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Abstract The Boltzmann equation with external potential force exists a unique
equilibrium—local Maxwellian. The author constructs the nonlinear stability of the e-
quilibrium when the initial datum is a small perturbation of the local Maxwellian in the
whole space R

3. Compared with the previous result [Ukai, S., Yang, T. and Zhao, H.-J.,
Global solutions to the Boltzmann equation with external forces, Anal. Appl. (Singap.), 3,
2005, 157–193], no smallness condition on the Sobolev norm H

1 of the potential is needed
in our arguments. The proof is based on the entropy-energy inequality and the L

2
− L

∞

estimates.
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1 Introduction and Formulation

The time evolution of rarefied gas in an external field can be described by the classical

Boltzmann equation with additional force term

∂tF + v · ∇xF −∇xΦ · ∇vF = Q(F, F ), (1.1)

where F = F (t, x, v) is a function describing the distribution of particles at the time t ≥ 0, at

the position x = (x1, x2, x3) ∈ R
3 and with the velocity v = (v1, v2, v3) ∈ R

3. The potential

Φ = Φ(x) is independent of the time t. The collision between particles is given by the standard

Boltzmann collision operator Q(F,G) with hard potential interactions:

Q(F,G) =

∫∫

R3×S2

|v − u|γ [F (v′)G(u′)− F (v)G(u)]B(θ)dudω,

where 0 ≤ γ ≤ 1, ω ∈ S
2 = {ω ∈ R

3 | |ω| = 1}, the function B(θ) satisfies the Grad’s angular

cut-off assumption, i.e., 0 < B(θ) ≤ C| cos θ| with cos θ = [(u−v)·ω]
|u−v| , and u′, v′ related to u, v by

the usual elastic collision relations

v′ = v − [(v − u) · ω]ω, u′ = u+ [(v − u) · ω]ω.

It is easy to check that the local Maxwellian

M(x, v) =
1

(2π)
3

2

exp
{
− Φ(x)− |v|2

2

}
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is the unique stationary state to the Boltzmann equation (1.1). In [10–11], Ukai, Yang and

Zhao studied the Cauchy problem of (1.1) with γ = 1 and obtained global existence and time

decay rate of classical solutions near the equilibrium M . Later, in [2] they improved their

previous results and obtained optimal decay rate of classical solutions. See also [9, 12] for

the corresponding results for the hard potential case. Lei [8] studied the non-cutoff case of

(1.1). Duan [1] studied the equation (1.1) in the torus of R3 and obtained the stability of the

stationary state. Notice that the assumption that the Sobolev norm (e.g. H4) of the external

potential Φ is sufficiently small plays a crucial role in all the articles mentioned above and the

methods developed there cannot be applied to the case when the Sobolev norm of Φ is large.

Recently, Kim [7] studied the equation (1.1) with a large amplitude external potential in a

periodic box of R3 and obtained the stability of the local Maxwellian M . It should be pointed

that the periodic assumption plays a crucial role in the arguments of [7] and cannot be applied

to the whole space case.

The goal of this paper is to construct the classical solutions for (1.1) near the equilibrium

M with large amplitude Φ on H1 in the whole space R
3.

As usual, we introduce the standard perturbation f(t, x, v) to M as

F (t, x, v) = M +
√
Mf(t, x, v).

Denote µ(v) = 1

(2π)
3

2

exp
{
− |v|2

2

}
, then M = µ(v)e−Φ. A direct computation implies that

f(t, x, v) satisfies

∂tf + v · ∇xf −∇xΦ · ∇vf + e−ΦLf = e−
Φ

2 Γ(f, f). (1.2)

Here the nonlinear collision operator Γ(g1, g2) takes the form

Γ(g1, g2) =
1√
µ
Q(

√
µg1,

√
µg2)

=

∫∫

R3×S2

|v − u|γ√µ(u)g1(u
′)g2(v

′)B(θ)dudω

−
[ ∫∫

R3×S2

|(v − u)|γ√µ(u)g1(u)B(θ)dudω
]
g2(v)

and the linearized collision operator reads

Lf ≡ − 1√
µ
[Q(µ,

√
µf) +Q(

√
µf, µ)] ≡ ν(v)f −Kf.

It is well-known that K is a self-adjoint compact operator on L2(R3
v) and ν(v) is given by

ν(v) =

∫∫

R3×S2

|v − u|γµ(u)B(θ)dudω = C

∫

R3

|v − u|γµ(u)du

for some constant C > 0. Also, there exist positive constants ν0, C̃1 and C̃2 such that

ν0 ≤ C̃1(1 + |v|)γ ≤ ν(v) ≤ C̃2(1 + |v|)γ . (1.3)

It is straightforward to verify that the number of particles and the sum of potential and

kinetic energy are conserved under the evolution (1.1), thus we define the perturbation of the

mass and the total energy as

M(f(t)) =

∫∫

R3×R3

(f(t, x, v)−M(x, v))dvdx, (1.4)
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E(f(t)) =
∫∫

R3×R3

( |v|2
2

+ Φ(x)
)
(F (t, x, v)−M(x, v))dvdx. (1.5)

Moreover, by standard arguments it follows that the H-function of the perturbation f ,

H(f(t)) =

∫∫

R3×R3

[F (t, x, v) lnF (t, x, v)−M(x, v) lnM(x, v)]dvdx, (1.6)

does not increase in the evolution (1.1).

Noticing that the H-function H(f) does not increase during the evolution (1.1) and the

energy E(f) and the total masses M(f) are constants, we define the following non-increasing

entropy-energy functional:

G(f(t)) = H(f(t)) + E(f(t))−M(f(t))
(
1− 3

2
ln(2π)

)
, (1.7)

which plays a crucial role in the study of stability of the equilibrium.

Throughout this paper the letters C and Ci denote generic constants and may change from

line to line. Denote by ∇x,v the couple (∂x, ∂v). Our main result is the following theorem.

Theorem 1.1 Let w(v) = (Λ + |v|2)β for Λ > 0 and β > 3
2 . Assume that the potential

Φ(x) satisfies ∂k
xΦ ∈ L∞(R3) for k = 1, 2, |∂2

xΦ|L∞(R3) is sufficiently small, and

−ϑ ≤ Φ(x) ≤ −ϑ, x ∈ R
3 (1.8)

for two constants ϑ and ϑ. Assume further that there exist constants δ > 0 and Λ > 0 such

that the initial datum F (0) = M +
√
Mf(0) satisfies

‖wf(0)‖L∞ +
√

G(f(0)) < δ, ‖∇x,vf(0)‖L2 < +∞.

Then the initial value problem for (1.2) enjoys a unique global in time solution satisfying

sup
0≤t≤∞

‖wf(t)‖L∞ ≤ C1[‖wf(0)‖L∞ +
√
G(f(0))], (1.9)

‖∇x,vf(t)‖L2 ≤ eC2t‖∇x,vf(0)‖L2. (1.10)

Remark 1.1 It turns out that G(f(0)) > 0 if ‖wf(0)‖L∞ is sufficiently small, see Lemma

2.1 below.

Remark 1.2 The two constants ϑ and ϑ in Theorem 1.1 are not necessary positive.

As pointed out in [3], due to the presence of a large amplitude potential Φ, we lose the

control of the Sobolev estimate in higher order energy norms to the perturbation f . The proof

of Theorem 1.1 is based on some ideas developed recently by Esposito, Guo and Marra [3] in

studying the nonlinear stability of the phase state to the Vlasov-Boltzmann system of binary

mixture. The strategy is to make a crucial use of the fundamental entropy-energy G(f) estimate

to obtain a mixed L1−L2 type of stability estimate and then bootstrap such a L1−L2 stability

to a L∞ estimate to obtain pointwise stability estimate by following the curved trajectory

induced by the force field.

The paper is organized as follows. In Section 2 we use the energy-entropy (1.7) to derive a

mixed L1 − L2 estimate and state some results on the characteristics curves for the equation

(1.1). In Section 3 we establish the nonlinear stability of the equilibrium in weighted L∞ norm.
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2 Entropy-Energy Estimate and Characteristics

In this section we first use the conservations of total energy and mass, and the entropy

inequality to obtain a priori estimates on the deviation of the solution from the equilibrium.

Lemma 2.1 There exist κ > 0 and Cκ > 0 such that

∫∫

R3×R3

{ (F (t)−M)2

M
1{|F (t)−M|≤κM} + |F (t)−M |1{|F (t)−M|≥κM}

}
dvdx ≤ 1

Cκ

G(f(0)).

Proof The proof is similar to that of Lemma 2.2 in [3], so we present it here for completeness.

First, we can construct solutions (see [4]) such that

G(f(t)) ≤ G(f(0)).

We expand G(f) at the equilibrium M and use (1.5) to cancel the linear part of the expansion,

which takes the form
∫∫

R3×R3

(
1− 3

2
ln(2π)

)
(F (t)−M)dvdx

+

∫∫

R3×R3

{ |v|2
2

(F (t)−M) + (lnM + 1)(F (t)−M) + Φ(F (t) −M)
}
dvdx.

Indeed, since lnM = − 3
2 ln(2π)−Φ− |v|2

2 , the above quantity is zero by construction. Therefore,

we turn to the second order expansion of G(f). For some F̃ between M and F (t), we have

G(f) =
∫∫

R3×R3

(F (t)−M)2

2F̃
dvdx.

For some small number 0 < κ < 1, we introduce the indicator functions χ< = 1{|F (t)−M|≤κM}
and χ> = 1{|F (t)−M|>κM} and split the integral into

∫∫

R3×R3

(F (t)−M)2

2F̃
χ<dvdx+

∫∫

R3×R3

(F (t) −M)2

2F̃
χ>dvdx.

We first estimate (F (t)−M)2

2F̃
with |F (t) − M | > κM . Notice that |F (t) − M | > κM implies

either F (t) ≥ (1 + κ)M or F (t) ≤ (1 − κ)M . If F (t) ≥ (1 + κ)M , then F̃ (t) ≤ F (t), thus we

have

|F (t)−M |
F̃ (t)

≥ |F (t)−M |
F (t)

= 1− M

F (t)
≥ 1− 1

1 + κ
=

κ

1 + κ
.

In the case of F (t) ≤ (1− κ)M , we have F̃ (t) ≤ M , thus

|F (t)(t)−M |
F̃ (t)

≥ |F (t)−M |
M

= 1− F (t)

M
≥ 1− (1− κ) >

κ

1 + κ
.

Combining these two cases and noticing F̃ ≤ (1 + κ)M for |F (t)−M | ≤ κM , we conclude

∫∫

R3×R3

(F (t)−M)2

2F̃
χ<dvdx +

∫∫

R3×R3

(F (t)−M)2

2F̃
χ>dvdx

≥ 1

2(1 + κ)

∫∫

R3×R3

(F (t)−M)2

M
χ<dvdx +

κ

2(1 + κ)

∫

R

dx

∫

R3

|F (t)−M |χ>dvdx.
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In order to study the curved trajectory to the Boltzmann equation (1.1), we define the

characteristics curves [X(s; t, x, v), V (s; t, x, v)] for (1.1) passing through (t, x, v) at s = t, such

that

dX(s; t, x, v)

ds
= V (s; t, x, v), X(t; t, x, v) = x; (2.1)

dV (s; t, x, v)

ds
= −∇xΦ (X(s; t, x, v)), V (t; t, x, v) = v. (2.2)

Lemma 2.2 Fix N > 0. Let |v| ≤ N . Then there exists T1 > 0 and 0 ≤ s < t ≤ T1 such

that

(t− s)3

2
≤

∣∣∣det
(∂X(s; t, x, v)

∂v

)∣∣∣ ≤ 2(t− s)3. (2.3)

Proof Multiplying (2.2) by V (s; t, x, v) and noticing (2.1), we obtain the conservation of

particle energy

1

2
|V (s; t, x, v)|2 +Φ(X(s; t, x, v)) =

1

2
|v|2 +Φ(x). (2.4)

For given T1 > 0 and fixed N > 0, noticing −ϑ ≤ Φ(x) ≤ −ϑ, we obtain from (2.4) and (2.1)

that

|V (s; t, x, v)| ≤ |v|+ 2
√
‖Φ‖L∞ ≤ N +max{|ϑ|, |ϑ|},

|X(s; t, x, v)− x| ≤ T1(N +max{|ϑ|, |ϑ|}).

From (2.1)–(2.2), we have

d2

ds2
∂X(s; t, x, v)

∂v
= −∂x∇xΦ(X(s; t, x, v))

∂X(s; t, x, v)

∂v
(2.5)

and we deduce that for 0 ≤ s < t ≤ T1 and |v| < N ,

∥∥∥
∂X(s; t, x, v)

∂v

∥∥∥
L∞

≤ CT1
. (2.6)

The Taylor expansion forX(s; t, x, v) = (X1(s; t, x, v), X2(s; t, x, v), X3(s; t, x, v)) around t reads

∂Xi(s; t, x, v)

∂vj
=

∂Xi(t; t, x, v)

∂vj
+ (s− t)

d

ds

{∂Xi(s; t, x, v)

∂vj

}∣∣∣
s=t

+
(s− t)2

2

d2

ds2
Xi(sij ; t, x, v)

∂vj

= (s− t) +
(s− t)2

2

d2

ds2
∂Xi(sij ; t, x, v)

∂vj

for some sij between s and t, 1 ≤ i, j ≤ 3. Hence the Jacobian matrix
(
∂X(s;t,x,v)

∂v

)
is given by

(∂X(s; t, x, v)

∂v

)
= (s− t)

{
I3×3 +

s− t

2

( d2

ds2
∂Xi(sij ; t, x, v)

∂vj

)}
,

where I3×3 is the unit matrix. Noticing the fact that |∂x∇xΦ(y)|L∞(R3) is sufficiently small and

using again (2.5) with s = sij and (2.6), we have

∣∣∣
s− t

2

d2

ds2
∂Xi(sij ; t, x, v)

∂vj

∣∣∣ ≤ |(t− s)CT1
|∂x∇xΦ(y)|L∞ | ≤ 1

8

for some suitable T1 > 0. Therefore, the estimate (2.3) holds.
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3 Weighted L
∞ Stability

In this section we shall use the entropy-energy inequality and the estimates on the char-

acteristics to show the stability of the equilibrium. In fact, we obtain that the perturbation

f is arbitrarily small at any positive time in a suitable weighted L∞ norm provided that it is

initially sufficiently small. We use the weight function w(v) = (Λ + |v|2)β with β > 3
2 and Λ a

positive constant to be chosen later.

Lemma 3.1 Let h = wf . Under the assumptions of Theorem 1.1, there exist 0 < T0 < T1,

δ > 0, 0 < Π < 1, and CT0
> 0 such that, if ‖h‖L∞ < δ, then

‖h(T0)‖L∞ ≤ Π‖h(0)‖L∞ + CT0

√
G(f(0)).

Proof We first write the equation for h = wf from (1.2) as

∂th+ v · ∇xh−∇xΦ · ∇vh+ e−Φν(v)h

= e−ΦKw(h) +∇xΦ · ∇vw
h

w
+ e−

Φ

2 wΓ
( h

w
,
h

w

)
, (3.1)

where Kw(·) = wK
( ·
w

)
. Denote [X(s), V (s)] ≡ [X(s; t, x, v), V (s; t, x, v)]. Noticing that

d

ds
h(s,X(s; t, x, v), V (s; t, x, v)) = ∂th+∇xh · dX

ds
+∇vh · dV

ds
,

the solution to the following transport equation

∂th+ v · ∇xh+∇xΦ · ∇vh+ e−Φν(v)h = 0

can be written as

h(t, x, v) = exp
{
−
∫ t

0

e−Φ(τ)ν(τ)dτ
}
h(0, X(0), V (0)),

where Φ(τ) ≡ Φ(X(τ)) and ν(τ) ≡ ν(V (τ)). Thus, for any (t, x, v), by integrating (3.1) along

the backward trajectory (2.1)–(2.2) and applying the Duhamel principle, the solution h(t, x, v)

of the original nonlinear equation (3.1) can be written as

h(t, x, v) = exp
{
−
∫ t

0

e−Φ(τ)ν(τ)dτ
}
h(0, X(0), V (0))

+

∫ t

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}
(e−ΦKwh)(s,X(s), V (s))ds

+

∫ t

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}(

∇xΦ · ∇vw
h

w

)
(s,X(s), V (s))ds

+

∫ t

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}[

e−
Φ

2 wΓ
( h

w
,
h

w

)]
(s,X(s), V (s))ds. (3.2)

We note that, for Λ ≥ 1,

w(v)

w(v′)
=

[Λ + |v|2]β
[Λ + |v′|2]β ≤ Cβ

[Λ + |v′|2]β + |v′ − v|2β
[Λ + |v′|2]β ≤ Cβ [1 + |v′ − v|2]β . (3.3)

Fix a small constant ǫ > 0. We can choose Λ sufficiently large such that

∣∣∣
w′(v)

w(v)

∣∣∣ ≤ ǫ. (3.4)
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Since ν(τ) ≥ ν0 > 0 and Φ ≤ −ϑ, the third term in (3.2) is bounded by

Cǫ exp
{
− eϑν0t

2

}
sup

0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}
.

For the last term in (3.2), by [5, Lemma 5], it follows

∥∥∥wΓ
( h

w
,
h

w

)
(v)

∥∥∥ ≤ Cν(v)‖h‖2L∞ .

Noticing Φ ≤ −ϑ, we get the bound for the last term by

C

∫ t

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}
ν(s)‖h(s)‖2L∞ds

≤ C sup
0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}2

×
∫ t

0

exp
{
−
∫ t

s

eϑν(τ)dτ
}
ν(s) exp

{eϑν0s

2

}
ds.

Thanks to
d

ds

[
exp

{
−
∫ t

s

eϑν(τ)dτ
}]

= eϑν(s) exp
{
−
∫ t

s

eϑν(τ)dτ
}
,

we obtain, by integrating by parts, that

∫ t

0

exp
{
−
∫ t

s

eϑν(τ)dτ
}
ν(s) exp

{eϑν0s

2

}
ds

= eC0

(
exp

{
−
∫ t

s

eϑν(τ)dτ
}
exp{−eϑν0s}

)∣∣∣
s=t

s=0

+ ν0e
C0

∫ t

0

exp
{
−
∫ t

s

eϑν(τ)dτ
}
exp{−eϑν0s}ds

≤ C(1 + t) exp{−eϑν0t}.

We shall mainly concentrate on the second term in (3.2). Let k(v, v′) be the corresponding

kernel associated with K in (3.1). Then the Grad’s estimate implies that

|k(v, v′)| ≤ C(|v − v′|+ |v − v′|−1) exp
{
− 1

8
|v − v′|2 − 1

8

||v|2 − |v′|2|2
|v − v′|2

}
.

Denote w(v) = (Λ + |v|2)β for the constants Λ > 0 and β > 3
2 . Then [5, Lemma 3], gives

∫ ′

R3

w(v)

w(v′)
(|v − v′|+ |v − v′|−1) exp

{
− σ

8
|v − v′|2 − σ

8

||v|2 − |v′|2|2
|v − v′|2

}
dv ≤ C

1 + |v| (3.5)

for some 0 < σ < 1 and C > 0. Denote Kw(·) = wK
( ·
w

)
and k(v, v′)w is the corresponding

kernel associated with Kw. Then the estimate (3.5) implies that
∫

R3

|kw(v, v
′)|dv′ < ̟

1 + |v| (3.6)

uniformly in Λ for some constant ̟ > 0.

Denote

[X̃(s1), Ṽ (s1)] ≡ [X(s1; s,X(s; t, x, v), v′), V (s1; s,X(s; t, x, v), v′)].
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We now use (3.2) for h(s,X(s), v′) again to evaluate

{Kwh}(s,X(s), V (s)) =

∫

R3

kw(V (s), v′)h(s,X(s), v′)dv′.

In fact, we can bound the third term in (3.2) by

∫ t

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}
e−Φ(s) exp

{
−
∫ s

0

e−Φ(τ)ν(τ)dτ
}

×
∫

R3

|kw(V (s), v′)h(0, X̃(0), Ṽ (0))|dv′ds

+

∫ t

0

∫ s

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}
e−Φ(s) exp

{
−
∫ s

s1

e−Φ(τ)ν(τ)dτ
}

×
∫

R3×R3

|kw(V (s), v′)kw(Ṽ (s1), v
′′)h(s1, X̃(s1), v

′′)|dv′dv′′ds1ds

+

∫ t

0

∫ s

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}
e−Φ(s) exp

{
−
∫ s

s1

e−Φ(τ)ν(τ)dτ
}

×
∫

R3

∣∣∣kw(V (s), v′)
{
∇xΦ · ∇vw

h

w

}
(s1, X̃(s1), Ṽ (s1))

∣∣∣dv′ds1ds

+

∫ t

0

∫ s

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ
}
e−Φ(s) exp

{
−
∫ s

s1

e−Φ(τ)ν(τ)dτ
}

×
∫

R3

∣∣∣kw(V (s), v′)
{
e−ΦwΓ

( h

w
,
h

w

)}
(s1, X̃(s1), Ṽ (s1))

∣∣∣dv′ds1ds. (3.7)

Since ν(τ) ≥ ν0, by taking L∞ norm for h and using the estimates (3.6) and (1.8), we bound

the first term in (3.7) by ̟eϑt exp{−ν0e
ϑt}‖h0‖L∞ . Similarly, noticing the fact Φ ≤ −ϑ and

‖∇xΦ‖L∞ ≤ C0, and using the estimate (3.4), the third term can be bounded by

Cǫ exp
{
− eϑν0t

2

}
sup

0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}

and the last nonlinear term can be bounded by

C(1 + t) exp{−eϑν0t} sup
0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}2

.

We now concentrate on the second term in (3.7) and we follow the same spirit of the proof

of Theorem 6 in [5]. Since ∇xΦ ∈ L∞(R3), (2.2) implies that, for any T > 0 and for fixed

N > 0 large enough, we have

sup
0≤t≤T
0≤s≤T

|V (s)− v| ≤ N

2
.

Thanks to the estimate
∫∫

R3×R3

|kw(V (s), v′)kw(Ṽ (s1), v
′′)|dv′dv′′ ≤ ̟2

1 + |V (s)| , (3.8)

we divide the above integral into three cases according to the size of v, v′, v′′ and for each case,

an upper bound of the second term in (3.7) will be obtained.
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Case 1 |v| ≥ N . In this case, since |V (s)| ≥ N
2 , the estimate (3.8) implies that

∫∫

R3×R3

|kw(V (s), v′)kw(Ṽ (s1), v
′′)|dv′dv′′ ≤ ̟

1 + |V (s)| ≤
2̟

N
.

We can find an upper bound for the second term in (3.7) by

C

N

∫ t

0

exp{−eϑν0(t− s)
}∫ s

0

exp{−eϑν0(s− s1)}‖h(s1)‖L∞ds1ds

≤ C

N
exp

{
− eϑν0t

2

}
sup

0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}
.

Case 2 |v| ≤ N , |v′| ≥ 2N , or |v′| ≤ 2N , |v′′| ≥ 3N . Observe that |V (s)− v′| ≥ |v′ − v| −
|V (s)−v| ≥ |v′|−|v|−|V (s)−v|, |Ṽ (s1)−v′′| ≥ |v′′−v′|−|Ṽ (s1)−v′| ≥ |v′′|−|v′|−|Ṽ (s1)−v′|,
thus we have either |V (s)− v′| ≥ N

2 or |Ṽ (s1)− v′′| ≥ N
2 . Therefore, either one of the following

is valid correspondingly for some σ > 0,

|kw(V (s), v′)| ≤ Ce−
σ
8
N2 |kw(V (s), v′)|eσ

8
|V (s)−v′|2 ,

|kw(Ṽ (s1), v
′′)| ≤ Ce−

σ
8
N2 |kw(Ṽ (s1), v

′′)|eσ
8
|Ṽ (s1)−v′′|2 .

By (3.5), we have
∫

R3

|kw(V (s), v′)|eσ
8
|V (s)−v′|2dv′ +

∫

R3

|kw(Ṽ (s1), v
′′)|eσ

8
|Ṽ (s1)−v′′|2dv′′ < +∞. (3.9)

We use this bound to combine the cases of |V (s)− v′| ≥ N
2 or |Ṽ (s1)− v′′| ≥ N

2 as

∫ t

0

∫ s

0

{∫

|v|≤N,|v′|≥2N,

+

∫

|v′|≤2N,|v′′|≥3N

}
.

We first integrate v′ for the first integral and use (3.8) to integrate kw over v′′. We then integrate

v′′ for the second integral and use (3.8) to integrate kw over v′. Noticing ‖Φ‖L∞ ≤ C0, we thus

find an upper bound

C

∫ t

0

∫ s

0

exp
{
−
∫ t

s

e−Φ(τ)ν(τ)dτ −
∫ s

s1

e−Φ(τ)ν(τ)dτ
}

×
{
sup
v

∫

|v|≤N,|v′|≥2N

|kw(V (s), v′)|dv′
}
‖h(s1)‖L∞ds1ds

+ C

∫ t

0

∫ s

0

exp
{
−

∫ t

s

e−Φ(τ)ν(τ)dτ −
∫ s

s1

e−Φ(τ)ν(τ)dτ
}

×
{
sup
v′

∫

|v′|≤2N,|v′′|≥3N

|kw(Ṽ (s1), v
′′)|dv′′

}
‖h(s1)‖L∞ds1ds

≤ Ce−
8N2

σ

∫ t

0

∫ s

0

exp{−eϑν0(t− s1)}‖h(s1)‖L∞ds1ds

≤ Ce−
8N2

σ exp
{
− eϑν0t

2

}
sup

0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}
.

Case 3a |v| ≤ N , |v′| ≤ 2N, |v′′| ≤ 3N . This is the last remaining case because if |v′| > 2N ,

it is included in Case 2; while if |v′′| > 3N , either |v′| ≤ 2N or |v′| ≥ 2N is also included in

Case 2. We further assume that t− s ≤ ǫ. We can bound the second term in (3.7) by

CN

∫ t

t−ǫ

∫ s

0

exp{−eϑν0(t− s1)}‖h(s1)‖L∞ds1ds
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≤ CN ǫ exp
{
− eϑν0t

2

}
sup

0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}
. (3.10)

Case 3b |v| ≤ N , |v′| ≤ 2N, |v′′| ≤ 3N , and t − s ≥ ǫ. We can bound the second term in

(3.7) by

CN

∫ t−ǫ

0

∫

B

∫ s

0

exp{−eϑν0(t− s1)}|kω(V (s), v′)kω(Ṽ (s1), v
′′)|‖h(s)‖L∞ds1ds, (3.11)

where B = {|v′| ≤ 2N , |v′′| ≤ 3N}. We notice that kw(v, v
′) has a possible integrable singu-

larity of the type 1
|v−v′| . We can choose kN (v, v′) smooth with compact support such that

sup
|p|≤3N

∫

|v′|≤3N

|kN (p, v′)− kw(p, v
′)|dv′ ≤ 1

N
. (3.12)

Splitting

kw(V (s), v′)kw(Ṽ (s1), v
′′) = {kw(V (s), v′)− kN (V (s), v′)}kw(Ṽ (s1), v

′′)

+ {kw(Ṽ (s1), v
′′)− kN (Ṽ (s1), v

′′)}kN (V (s), v′)

+ kN (V (s), v′)kN (Ṽ (s1), v
′′).

We then integrate the first term above in v′′ and the second term above in v′. By (3.6), we can

use such an approximation (3.12) to bound the s1, s integration by

C

N
exp

{
− eϑν0t

2

}
sup

0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}

×
{

sup
|v′|≤2N

∫
|kw(Ṽ (s1), v

′′)|dv′′ + sup
|v|≤2N

∫
|kw(V (s), v′)|dv′

}

+ CN

∫ t−ǫ

0

∫

B

∫ s

0

exp{−eϑν0(t− s1)}|kN (V (s), v′)kN (Ṽ (s1), v
′′)|

× |h(s1, X̃(s1), v
′′)|ds1dv′dv′′ds. (3.13)

The first term in (3.13) is further bounded by

C

N
exp

{
− eϑν0t

2

}
sup

0≤s≤t

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}
.

Since kN (V (s), v′) and kN (Ṽ (s1), v
′′) are bounded, the second term in (3.13) is controlled by

C

∫ t−ǫ

0

∫

B

∫ s

0

exp{−eϑν0(t− s1)}|h(s1, X̃(s1), v
′′)|ds1dv′dv′′ds. (3.14)

To estimate this term, we introduce a new variable

y = X̃(s1) = X(s1; s,X(s; t, x, v), v′) (3.15)

and apply Lemma 2.2 to X(s1; s,X(s; t, x, v), v′) with s = s1, t = s, x = X(s; t, x, v), and

v = v′. Noticing 0 ≤ s ≤ t − ǫ < t < T1, we have | dydv′
| ≥ ǫ3

8 . Thanks to ‖∇xΦ‖L∞ ≤ C, we

observe from (2.1)–(2.2) that

|v′ − V (τ)| ≤
∫ s

τ

‖∇xΦ‖L∞dτ ≤ T0‖∇xΦ‖L∞ ,
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|y −X(s)| ≤
∫ s

s1

|V (τ)|dτ ≤ T0(|v′|+ T0‖∇xΦ‖L∞) ≤ CT0,N

for |v′| ≤ 2N . By integrating over v′ (bounded) and using the change of variable (3.15), we get

∫ t−ǫ

0

∫

B

∫ s

0

exp{−eϑν0(t− s1)}|h(s1, X̃(s1), v
′′)|1Ω{X(s1)}ds1dv

′dv′′ds

≤ CN

ǫ3

∫ t−ǫ ∫

|y−X(s)|≤CT0,N

∫

|v′′|≤3N

∫ s

0

exp{−eϑν0(t− s1)}|h(s1, y, v′′)|ds1dv′′dyds

≤ CT0,N

ǫ3
sup

0≤s1≤T0

∫

|y−X(s)|≤CT0,N

∫

|v′′|≤3N

|h(s1, y, v′′)|dv′′dy

≤
∫

{|F (t)−M|≥κM}
+

∫

{|F (t)−M|≥κM}

≤ CT0,N,ǫ[G(f(0)) +
√
G(f(0)) ],

where the fact h = w(F−M)√
M

(which is bounded by F −M for |v′′| ≤ 3N) and Lemma 2.1 are

used.

By collecting all the above terms, we conclude that, for H(g(0)) small,

sup
0≤s≤T0

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}

≤ (1 +̟eϑT0)‖h(0)‖L∞ +
(CT0

N
+ ǫCN,T0

+ ηCN,T0,ǫ

)
sup

0≤s≤T0

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}

+ C(1 + T0) sup
0≤s≤T0

{
exp

{eϑν0s

2

}
‖h(s)‖L∞

}2

+ CT0,N,ǫ

√
H(g(0)).

Assume that sup
0≤s≤T0

‖h(s)‖L∞ is sufficiently small. Since |∂2
xΦ|L∞(R3) is sufficiently small, we

can choose suitable large T1 in Lemma 2.2 such that there exists a T0 < T1 satisfying

(1 +̟eϑT0) exp
{
− eϑν0T0

2

}
, λ < 1,

then N sufficiently large, and finally ǫ sufficiently small to conclude our lemma.

Proof of Theorem 1.1 Assume that sup
0≤t≤∞

‖h(t)‖L∞ is sufficiently small. We first estab-

lish (1.9). Choose any n = 1, 2, 3, · · · and use Lemma 3.1 repeatedly to get

‖h(nT0)‖L∞ ≤ λ‖h((n− 1)T0)‖L∞ + CT0

√
G(f(0))

≤ λ2‖h((n− 2)T0)‖L∞ + λCT0

√
G(f(0)) + CT0

√
G(f(0))

≤ · · ·
≤ λn‖h(0)‖L∞ + CT0

√
G(f(0)){1 + λ+ λ2 + · · · }

≤ λn‖h(0)‖L∞ +
CT0

λ

1− λ

√
G(f(0)).

For any t, we can find n such that nT0 ≤ t ≤ (n+ 1)T0, and from L∞ estimate from [0, T0], we

conclude (1.9) by

‖h(t)‖L∞ ≤ CT0
‖h(nT0)‖ ≤ C[‖h(0)‖L∞ +

√
G(f(0))].
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To prove (1.10), we take x and v derivatives to (1.2) to get

{∂t + v · ∇x −∇xΦ · ∇v + e−Φν(v)}∂xf − e−ΦK∂xf

= ∇x∂xΦ · ∇vf + e−Φ(ν(v) −K)f − ∂xΦ

2
e−ΦΓ(f, f) + e−Φ∂xΓ(f, f), (3.16)

{∂t + v · ∇x −∇xΦ · ∇v + e−Φν(v)}∂vf − e−ΦK∂vf

= −∂xf + e−Φ∂v(ν(v)))f + e−Φ∂vΓ(f, f). (3.17)

By [6, Lemma 2.2], we have

‖∂v(Kf)∂vf‖L1 ≤ 1

2

∫

R3

ν(v)|∂vf |2dv + C‖f‖2L2.

Since L = ν−K ≥ 0, by multiplying (3.16) with ∂xf and (3.17) with ∂vf and then integrating

them over R3
x,v respectively, we can follow the procedures in [4] to get

1

2

d

dt
‖∂xg‖2L2 ≤ C{‖∇x∂xΦ‖L∞ + ‖h‖L∞}‖∇x,vg‖2L2 + C‖g‖2L2,

1

2

d

dt
‖∂vg‖2L2 +

1

4

∫

R3

ν(v)|∂vf |2dv ≤ C‖∂xg‖2L2 + C‖g‖2L2.

Hence (1.10) follows from the Gronwall Lemma since sup
0≤t≤∞

‖h(t)‖L∞ is bounded by (1.9). With

such an estimate, we easily obtain the uniqueness by taking L2 estimate for the difference for

(1.2). Therefore, we complete our proof of Theorem 1.1.
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