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Abstract To determine the stable homotopy groups of spheres π∗(S) is one of the central
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1 Introduction

Let S be the sphere spectrum localized at an odd prime number p. To determine the stable

homotopy groups of spheres π∗(S) is one of the central problems in homotopy theory. One of

the powerful tools to determine π∗(S) is the classical Adams spectral sequence (see [1, 7]) based

on the Eilenberg-MacLane spectrum KZ/p for the prime p,

Exts,tA (Z/p,Z/p) =⇒ πt−s(S)

with differential dr : Es,t
r → Es+r,t+r−1

r . Let q = 2(p − 1) as usual. From [6] we know that

Ext1,∗A (Z/p,Z/p) is generated by a0 ∈ Ext1,1A (Z/p,Z/p), hi ∈ Ext1,qp
i

A (Z/p,Z/p) (i ≥ 0).

Ext2,∗A (Z/p,Z/p) is generated by a1h0, a20, a0hi (i > 0), gi (i ≥ 0), ki (i ≥ 0), bi (i ≥ 0)

and hihj (0 ≤ i ≤ j − 2) which have degrees 2q + 1, 2, qpi + 1, q(pi+1 + 2pi), q(2pi+1 + pi),

qpi+1 and q(pi + pj), respectively. In 1980, K. Aikawa [2] calculated Ext3,∗A (Z/p,Z/p) by the

λ-algebra.

Consider the Smith-Toda spectra V (k) given in [8], and we have the following four cofiber
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sequences:

S
p
−→ S

i0−→ V (0)
j0
−→ ΣS, p ≥ 2,

ΣqV (0)
α
−→ V (0)

i1−→ V (1)
j1
−→ Σq+1V (0), p ≥ 3,

Σq(p+1)V (1)
β
−→ V (1)

i2−→ V (2)
j2
−→ Σq(p+1)+1V (1), p ≥ 5,

Σq(p2+p+1)V (2)
γ
−→ V (2)

i3−→ V (3)
j3
−→ Σq(p2+p+1)+1V (2), p ≥ 7.

Here α, β and γ are the v1-, v2- and v3-mappings, respectively.

In 1998, Wang and Zheng [9] defined the third Greek letter family element γ̃t in the ASS

for p ≥ 7 and t 6≡ 0, 1, 2 mod p,

γ̃t ∈ Ext
t,q[tp2+(t−1)p+(t−2)]+t−3
A (Z/p,Z/p).

It is known that γ̃t detects the stable homotopy γ-element γt = j0j1j2γ
ti2i1i0.

In [5], Liu constructed a new nontrivial family of homotopy elements in the stable homotopy

groups of spheres and proved the following theorems.

Theorem 1.1 (cf. [5]) Let p ≥ 5, n ≥ 3. Then k0hn 6= 0 ∈ Ext
3,q(pn+2p+1)
A (Z/p,Z/p) is

a permanent cycle in the Adams spectral sequence and it converges to a non-trivial family of

homotopy elements ̟n in the stable homotopy of spheres πq(pn+2p+1)−3(S).

In this paper, we make use of the above result to consider the composite map β1̟nγs and

prove its non-triviality under some conditions. The main result can be stated as follows.

Theorem 1.2 Let p ≥ 7, n > 3, 3 ≤ s < p − 2. Then the family of homotopy elements,

β1̟nγs, is non-trivial in the stable homotopy of spheres.

The paper is arranged as follows. After recalling some knowledge on the May spectral

sequence in Section 2, we compute some May Er-terms and Adams E2-terms which are used

in the proof of Theorem 1.2 in Section 3. Section 4 is devoted to showing Theorem 1.2.

2 The May Spectral Sequence

From [7], there is a May spectral sequence {Es,t,∗
r , dr} which converges to Exts,tA (Z/p,Z/p)

with E1-term

E∗,∗,∗
1 = E(hm,i | m > 0, i > 0)⊗ P [bm,i | m > 0, i > 0]⊗ P [an | n > 0], (2.1)

where E( ) denotes the exterior algebra, P [ ] denotes the polynomial algebra, and

hm,i ∈ E
1,2(pm

−1)pi,2m−1
1 , bm,i ∈ E

2,2(pm
−1)pi+1,p(2m−1)

1 , an ∈ E1,2pn
−1,2n+1

1 .

One has

dr : Es,t,u
r → Es+1,t,u−r

r (2.2)

and if x ∈ Es,t,∗
r , y ∈ Es′,t′,∗

r , then

dr(x · y) = dr(x) · y + (−1)sx · dr(y). (2.3)
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In particular, the first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

06k<i

hi−k,kak, d1(bi,j) = 0. (2.4)

There also exists a graded commutativity in the May spectral sequence as

x · y = (−1)ss
′+tt′y · x

for x, y = hm,i, bm,i or an.

For each element x ∈ Es,t,u
1 , we define hdim x = s, intdim x = t, May(x) = u. Then we

have





hdim hi,j = hdim ai = 1,
hdim bi,j = 2,
intdim hi,j = q(pi+j−1 + · · ·+ pj),
intdim bi,j = q(pi+j + · · ·+ pj+1),
intdim ai = q(pi−1 + · · ·+ 1) + 1,
intdim a0 = 1,
May(hi,j) = May(ai−1) = 2i− 1,
May(bi,j) = (2i− 1)p,

(2.5)

where i > 1, j > 0.

3 Some May Er-Terms and Two Adams E2-Terms

In this section, we first determine some May Er-terms (r ≥ 1). Then we give two important

theorems about Adams E2-term which will be used in the proof of Theorem 1.2.

Lemma 3.1 Let p ≥ 7, n > 3, 0 ≤ s < p− 5 and r ≥ 1. Then the May E1-term satisfies

E
s+8−r,t(s,n)+1−r,∗
1 =






G1, r = 1 and s = p− 6,
G2, r = 1 and s = p− 7,
0, otherwise.

Here t(s, n) = q[pn + (s + 3)pn + (s + 5)p + (s + 2)] + s, G1 is the Z/p-module gener-

ated by the unique element ap−6
3 h3,0h2,0h2,1h1,1h1,nb2,0 and G2 is generated by the element

ap−7
3 h3,0h2,0h2,1h1,1h1,nb2,0.

Proof When r ≥ s+ 2, we can easily show that in the May spectral sequence

E
s+8−r,t(s,n)+1−r,∗
1 = 0. (3.1)

Thus in the rest of the proof, we assume that 1 ≤ r < s+ 2.

Consider g = w1w2 · · ·wl ∈ E
s+8−r,t(s,n)−r+1,∗
1 in the May spectral sequence, where wi is

one of ak, hr,j or bu,z, 0 ≤ k ≤ n+ 1, 0 ≤ r + j ≤ n+ 1, 0 ≤ u + z ≤ n, r > 0, j ≥ 0, u > 0,

z ≥ 0. Assume that

intdim wi = q(ci,np
n + ci,n−1p

n−1 + · · ·+ ci,1p+ ci,0) + ei,

where ci,j = 0 or 1, ei = 1 if wi = aki
, or ei = 0. It follows that

hdim g =

l∑

i=1

hdim wi = s+ 8− r (3.2)
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and

intdim g =

l∑

i=1

intdim wi

= q
[( l∑

i=1

ci,n

)
pn + · · ·+

( l∑

i=1

ci,1

)
p+

( l∑

i=1

ci,0

)]
+
( l∑

i=1

ei

)

= q[pn + (s+ 3)p2 + (s+ 5)p+ (s+ 2)] + s+ 1− r. (3.3)

Note that hdim hi,j = hdim ai = 1, hdim bi,j = 2, 1 ≤ r < s + 3 and 0 ≤ s < p − 5. From

hdim g =
l∑

i=1

hdim wi = s+ 8− r, we have l ≤ s+ 8− r < p+ 3− r ≤ p+ 2.

We claim that s+ 1− r ≥ 0. On the one hand, it is easy to get the following inequality

l∑

i=1

ei ≤ l ≤ p+ 1

from the fact that ei = 0 or 1. On the other hand, using 1 ≤ r < s + 2 and p ≥ 5, we would

also have the following inequality

l∑

i=1

ei = q + (s− r + 1) > 2p− 2− 1 ≥ p+ 2,

which contradicts
l∑

i=1

ei ≤ l ≤ p+ 1. The claim is proved.

Using 0 ≤ s + 3, s + 1 − r < p and the knowledge on p-adic expression in number theory,

we have





l∑
i=1

ei = s+ 1− r,

l∑
i=1

ci,0 = s+ 2,

l∑
i=1

ci,1 = s+ 5,

l∑
i=1

ci,2 = s+ 3,

l∑
i=1

ci,3 = 0+ λ3p, λ3 ≥ 0,

l∑
i=1

ci,4 + λ3 = 0 + λ4p, λ4 ≥ 0,

...
l∑

i=1

ci,n−1 + λn−2 = 0+ λn−1p, λn−1 ≥ 0,

l∑
i=1

ci,n + λn−1 = 1.

(3.4)

Consider the fifth equation of (3.4)
l∑

i=1

ci,3 = 0 + λ3p. By ci,3 = 0 or 1, and l ≤ p + 1, we get

that λ3 = 0 or 1.
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Case 1 λ3 = 0.

We claim that

λ4 = 0.

If λ4 = 1, we would have the following equations

l∑

i=1

ci,2 = s+ 3,

l∑

i=1

ci,3 = 0,

l∑

i=1

ci,4 = p.

From
l∑

i=1

ci,2 = s+ 3 and (2.5), there would be s+ 3 factors among g such that intdim xi = q

(higher terms on p+p2+lower terms on p) + δi, where δi may equal 0 or 1. Similarly, from
l∑

i=1

ci,4 = p, there would be p factors among g such that intdim wi = q (high terms on

p+p4+lower terms on p) + δi. Thus, by l ≤ p + 1 and (2.5), there would be at least

p+s+3−(p+1) = s+2 factors in g such that intdim wi = q (higher terms on p4+p3+p2+lower

terms on p) + δi. Thus we would have

l∑

i=1

ci,3 ≥ s+ 2,

which contradicts
l∑

i=1

ci,3 = 0. The claim is proved.

By induction on j, we have that

λj = 0, 4 ≤ j ≤ n− 1.

Then we have the following two cases.

Case 1.1 If there is a factor h1,n in g, we have that up to sign g = h1,ng̃ with g̃ ∈

E
s+7−r,q[(s+3)p2+(s+5)p+(s+2)]+s+1−r,∗
1 .

By (2.5), E
s+6,q[(s+3)p2+(s+5)p+(s+2)]+s+1−r,∗
1 = Z/p{as3h3,0h2,0h2,1h1,1h1,nb2,0}. It follows

that when r = 1, the generator g exists and g = as3h3,0h2,0h2,1h1,1h1,nb2,0 up to sign.

When r ≥ 2, we have E
s+7−r,q[(s+3)p2+(s+5)p+(s+2)]+s+1−r,∗
1 = 0 by (2.5). Thus we have

that in this case the generator g is impossible to exist.

Case 1.2 If there is a factor b1,n−1 in g, then up to sign g = b1,n−1g̃ with g̃ ∈ Es+6−r,∗,∗
1 .

When r = 1, from E
s+5,q[(s+3)p2+(s+5)p+(s+2)]+s,∗
1 = 0, we know that the generator g is

impossible to exist.

When r ≥ 2, we can make use of (2.5) to get

E
s+6−r,q[(s+3)p2+(s+5)p+(s+2)]+s+1−r,∗
1 = 0,

implying that the generator g is impossible to exist, either.

Case 2 λ3 = 1.

If r ≥ 3, we would have

l ≤ s+ 8− r < p+ 3− r ≤ p.

It is easy to see that λ3 is impossible to equal 1. Thus in the rest of this case, we always assume

r ≤ 2.
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From the sixth equation of (3.4)
l∑

i=1

ci,4 + 1 = λ4p and 0 ≤
l∑

i=1

ci,4 ≤ l ≤ p+ 1, we can deduce

λ4 = 1.

By induction on j,

λj = 1, 4 ≤ j ≤ n− 1.

Thus (3.4) can turn into






l∑
i=1

ei = s+ 1− r,

l∑
i=1

ci,0 = s+ 2,

l∑
i=1

ci,1 = s+ 5,

l∑
i=1

ci,2 = s+ 3,

l∑
i=1

ci,3 = p,

l∑
i=1

ci,4 = p− 1,

...
l∑

i=1

ci,n−1 = p− 1,

l∑
i=1

ci,n = 0.

(3.5)

From the fifth equation of (3.5)
l∑

i=1

ci,3 = p, using ci,3 = 0 or 1, we can have that

l ≥ p.

Note that l ≤ s+ 7. Thus s ≥ p− 7. By 0 ≤ s < p− 5, s may equal p− 6 or p− 7.

Case 2.1 When s = p − 6, g = w1w2 · · ·wl ∈ E
p+2−r,t(p−6,n)+1−r,∗
1 . In this case, l may

equal p or p+ 1.

Case 2.1.1 l = p. From the following two equations:

l∑

i=1

ei = p− 5− r and

l∑

i=1

ci,n−1 = p− 1,

we have that up to sigh the generator g must be of the form

g = ap−6−r
n xp−5−r · · ·xp.

In this case r must equal 1, then we have that up to sign

g = ap−7
n xp−6 · · ·xp,

where xp−6 · · ·xp ∈ E
8,q[6pn−1+···+6p4+7p3+4p2+6p+3]+1,∗
1 = 0, which is trivial by (2.5). Thus, in

this case g is impossible to exist.
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Case 2.1.2 l = p+ 1. From the following two equations:

l∑

i=1

ei = p− 5− r and
l∑

i=1

ci,n−1 = p− 1,

we have that up to sign the generator g must be of the following form:

g = ap−7−r
n xp−6−r · · ·xp+1.

In this case r must equal 1, then we have that up to sign

g = ap−8
n xp−7 · · ·xp+1,

where xp−7 · · ·xp+1 ∈ E
9,q[7pn−1+···+7p4+8p3+5p2+7p+4]+2,∗
1 = 0, which is trivial by (2.5). Thus,

in this case g is impossible to exist.

Case 2.2 When s = p− 7, g = w1w2 · · ·wl ∈ E
p+1−r,t(p−7,n)+1−r,∗
1 .

Case 2.2.1 l = p. From the following two equations:

l∑

i=1

ei = p− 6− r and
l∑

i=1

ci,n−1 = p− 1,

we have that up to sign the generator g must be of the form

g = ap−7−r
n xp−7−r · · ·xp.

If r = 1, we have that up to sign

g = ap−8
n xp−7 · · ·xp,

where xp−7 · · ·xp ∈ E
8,q[7pn−1+···+7p4+8p3+4p2+6p+3]+1,∗
1 = 0. Thus, in this case g is impossible

to exist.

If r = 2, we have that up to sign

g = ap−9
n xp−8 · · ·xp,

where xp−8 · · ·xp ∈ E
9,q(8pn−1+···+8p4+9p3+5p2+7p+4)+2,∗
1 = 0, implying that the generator g is

impossible to exist.

Case 2.2.2 l = p+ 1. From the following two equations:

l∑

i=1

ei = p− 6− r and

l∑

i=1

ci,n−1 = p− 1,

we have that up to sign the generator g must be of the form

g = ap−8−r
n xp−7−r · · ·xp+1,

where xp−7−r · · ·xp+1 ∈ E
9,q(8pn−1+···+8p4+9p3+5p2+7p+4)+2,∗
1 = 0. Then, in this case, g is im-

possible to exist.

From Cases 1 and 2, the lemma follows.

We need the following theorem about the γ-element.
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Theorem 3.1 (cf. [4]) Let p ≥ 7, 0 ≤ s < p− 2. Then the permanent cocycle

as3h3,0h2,1h1,2 ∈ Es+3,t,∗
r

detects the second Greek letter element γ̃s+3 ∈ Exts+3,t
A (Z/p,Z/p) in the May spectral sequence,

where r ≥ 1, t = (s+ 3)p2q + (s+ 2)pq + (s+ 1)q + s and γ̃s+3 detects the γ-element

γs+3 ∈ π(s+3)p2q+(s+2)pq+(s+1)q−3(S)

in the Adams spectral sequence.

Now we consider some results on the product k0b0hnγ̃s+3.

Lemma 3.2 (1) The product k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p) is represented by

h2,0h1,1b1,0h1,na
s
3h3,0h2,1h1,2 ∈ E

s+8,t(s,n),∗
1

in the May spectral sequence, where t(s, n) = q[pn + (s+ 3)p2 + (s+ 5)p+ (s+ 2)] + s.

(2) For the generator of E
p+1,t(p−6,n),∗
1 , we have

M(ap−6
3 h3,0h2,0h2,1h1,1h1,nb2,0) = 10p− 29.

For the generators of E
p,t(p−7,n),∗
1 , we have

M(ap−7
3 h3,0h2,0h2,1h1,1h1,nb2,0) = 10p− 36.

In particular,

M(h2,0h1,1b1,0h1,na
s
3h3,0h2,1h1,2) = p+ 7s+ 11.

Proof (1) Since it is known that h1,i, b1,i, h2,0h1,1 and as3h3,0h2,1h1,2 ∈ E∗,∗,∗
1 are all

permanent cocycles in the May spectral sequence and converge nontrivially to hi, bi, k0, γ̃s+3 ∈

Ext∗,∗A (Z/p,Z/p) for 0 ≤ s < p and i ≥ 0 respectively (cf. Theorem 3.1), we have that

h2,0h1,1b1,0h1,na
s
3h3,0h2,1h1,2 ∈ E

s+8,t(s,n),∗
1

is a permanent cocycle in the May spectral sequence and converges to

k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p).

(2) It is easy to get the desired results.

By Lemmas 3.1–3.2, we have the following corollary.

Corollary 3.1 For the May E1-module G1 in Lemma 3.1, we have

G1 = E
p+1,t(p−6,n),10p−29
1 ,

where

E
p+1,t(p−6,n),10p−29
1 = Z/p{ap−6

3 h3,0h2,0h2,1h1,1h1,nb2,0}.

For the May E1-module G2 in Lemma 3.1, we have

G2 = E
p,t(p−7,n),10p−36
1 ,

where

E
p+1,t(p−7,n),10p−36
1 = Z/p{ap−7

3 h3,0h2,0h2,1h1,1h1,nb2,0}.
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To show the non-triviality of the product k0b0h0γ̃s+3, we need to show the following two

lemmas.

Lemma 3.3 The May Er-module E
p+1,t(p−6,n),10p−29
r = 0 for r ≥ 2.

Proof From Corollary 3.1,

E
p+1,t(p−6,n),10p−29
1 = Z/p{ap−6

3 h3,0h2,0h2,1h1,1h1,nb2,0}.

By use of (2.2)–(2.3), we have that up to sign

d1(a
p−6
3 h3,0h2,0h2,1h1,1h1,nb2,0) = ap−7

3 a2h3,0h2,0h2,1h1,1h1,2h1,nb2,0 + · · · 6= 0,

showing

E
p+1,t(p−6,n),10p−29
2 = 0.

Then it follows that

Ep+1,t(p−6,n),10p−29
r = 0

for r ≥ 2. The proof of Lemma 3.3 is completed.

Lemma 3.4 The May Er-module E
p+1,t(p−7,n),10p−36
r = 0 for r ≥ 2.

Proof From Corollary 3.1,

E
p+1,t(p−7,n),10p−36
1 = Z/p{ap−7

3 h3,0h2,0h2,1h1,1h1,nb2,0}.

By use of (2.2)–(2.3), we have that up to sign

d1(a
p−6
3 h3,0h2,0h2,1h1,1h1,nb2,0) = ap−7

3 a2h3,0h2,0h2,1h1,1h1,2h1,nb2,0 + · · · 6= 0,

showing

E
p,t(p−7,n),10p−36
2 = 0.

Then it follows that

Ep,t(p−7,n),10p−36
r = 0

for r ≥ 2. The proof of this lemma is completed.

By use of Lemmas 3.3–3.4, we can prove the non-triviality of the product k0b0hnγ̃s+3 as

follows.

Theorem 3.2 Let p ≥ 7, n > 3, 0 ≤ s < p− 5. Then the product

k0b0hnγ̃s+3(6= 0) ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p),

where t(s, n) = pnq + (s+ 3)pq + (s+ 5)pq + (s+ 2)q + s.

Proof From Lemma 3.2(1), the product k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p) is represented

by h2,0h1,1b1,0h1,na
s
3h3,0h2,1h1,2 ∈ E

s+8,t(s,n),∗
1 in the May spectral sequence. Now we show that

nothing hits h2,0h1,1b1,0h1,na
s
3h3,0h2,1h1,2 under the May differential dr for r ≥ 1.

We divide the proof into the following three cases.
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Case 1 When 0 ≤ s < p− 7, from Lemma 3.1 we know that in the May spectral sequence

E
s+7,t(s,n),∗
1 = 0.

Then we have that in the May spectral sequence

Es+7,t(s,n),∗
r = 0 (r ≥ 1).

From (2.2), the permanent cocycle h2,0h1,1b1,0h1,na
s
3h3,0h2,1h1,2 ∈ E

s+8,t(s,n),∗
1 does not bound

and converges nontrivially to k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p) in the May spectral se-

quence. It follows that k0b0hnγ̃s+3 6= 0 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p).

Case 2 When s = p− 7, from Lemma 3.1 and Corollary 3.1, we have

G = E
p,t(p−7,n),10p−36
1 .

By Corollary 3.2 [2], we have

M(h2,0h1,1b1,0h1,na
p−7
3 h3,0h2,1h1,2) = 8p− 38.

By direct computations, we have

M(E
p,t(p−7,n),10p−36
1 )− (8p− 38) = 2p+ 2 ≥ 16.

Thus by the reason of May filtration, we have

h2,0h1,1h1,0b1,n−1a
p−7
3 h3,0h2,1h1,2 /∈ d1(E

p,t(p−7,n),10p−36
1 ).

Moreover, by Lemma 3.4 one has

Ep,t(p−7,n),10p−36
r = 0 (r ≥ 2).

From the above discussion, the permanent cocycle h2,0h1,1b1,0h1,na
p−7
3 h3,0h2,1h1,2 cannot be hit

by any differential in the May spectral sequence. Consequently, h2,0h1,1b1,0h1,na
p−7
3 h3,0h2,1h1,2

converges nontrivially to k0b0hnγ̃p−4 ∈ Ext
p+1,t(p−7,n)
A (Z/p,Z/p) in the May spectral sequence.

It follows that

k0b0hnγ̃p−4 6= 0 ∈ Ext
p+1,t(p−7,n)
A (Z/p,Z/p).

Case 3 When s = p− 6, from Lemma 3.1 and Corollary 3.1, we have

G = E
p+1,t(p−6,n),10p−29
1 .

By Lemma 3.2, we have

M(h2,0h1,1b1,0h1,na
p−6
3 h3,0h2,1h1,2) = 8p− 31.

By direct computations, we have

M(E
p+1,t(p−6,n),10p−29
1 )− (8p− 31) = 2p− 2 ≥ 12.

Thus by the reason of May filtration, we have

h2,0h1,1b1,0h1,na
p−6
3 h3,0h2,1h1,2 /∈ d1(E

p+1,t(p−6,n),10p−29
1 ).
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Moreover, using Lemma 3.3, one has

Ep+1,t(p−6,n),10p−29
r = 0 (r ≥ 2).

From the above discussion, the permanent cocycle h2,0h1,1b1,0h1,na
p−6
3 h3,0h2,1h1,2 cannot be

hit by any differential in the May spectral sequence. Thus, h2,0h1,1b1,0h1,na
p−6
3 h3,0h2,1h1,2

converges nontrivially to k0b0hnγ̃p−3 in the May spectral sequence. Consequently,

k0b0hnγ̃p−3 6= 0 ∈ Ext
p+2,t(p−6,n)
A (Z/p,Z/p).

From Cases 1–3, the desired result follows.

Theorem 3.3 Let p ≥ 7, n > 3, 0 ≤ s < p− 5, 2 ≤ r ≤ s+ 7. Then

Ext
s+8−r,t(s,n)+1−r

A (Z/p,Z/p) = 0,

where t(s, n) = q[pn + (s+ 3)pq + (s+ 5)pq + (s+ 2)] + s.

Proof From Lemma 3.1, in this case

E
s+8−r,t(s,n)+1−r,∗
1 = 0.

By the May spectral sequence, the desired result follows.

4 Proof of the Main Result

We are now in a position to prove the main theorem in this paper. It is easy to see that to

prove Theorem 1.2 is equivalent to proving the following theorem.

Theorem 4.1 Let p ≥ 7, n > 3, 0 ≤ s < p− 5. Then the product

k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p)

is a permanent cycle in the Adams spectral sequence, and converges nontrivially to the composite

map

β1ωnγs+3 ∈ πt(s,n)−s−8(S)

of order p, where t(s, n) = q[pn + (s+ 3)p2 + (s+ 5)p+ (s+ 2)] + s.

Proof We know that β1, ωn and γs+3 are represented in the Adams spectral sequence by

b0, k0hn and γ̃s+3, respectively. Thus, the composite map

β1ωnγs+3

is represented by

k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p)

up to nonzero scalar in the Adams spectral sequence.

By Theorem 3.1 and the knowledge of Yoneda products, we know that the composite

(j0j1j2γ
s+3i2i1i0)∗ : Ext0,∗A (Z/p,Z/p)

(i2i1i0)∗
−−−−−→ Ext0,∗A (V (2),Z/p)

(j0j1j2γ
s+3)∗

−−−−−−−−−→ Ext
s+3,∗+(s+3)p2q(s+2)pq+(s+1)q+s

A (Z/p,Z/p)
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is a multiplication up to nonzero scalar by

γ̃s+3 ∈ Ext
s+3,(s+3)p2q(s+2)pq+(s+1)q+s
A (Z/p,Z/p).

It follows that the composite map β1ωnγs+3 is represented by

k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p)

up to nonzero scalar in the Adams spectral sequence.

By Theorem 3.2, k0b0hnγ̃s+3 ∈ Ext
s+8,t(s,n)
A (Z/p,Z/p) is non-trivial. Meanwhile, by The-

orem 3.3 and (2.2), we see that k0b0hnγ̃s+3 cannot be hit by any differential in the Adams

spectral sequence. Consequently, the corresponding family of homotopy elements β1ωnγs+3 in

the stable homotopy groups of spheres is non-trivial and of order p. The proof of Theorem 4.1

is completed.
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