian manifold.

A connection ∇ on an almost Hermitian manifold (M,J, g) such that ∇g = 0 and ∇J = 0 is

called an almost Hermitian connection.

Note that the torsion τ of the connection ∇ is a vector-valued two form defined as

τ(X,Y ) = ∇XY −∇Y X − [X,Y ]. (2.1)

An almost Hermitian connection is uniquely determined by its (1, 1)-part. In particular, there

is a unique almost Hermitian connection with vanishing (1, 1)-part. Such a connection is called

the canonical connection which was first introduced by Ehresman and Libermann [9].
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Definition 2.2 (see [19–20]) The unique almost Hermitian connection ∇ on an almost

Hermitian manifold (M,J, g) with vanishing (1, 1)-part of the torsion is called the canonical

connection of the almost Hermitian manifold.

For sake of convenience, we adopt the following conventions in the remaining part of this

paper:

(1) Without further indications, the manifold is of real dimension 2n.

(2) D denotes the Levi-Civita connection and RL denotes its curvature tensor and “,” means

taking covariant derivatives with respect to D.

(3) ∇ denotes the canonical connection, R denotes the curvature tensor of ∇ and “;” means

taking covariant derivatives with respect to ∇.

(4) Without further indications, a, b, c, d denote indices in {1, 1, · · · , n, n}.
(5) Without further indications, i, j, k, l denote indices in {1, 2, · · · , n}.
(6) Without further indications, α, β, λ, µ, ν denote summation indices going through {1,

2, · · · , n}.
Recall the definition of curvature operator:

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (2.2)

The curvature tensor is defined as

R(X,Y, Z,W ) = 〈R(Z,W )X,Y 〉. (2.3)

Fixed a unitary (1, 0)-frame (e1, e2, · · · , en), since ∇J = 0, we have

Rijab = R
j
i ab = 0 (2.4)

for all indices i, j and a, b. Moreover, similarly as in the Riemannian case, we have the following

symmetries of the curvature tensor:

Rabcd = −Rbacd = −Rabdc (2.5)

for all indices a, b, c and d. Recall that R′
ab = gµλRλµab and R′′

ij
= gµλRijλµ are called the first

and the second Ricci curvature of the almost Hermitian metric g respectively.

The following first Bianchi identities for almost Hermitian manifolds are frequently used in

the computations of the remaining part of this paper. One can find them in [19, 30, 32].

Proposition 2.1 Let (M,J, g) be an almost Hermitian manifold. Fixed a unitary frame,

we have

(1) Rijkl −Rkjil = τ
j

ik;l
− τλikτ

j

lλ
;

(2) Rijkl −Rilkj = τ i
jl;k

− τ ikλτ
λ

jl
;

(3) Rijkl −Rklij = τ l
ik;j

+ τ i
jl;k

− τ ikλτ
λ

jl
− τλikτ

l

jλ
;

(4) Rijkl = −τ i
kl;j

+ τ i
jλ
τλkl.

The following general Ricci identity for commuting indices of covariant derivatives is useful

for computation. One can find it in [10].
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Lemma 2.1 Let Mn be a smooth manifold, and E be a vector bundle on M . Let D be a

connection on E and ∇ be a connection on M with torsion τ . Then

D2s(X,Y )−D2s(Y,X) = −R(X,Y )s+Dτ(X,Y )s

for any cross section s of E, and tangent vector fields X and Y .

Applying Lemma 2.1 to E = ⊗rT ∗M , we have the following corollary.

Corollary 2.1 Let (Mn, g) be a Riemannian manifold and D be a connection on M com-

patible with g and with torsion τ . Let Ta1a2···ar
be a tensor on M . Then

Ta1a2···ar ;bc − Ta1a2···ar;cb

= Ra1λbcg
λµTµa2···ar

+Ra2λbcg
λµTa1µ···ar

+ · · ·+Rarλbcg
λµTa1a2···µ + τλbcTa1a2···ar;λ. (2.6)

Directly by the Corollary 2.1, we have

fij = fji (2.7)

and

fij − fji = τλijfλ + τλijfλ (2.8)

for any smooth function f on almost Hermitian manifolds since τa
ij
= 0.

Moreover, recall the following difference of Levi-Civita connection and another compatible

connection on Riemannian manifolds.

Lemma 2.2 (see [10, 12, 30]) Let (M, g) be a Riemannian manifold and D be the Levi-

Civita connection. Let ∇ be another connection on M compatible with g and with torsion τ .

Then

〈DY X −∇Y X,Z〉 = 1

2
(〈τ(X,Y ), Z〉+ 〈τ(Y, Z), X〉 − 〈τ(Z,X), Y 〉).

By using Lemma 2.2 directly, we have the following relation of the Hessian and divergence

operators with respect to the Levi-Civita connection and another compatible connection.

Lemma 2.3 Let (M, g) be a Riemannian manifold and D be the Levi-Civita connection.

Let ∇ be another connection on M compatible with g and with torsion τ . Let f be a smooth

function. Then

∇2f(X,Y )−D2f(X,Y )

=
1

2
[〈τ(X,Y ),∇f〉+ 〈τ(Y,∇f), X〉 − 〈τ(∇f,X), Y 〉]. (2.9)

Proof By the definition of Hessian, we have

∇2f(X,Y )−D2f(X,Y ) = 〈DY X −∇Y X,∇f〉. (2.10)

Then, Lemma 2.2 gives us the conclusion directly.

Applying Lemma 2.3 to almost Hermitian manifolds, we get the following corollaries.
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Corollary 2.2 On an almost Hermitian manifold, fixed a unitary frame,

fij − f,ij =
1

2
(τ jiλfλ + τ i

jλ
fλ), (2.11)

fij − f,ij =
1

2
(τλijfλ + τλijfλ + τ

j
iλfλ + τ ijλfλ) (2.12)

and

∆f −∆Lf = τ
µ
µλfλ + τ

µ

µλ
fλ (2.13)

where “,” means taking covariant derivatives with respect to the Levi-Civita connection and ∆L

is the Laplacian operator with respect to the Levi-Civita connection.

Similarly, we have the following comparison of divergence operators.

Lemma 2.4 Let X be a vector field on an almost Hermitian manifold M and fixed a unitary

frame. Then

divX − div LX = Xλτ
µ
µλ +Xλτ

µ

µλ
, (2.14)

where divX = Xλ
;λ +Xλ

;λ
is the divergence of X with respect to the canonical connection and

divLX is the divergence of X with respect to the Levi-Civita connection.

Next, recall the definition of quasi Kähler manifolds.

Definition 2.3 An almost Hermitian manifold (M,J, g) is called a quasi Kähler manifold

if ∂ωg := (dωg)
(1,2) = 0.

The following criterion for quasi Kählerity is well known.

Proposition 2.2 (see [19, 30]) Let (M,J, g) be an almost Hermitian manifold. Then, it is

quasi Kähler if and only if τkij = 0 for any i, j and k.

Applying Proposition 2.2 to Proposition 2.1, we have the following first Bianchi identities

on quasi Kähler manifolds.

Corollary 2.3 Let (M,J, g) be an quasi Kähler manifold. Fixed a unitary frame, we have

(1) Rijkl −Rkjil = −τλikτ
j

lλ
;

(2) Rijkl −Rilkj = −τ ikλτ
λ

jl
;

(3) Rijkl −Rklij = −τ ikλτ
λ

jl
− τλikτ

l

jλ
;

(4) Rijkl = −τ i
kl;j

.

Applying Proposition 2.2 to Corollary 2.2 and Lemma 2.4, we have the following corollary.

Corollary 2.4 Let (M, g, J) be a quasi Kähler manifold. Then fij = f,ij, ∆f = ∆Lf and

divX = div LX.

Finally, recall the definition of nearly Kähler manifolds.

Definition 2.4 Let (M,J, g) be an almost Hermitian manifold. It is called nearly Kähler

if (DXJ)X = 0 for any tangent vector X.
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For nearly Kähler manifolds, the difference between canonical connection and Levi-Civita

connection becomes simpler.

Lemma 2.5 (see [16]) Let (M,J, g) be a nearly Kähler manifold. Then

∇XY = DXY − 1

2
J(DXJ)(Y ) (2.15)

for any tangent vector fields X and Y. In particular,

∇XX = DXX

for any tangent vector field X.

The following criterion for nearly Kähler manifold is well known, see for example [24–25].

Lemma 2.6 An almost Hermitian manifold (M,J, g) is nearly Kähler if and only if τkij = 0

and τkij = τ ijk for all i, j and k when we fix a (1, 0)-frame.

Nearly Kähler manifolds have an important property, that is, the torsion of the canonical

connection is parallel.

Theorem 2.1 (see [18, 32]) Let (M,J, g) be a nearly Kähler manifold. Then ∇τ = 0.

Applying Lemma 2.6 and Theorem 2.1 to Proposition 2.1, we have the following first Bianchi

identities for nearly Kähler manifolds.

Corollary 2.5 Let (M,J, g) be a nearly Kähler manifold and fixed a unitary frame. Then

(1) Rijkl = 0;

(2) Rijkl −Rkjil = −τλikτ
λ

jl
;

(3) Rijkl −Rilkj = −τλikτ
λ

jl
;

(4) Rijkl = Rklij .

By (4) of the above corollary, the first Ricci curvature and second Ricci curvature for nearly

Kähler manifolds coincides, so we simply denote them as Rij .

3 Hessian Comparison and Diameter Estimate on Almost

Hermitian Manifolds

In this section, we generalize the results in [22, 28–29] to almost Hermitian manifolds. The

same as in Tosatti [29], we make the following definition about the bound-ness of the curvatures

of an almost Hermitian manifold.

Definition 3.1 Let (M,J, g) be an almost Hermitian manifold. We say that the holomor-

phic bisectional curvature of (M,J, g) is bounded from below by K if

R(X,X, Y, Y ) ≥ K‖X‖2‖Y ‖2 (3.1)

for any X,Y ∈ T 1,0M . We say that the torsion of (M,J, g) is bounded by A1 if

‖τ(X,Y )‖ ≤ A1‖X‖‖Y ‖ (3.2)
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for any X,Y ∈ T 1,0M . We say that the (2, 0) part of the curvature tensor of (M,J, g) is

bounded by A2 if

|R(X,Y, Y,X)| ≤ A2‖X‖2‖Y ‖2 (3.3)

for any X,Y ∈ T 1,0M .

Let (M,J, g) be an almost Hermitian manifold. We denote its distance function to a fixed

point o as ρ. Similarly as in Li-Wang [22], we have the following.

Lemma 3.1 Fixed a unitary frame (e1, e2, · · · , en), we have

ρλaρλ + ρλρλa = 0. (3.4)

Proof Note that ρλρλ = 1
2 . Hence

0 = (ρλρλ)a = ρλaρλ + ρλρλa. (3.5)

Lemma 3.2 Fixed a unitary frame (e1, e2, · · · , en), we have

ρklνρν + ρklνρν

= −ρνlρνk − ρντ
λ
νkρλl − ρkλτ

λ

νl
ρν − ρνkρνl − ρλkτ

λ

νl
ρν − ρντ

λ
νkρλl

− (Rlλνk + τ
µ
νkτ

λ

lµ
)ρλρν − (Rkλνl + τλkµτ

µ

νl
)ρλρν − (Rνλkl + τνkµτ

µ

λl
+ τ

µ
νkτ

λ

lµ
)ρλρν . (3.6)

Proof Note that ρνρν = 1
2 . Hence

0 = (ρνρν)kl

= ρνkρνl + ρνlρνk + ρνklρν + ρνklρν

= ρνkρνl + ρνlρνk + (ρkν + τλνkρλ + τλνkρλ)lρν + ρkνlρν

= ρνkρνl + ρνlρνk + (ρkνl + τλ
νk;l

ρλ + τλνkρλl + τλ
νk;l

ρλ + τλνkρλl)ρν

+ (ρklν +Rkλνlρλ + τλ
νl
ρkλ + τλ

νl
ρkλ)ρν

= ρνkρνl + ρνlρνk + (ρklν +Rkλνlρλ + τλ
νk;l

ρλ + τλ
νk;l

ρλ + τλνkρλl + τλνkρλl)ρν

+ (ρklν +Rkλνlρλ + τλ
νl
ρkλ + τλ

νl
ρkλ)ρν

= ρνkρνl + ρνlρνk + [ρklν +Rνλklρλ − τλ
lµ
τ
µ
kνρλ + (Rlλνk + τλ

lµ
τ
µ
νk)ρλ + τλνkρλl

+ τλνk(ρlλ + τ
µ

λl
ρµ + τ

µ

λl
ρµ)]ρν + (ρklν +Rkλνlρλ + τλ

νl
ρkλ + τλ

νl
ρkλ)ρν

= (ρklνρν + ρklνρν) + ρνlρνk + ρντ
λ
νkρλl + ρkλτ

λ

νl
ρν + ρνkρνl + ρkλτ

λ

νl
ρν + ρντ

λ
νkρlλ

+Rlλνkρλρν +Rkλνlρλρν +Rνλklρλρν

= (ρklνρν + ρklνρν) + ρνlρνk + ρντ
λ
νkρλl + ρkλτ

λ

νl
ρν + ρνkρνl + (ρλk + τ

µ
kλρµ + τ

µ
kλρµ)τ

λ

νl
ρν

+ ρντ
λ
νk(ρλl + τ

µ

lλ
ρµ + τ

µ

lλ
ρµ) +Rlλνkρλρν +Rkλνlρλρν +Rνλklρλρν

= (ρklνρν + ρklνρν) + ρνlρνk + ρντ
λ
νkρλl + ρkλτ

λ

νl
ρν + ρνkρνl + ρλkτ

λ

νl
ρν + ρντ

λ
νkρλl

+ (Rlλνk + τ
µ
νkτ

λ

lµ
)ρλρν + (Rkλνl + τλkµτ

µ

νl
)ρλρν + (Rνλkl + τνkµτ

µ

λl
+ τ

µ
νkτ

λ

lµ
)ρλρν , (3.7)

where we have used Proposition 2.1 and Corollary 2.1. This completes the proof.
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Theorem 3.1 Let (M,J, g) be a complete almost Hermitian manifold with holomorphic

bisectional curvature bounded from blow by −K with K ≥ 0, torsion bounded by A1 and the

(2, 0) part of the curvature tensor bounded by A2. Then

ρij ≤
(1

ρ
+ C

)

gij (3.8)

within the cut-locus of o, where C =
((

8
√
n+ 2

)

A2
1 + 4A2 + 2K

)
1

2 .

Proof Let γ be a normal geodesic starting from o. Let (e1, e2, · · · , en) be a parallel unitary

frame along γ. Let

X = (ρkl)
l=1,2,··· ,n
k=1,2,··· ,n,

A = (ρλτ
l
λk)

l=1,2,··· ,n
k=1,2,··· ,n,

B = (ρkl)
l=1,2,··· ,n
k=1,2,··· ,n,

C = (τk
λl
ρλ)

l=1,2,··· ,n
k=1,2,··· ,n,

D = ((Rkλνl + τλkµτ
µ

νl
)ρλρν)

l=1,2,··· ,n
k=1,2,··· ,n,

E = ((Rµλkl + τ
µ
kντ

ν

λl
+ τνµkτ

λ

lν
)ρλρµ)

l=1,2,··· ,n
k=1,2,··· ,n.

Then, by Lemma 3.2, we know that

dX

dρ
+X2 +AX +XA∗

= −B∗B −B∗C − C∗B − (D +D∗)− E

= −(B∗ + C∗)(B + C) + C∗C − (D +D∗)− E

≤ C∗C − (D +D∗)− E. (3.9)

Moreover, for any column vector u, we have

u∗C∗Cu = ‖Cu‖2 ≤ 1

2
A2

1‖u‖2, (3.10)

∣

∣

∣

n
∑

k,l,λ,ν=1

ukRkλνlρλρνul

∣

∣

∣ ≤ 1

2
A2‖u‖2 (3.11)

and

∣

∣

∣

n
∑

k,l,λ,µ,ν=1

ukτ
λ
kµρλτ

µ

νl
ρνul

∣

∣

∣

≤
(

n
∑

µ=1

∣

∣

∣

n
∑

k,λ=1

ukτ
λ
kµρλ

∣

∣

∣

2) 1

2

(

n
∑

µ=1

∣

∣

∣

n
∑

l,ν=1

τ
µ

νl
ρνul

∣

∣

∣

2) 1

2

≤ 1√
2

(

n
∑

λ,µ=1

∣

∣

∣

n
∑

k=1

ukτ
λ
kµ

∣

∣

∣

2) 1

2 × 1√
2
A1‖u‖

≤
√
n

2
A2

1‖u‖2. (3.12)

So,

−u∗(D +D∗)u ≤ (A2 +
√
nA2

1)‖u‖2. (3.13)
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Furthermore,

−
n
∑

k,l,λ,µ=1

ukRλµklρλρµul ≤
1

2
K‖u‖2 (3.14)

and, similar as in (3.12)

∣

∣

∣

n
∑

k,l,λ,µ,ν=1

uk(τ
µ
kντ

ν

λl
+ τνµkτ

λ

lν
)ρλρµul

∣

∣

∣ ≤
√
nA2

1‖u‖2. (3.15)

Hence

−u∗Eu ≤
(1

2
K +

√
nA2

1

)

‖u‖2. (3.16)

Combining (3.9)–(3.10), (3.13) and (3.16), we get

dX

dρ
+X2 +AX +XA∗ ≤ ξIn, (3.17)

where

ξ =
(

2
√
n+

1

2

)

A2
1 +A2 +

1

2
K. (3.18)

Moreover, by Corollary 2.2, and that

ρ,kl ∼
1

ρ
(δkl − ρkρl) (3.19)

as ρ → 0+ (see for example [28]), we have

X ≤
(1

ρ
+

A1√
2

)

In (3.20)

as ρ → 0+.

Let Y =
(

1
ρ
+ 2ξ

1

2

)

In. Note that

(A+A∗) ≥ −
√
2A1In, ξ ≥ 2A2

1

and (3.17). We have

dY

dρ
+ Y 2 +AY + Y A∗

=
(4

ρ
ξ

1

2 + 4ξ
)

In +
(1

ρ
+ 2ξ

1

2

)

(A+A∗)

≥ 1

ρ
(4ξ

1

2 −
√
2A1)In + (4ξ − 2

√
2ξ

1

2A1)In

≥ ξIn

≥ dX

dρ
+X2 +AX +XA∗. (3.21)

Moreover,

Y ≥ X (3.22)



Hessian Comparison and Spectrum Lower Bound of Almost Hermitian Manifolds 765

as ρ → 0+ by (3.20). By comparison of matrix Ricatti equations in [27], we have

X(ρ) ≤ Y (ρ) (3.23)

for all ρ within the cut-locus of o. This completes the proof of the theorem.

In the following, we give a sharp diameter estimate for almost Hermitian manifolds. We

first extend the notion of quasi-holomorphic sectional curvature in [4] for Hermitian manifolds

to almost Hermitian manifolds.

Definition 3.2 Let (M,J, g) be an almost Hermitian manifold. Let X be a real unit vector

on M . Define the quasi holomorphic sectional curvature QH(X) as

QH(X) = R1111 −
n
∑

i=2

|τ1i1 + τ1i1|2, (3.24)

where we have fixed a unitary frame (e1, e2, · · · , en) with e1 = 1√
2
(X −

√
−1JX).

Remark 3.1 When the complex structure is integrable, the definition of quasi holomorphic

sectional curvature is the same as that in [4].

Theorem 3.2 Let (M,J, g) be a complete almost Hermitian manifold and the quasi holo-

morphic sectional curvature is not less than K > 0. Then d(M) ≤ π√
K
.

Proof Fixed a unitary frame (e1, e2, · · · , en), using Lemmas 3.1–3.2, noting that τ and R

are both skew symmetric, we have

d

dρ
(ραβραρβ)

= (ραβραρβ)µρµ + (ραβραρβ)µρµ

= (ραβµρµ + ρaβµρµ)ραρβ + ραβ(ραµρµ + ραµρµ)ρβ + ραβρα(ρβµρµ + ρβµρµ)

= −(ρµβρµα + ρµτ
λ
µαρλβ + ραλτ

λ

µβ
ρµ + ρµαρµβ + ραλτ

λ

µβ
ρµ + ρµτ

λ
µαρβλ

+Rβλµαρλρµ +Rαλµβρλρµ +Rµλαβρλρµ)ραρβ

+ ραβ(ρµαρµ + ρµαρµ + τλαµρλρµ + τλαµρλρµ)ρβ

+ ραβρα(ρµβρµ + τλβµρλρµ + τλβµρλρµ + ρµβρµ)

= −(ρµβρµαρβρα + ρµαρµβραρβ)−Rµλαβρµρλραρβ + ραβ(τ
λ
αµρλ + τλαµρλ)ρµρβ

+ ραβρα(τ
λ
βµρλ + τλβµρλ)ρµ

= −[ρµβρµαρβρα + (−ραρµα + τλµαρλρα + τλµαρλρα)(−ρβρβµ + τλ
µβ

ρλρβ + τλ
µβ

ρλρβ)]

−Rµλαβρµρλραρβ + ραβ(τ
λ
αµρλ + τλαµρλ)ρµρβ + ραβρα(τ

λ
βµρλ + τλβµρλ)ρµ

= −2ραµρµβρβρα − (τλµαρλρα + τλµαρλρα)(τ
λ

µβ
ρλρβ + τλ

µβ
ρλρβ)

−Rµλαβρµρλραρβ + 2ραβ(τ
λ
αµρλ + τλαµρλ)ρµρβ + 2ραβρα(τ

λ
βµρλ + τλβµρλ)ρµ. (3.25)

Assume that e1 = 1√
2
(∇ρ−

√
−1J∇ρ). Then

ρ1 = ρ1 =
1√
2
, ρi = ρi = 0 for i > 1. (3.26)
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Let f = ραβραρβ =
ρ
11

2 , by (3.25), we know that

df

dρ
= −4f2 − 1

4
R1111

−
n
∑

i=2

(

|ρ1i|2 − 2Re
{ρ1i(τ

1
i1 + τ1i1)√
2

}

+
1

4
|τ1i1 + τ1i1|2

)

≤ −4f2 − 1

4

(

R1111 −
n
∑

i=2

|τ1i1 + τ1i1|2
)

≤ −4f2 − K

4
. (3.27)

Moreover, by Corollary 2.2, we have

ραβραρβ = ρ,αβραρβ +
1

2
(τβαλρλ + τα

βλ
ρλ)ραρβ = ρ,αβραρβ ∼ 1

4ρ
(3.28)

as ρ → 0. By comparison of Riccati equation in [27], we know that

f ≤
√
K

4
cot(

√
Kρ). (3.29)

Hence, by a classical argument (see for example [21]), we get the conclusion.

Remark 3.2 The diameter estimate above was disguised with a seemingly different curva-

ture assumption in [14]. Indeed, using the curvature identities in [32], one can find that the two

curvature assumptions in [14] and in the above are the same.

4 First Eigenvalue Estimate for Quasi Kähler Manifolds

In this section, we give a sharp first eigenvalue estimate for compact quasi Kähler manifolds.

By Corollary 2.4, we know that ∆ coincides with ∆L for quasi Kähler manifolds. By the

same technique as in [2, 11], we have the following sharp spectrum lower bound for compact

quasi Kähler manifolds which generalizes a similar estimate on compact Kähler manifolds of

Aubin [2]. Before stating the result, we need the following definition of quasi Ricci curvature.

Definition 4.1 Let (M,J, g) be a quasi Kähler manifold and let

Rij = Rijλλ − 1

2
(τ j

λµ
τ
µ
λi + τ iλµτ

µ

λj
)− 1

4
τ iλµτ

j

λµ
. (4.1)

We call Rij the quasi Ricci curvature.

Theorem 4.1 Let (M,J, g) be a compact quasi Kähler manifold with quasi Ricci curvature

bounded from below by a positive constant K. Then λ1 ≥ 2K, where λ1 is the first eigenvalue

for the Laplacian operator of (M, g).

Proof Let f be an first eigenfunction for the Laplacian operator. Then

∆f = −λ1f. (4.2)
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Fixed a unitary frame (e1, e2, · · · , en), using the Corollaries 2.1 and 2.3–2.4, we know that

− λ1

∫

M

‖∇f‖2dVg

= −2λ1

∫

M

fαfαdVg

= 2

∫

M

fββαfαdVg + 2

∫

M

fββαfαdVg

= 2

∫

M

(fβαβ −Rβλαβfλ)fαdVg + 2

∫

M

(fβαβ −Rβλαβfλ)fαdVg

= 2

∫

M

(fβαfα)βdVg + 2

∫

M

(fβαfα)βdVg − 2

∫

M

fβαfαβdVg − 2

∫

M

fβαfαβdVg

− 2

∫

M

(Rβλαβfλfα +Rβλαβfλfα)dVg

= −2

∫

M

(fαβ + τλβαfλ)fαβdVg − 2

∫

M

(fαβ + τλ
βα

fλ)fαβdVg

− 2

∫

M

[(Rαλββ − τλ
βµ

τ
µ
βα)fλfα + (Rλαββ − τλβµτ

µ

βα
)fλfα]dVg

= −4

∫

M

fαβfαβdVg + 4

∫

M

Re{fαβτλαβ
fλ}dVg

− 4

∫

M

[

Rαβλλ − 1

2
(τβ

λµ
τ
µ
λα + ταλµτ

µ

λβ
)
]

fαfβdVg

= −4

∫

M

n
∑

α,β=1

∣

∣

∣fαβ − 1

2
τλαβfλ

∣

∣

∣

2

dVg

− 4

∫

M

[

Rαβλλ − 1

2
(τβ

λµ
τ
µ
λα + ταλµτ

µ

λβ
)− 1

4
ταλµτ

β

λµ

]

fαfβdVg

≤ −4

∫

M

RαβfαfβdVg

≤ −2K

∫

M

‖∇f‖2dVg. (4.3)

Hence

λ1 ≥ 2K. (4.4)

For the equality case, we come to show that the equality can also be achieved by non-Kähler

manifolds. Let S6 be equipped with the standard almost complex structure and standard

Riemannian metric. Then, S6 becomes a nearly Kähler manifold. For this nearly Kähler

manifold, RL
ij
= 5δij , and by [32], Rij = 0. By the curvature identity

RL
ij
= Rij +

5

4

n
∑

λ,µ=1

τ iλµτ
j

λµ

in [32], we have

n
∑

λ,µ=1

τ iλµτ
j

λµ
= 4δij . (4.5)
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Therefore, the quasi Ricci curvature

Rij = Rij +
3

4

n
∑

λ,µ=1

τ iλµτ
j

λµ
= 3δij , (4.6)

where we have used Lemma 2.6. So, the constant K in the last theorem is 3. It is clear that the

first eigenvalue of the standard metric on S6 is 6. So, equality of the last theorem is achieved

by the nearly Kähler manifold S6.

5 Sharp Hessian Comparison on Nearly Kähler Manifolds

In this section, by using the Bochner technique in [22], we obtain a sharp Hessian comparison

on nearly Kähler manifolds generalizing the results of [22, 28].

Lemma 5.1 Let (M,J, g) be a complete nearly Kähler manifold, o be a fixed point and ρ(x)

be the distance from x to o. Let γ be a normal geodesic starting from o. Let (e1, e2, · · · , en) be
a unitary frame parallel along γ with respect to the canonical connection with e1 = 1√

2
(γ′(0)−

Jγ′(0)). Then e1 = 1√
2
(γ′ −

√
−1Jγ′) all over γ, ρ1 = ρ1 = 1√

2
, ρi = ρi = 0 for all i > 1 and

ρi1 = −ρi1 in the cut-locus of o, for all i ≥ 1.

Proof By Lemma 2.5, ∇γ′γ′ = Dγ′γ′ = 0. So e1 = 1√
2
(γ′ − Jγ′) is parallel along γ with

respect to the canonical connection. It is clear that e1 is also parallel along γ with respect to

the Leiv-Civita connection. Moreover e1 =
1√
2
(∇ρ− J∇ρ). Hence

ρ1 = 〈∇ρ, e1〉 =
1√
2

(5.1)

and

ρi = 〈∇ρ, ei〉 = 0 (5.2)

for all i > 1. By these and Lemma 3.1, we know that

ρi1 = −ρi1 (5.3)

for all i ≥ 1.

Before stating the sharp Hessian comparison on nearly Kähler manifolds, we introduce the

following notion of quasi holomorphic bisectional curvature.

Definition 5.1 On a nearly Kähler manifold, define

R(X,X, Y, Y ) = R(X,X, Y, Y ) + ‖τ(X,Y )‖2 (5.4)

for any (1, 0) vectors X and Y . We say that the quasi holomorphic bisectional curvature of M

is not less than K if

R(X,X, Y, Y )

‖X‖2‖Y ‖2 + |〈X,Y 〉|2
≥ K (5.5)

for any two nonzero (1, 0) vectors X and Y .
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Theorem 5.1 Let (M,J, g) be a complete nearly Kähler manifold and o be a fixed point in

M . Let Bo(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic

bisectional curvature on Bo(R) is not less than K where K is a constant. Then

ρij ≤























































√

K

2
cot

(

√

K

2
ρ
)

(gij − 2ρiρj)

+
√
2K cot(

√
2Kρ)ρiρj , K > 0,

1

ρ
(gij − ρiρj), K = 0,

√

−K

2
coth

(

√

−K

2
ρ
)

(gij − 2ρiρj)

+
√
−2K coth(

√
−2Kρ)ρiρj , K < 0

(5.6)

in Bo(R) with equality holds all over Bo(R) if and only if Bo(R) is holomorphic and isometric

equivalent to the geodesic ball with radius R in the Kähler space form of constant holomorphic

bisectional curvature K, where ρ is the distance function to the fixed point o.

Proof Let γ be a geodesic starting from o, and (e1, e2, · · · , en) be the same as in Lemma

5.1. Then, by Lemmas 2.6, 3.2 and 5.1, and Corollary 2.5, we know that

ρklνρν + ρklνρν

= −ρνlρνk − ρνkρνl − ρλkτ
λ

νl
ρν − ρντ

λ
νkρλl − (Rνλkl + τνkµτ

µ

λl
+ τ

µ
νkτ

λ

lµ
)ρλρν

= −ρνlρνk − ρ1kρ1l −
n
∑

α=2

ραkραl +
1√
2
(ρλkτ

1
λl

+ τ1λkρλl)−
1

2
(R11kl + 2τ1λkτ

1
λl
)

= −ρkνρνl − ρk1ρ1l −
n
∑

α=2

ραkραl +
1√
2

(

n
∑

α=2

ραkτ
1
αl

+

n
∑

α=2

τ1αkραl

)

− 1

2

(

R11kl + 2

n
∑

α=2

τ1αkτ
1
αl

)

. (5.7)

Let

X = (ρkl)
l=1,2,··· ,n
k=1,2,··· ,n,

B = (ρkl)
l=1,2,··· ,n
k=2,3,··· ,n,

C =
1√
2
(τ1

kl
)l=1,2,··· ,n
k=2,3,··· ,n,

D =
(

− 1

2

(

R11kl + 2

n
∑

α=2

τ1αkτ
1
αl

))l=1,2,··· ,n

k=1,2,··· ,n

and X1 be the first column of X . Then

dX

dρ
+X2 +X1X

∗
1 = −B∗B +B∗C + C∗B +D

= −(B − C)∗(B − C) + C∗C +D

≤ C∗C +D
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= −1

2
(R11kl + τα1kτ

α

1l
)l=1,2,··· ,n
k=1,2,··· ,n

≤





−K 0

0 −K

2
In−1



 . (5.8)

At this position, by the same argument as in [28], we have

X ≤























































































√
2K

2
cot(

√
2Kρ) 0

0

√

K

2
cot

(

√

K

2
ρ
)

In−1









, K > 0







1

2ρ
0

0
1

ρ
In−1






, K = 0,









√
−2K

2
coth(

√
−2Kρ) 0

0

√

−K

2
coth

(

√

−K

2
ρ
)

In−1









, K < 0.

(5.9)

This is the inequality in the conclusion of the theorem.

If the equality holds, we have ρkl =
1√
2
τ1kl for k, l = 2, 3, · · · , n. By (2.8), we have

ρkl = ρlk + τλklρλ =
1√
2
τ1lk +

1√
2
τ1kl = 0 (5.10)

for all k, l = 2, 3, · · · , n. Hence

τ1kl = 0 (5.11)

for all k, l = 1, 2, · · · , n. In particular, we have

τ(o) = 0. (5.12)

By Theorem 2.1, we know that τ = 0 and hence (M,J, g) is Kähler. Then by the equality case

of the sharp Hessian comparison for Kähler manifolds in [28], we obtain the conclusion when

equality holds.

By the Hessian comparison, we have the following direct corollary on Laplacian comparison.

Corollary 5.1 Let (M,J, g) be a complete nearly Kähler manifold and o be a fixed point in

M . Let Bo(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic

bisectional curvature on Bo(R) is not less than K where K is a constant. Then

∆ρ ≤



































√
2K

(

cot(
√
2Kρ) + (n− 1) cot

(

√

K

2
ρ
))

, K > 0,

2n− 1

ρ
, K = 0,

√
−2K

(

coth(
√
−2Kρ) + (n− 1) coth

(

√

−K

2
ρ
))

, K < 0

(5.13)

in Bo(R) with equality holds all over Bo(R) if and only if Bo(R) is holomorphic and isometric

equivalent to the geodesic ball with radius R in the Kähler space form of constant holomorphic

bisectional curvature K, where ρ is the distance function to the fixed point o.
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By the same argument as in [5] (see also [21]), we have the following comparison of first

eigenvalue and volume comparison for nearly Kähler manifolds.

Corollary 5.2 Let (M,J, g) be a complete nearly Kähler manifold and o be a fixed point in

M . Let Bo(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic

bisectional curvature on Bo(R) is not less than K where K is a constant. Then

λ1(Bo(R)) ≤ λ1(BK(R)), (5.14)

where BK(R) is the geodesic ball with radius R in the Kähler space form with constant holo-

morphic bisectional curvature K. Moreover, if the equality holds, then Bo(R) and BK(R) are

holomorphically isometric to each other.

Corollary 5.3 Let (M,J, g) be a complete nearly Kähler manifold and o be a fixed point in

M . Let Bo(R) be a geodesic ball within the cut-locus of o. Suppose that the quasi holomorphic

bisectional curvature on Bo(R) is not less than K where K is a constant. Then

Vo(R) ≤ VK(R), (5.15)

where VK(R) is the volume of BK(R). Moreover, if the equality holds, then Bo(R) and BK(R)

are holomorphically isometric to each other.

Corollary 5.4 Let (M,J, g) be a complete nearly Kähler manifold with quasi holomorphic

bisectional curvature ≥ K with K > 0. Then

V (M) ≤ V (CPn
K), (5.16)

where CP
n
K means CP

n equipped with a Kähler metric with constant holomorphic bisectional

curvature K. Moreover, if the equality holds, M is holomorphically isometric to CP
n
K .
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