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Abstract The authors consider a model of ferromagnetic material subject to an electric

current, and prove the local in time existence of very regular solutions for this model in

the scale of Hk spaces. In particular, they describe in detail the compatibility conditions

at the boundary for the initial data.
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1 Introduction

Ferromagnetic materials are used in several applications: radar furtivity, electromagnets,

storage of digital data. They are characterized by a spontaneous magnetization represented by

the magnetic momentm defined on [0, T ]×Ω, where Ω is the ferromagnetic domain in which the

material is confined. At low temperature (under the Curie temperature), the material is said to

be saturated, that is, the norm of the magnetic moment is constant, so after renormalization,

we have

∀t ∈ [0, T ], ∀x ∈ Ω, |m(t, x)| = 1. (1.1)

The magnetic moment links the magnetic field H and the magnetic induction B by the

constitutive relation

B = H +m,

where m is the extension of m by zero outside Ω.

The most promising application of the ferromagnetic materials concerns the nano-electronics,

and in particular the storage of digital informations with quick access. The ferromagnetic de-

vices used for these applications are either nano wires, thin plates or really 3d components. For

nano-electronic applications, one goal is to store informations by magnetic domains representing

the bits, and to transmit it very rapidly along the magnetic structures via domain walls mo-

tion. A standard way to induce this motion is by applying a magnetic field on the sample. The

effects of the applied magnetic field are measured by the Zeeman energy (see [5, 11, 15]). The

Manuscript received June 16, 2015. Revised September 16, 2016.
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problem of this solution is that the information is modified since the domains can be removed

by the application of an applied field. As explained in [13–14], the good way to transport the

information (to a reading head for example) without change is obtained by using of an applied

electric current. This increases the access velocity to the memory without mechanical wear of

the components, and preserving the data.

In this paper, we study the following Landau-Lifschitz model describing a ferromagnetic

material submitted to an applied current:






∂m

∂t
= −m×He(m)−m× (m×He(m))

+(v · ∇)m+m× (v · ∇)m in [0, T ]× Ω,

He(m) = ∆m+H(m) in [0, T ]× Ω,

∂m

∂ν
= 0 on [0, T ]× ∂Ω,

m(0, x) = m0(x) in Ω,

(1.2)

where

(1) Ω is an open bounded set with smooth boundary and ν is the outside unit normal on

∂Ω;

(2) He is the effective magnetic field including the demagnetizing field and the exchange

field;

(3) v is the current speed. For physical reasons, the relevant boundary condition is that v

satisfies v · ν = 0 on the boundary (the electric current remains in the domain), but we do not

use this condition in our analysis;

(4) ∆m is the exchange field;

(5) H(m) is the demagnetizing field. It is deduced from m by the static Maxwell equations

and the law of Faraday: {
curl H(m) = 0 in R

3,

div (H(m) +m) = 0 in R
3,

where m is the extension of m by zero outside Ω.

Remark 1.1 The applied current modeling by the transport term (v · ∇)m+m× (v · ∇)m

is explained in [13] (see also the references therein).

We denote by Hk(Ω;S2) the set

Hk(Ω;S2) = {u : Ω −→ R
3, u ∈ Hk(Ω) and |u(x)| = 1 a.e.}.

In [1, 6, 16], the existence of global weak solutions for the Landau-Lifschitz equation without

electric current is obtained. With the same method as [1] or [6], Bonithon proved in [3] the

global existence of weak solutions for (1.2). In the case of the Landau-Lifchitz equations without

electric current when the effective field is reduced to ∆m, the weak solutions are non unique (see

[1]). This non uniqueness is expected in more general cases but is totally open. In addition,

the Landau-Lifschitz equation does not have regularizing effects. So the existence of strong

solutions is not obvious.
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Existence of strong solutions for the Landau-Lifschitz equation without applied curren-

t is obtained in [7–8]. The solutions constructed in these papers are in L∞(0, T ;H2(Ω)) ∩

L2(0, T ;H3(Ω)) and are local in time.

In the present paper, following the method of [7], we construct local in time strong solutions

for (1.2) in L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)) for T < T ∗, with T ∗ > 0. In addition, for more

regular initial data, if compatibility conditions are satisfied, we prove the existence of strong

solutions with high regularity on the same maximal existence interval [0, T ∗[. In particular,

we prove that an eventual blow up for the regular solution occurs for the H2-norm. To our

knowledge, the construction of very regular solutions for the Landau-Lifschitz equation does

not exist in the literature, even for models without applied current.

Our first result is the following theorem.

Theorem 1.1 Let m0 ∈ H2(Ω;S2) satisfy the compatibility condition:

∂m0

∂ν
= 0 on ∂Ω. (1.3)

Let v ∈ C0(R+;L∞(Ω) ∩W 1,3(Ω)). There exists a time T ∗ > 0 depending only on the size of

the initial data and a unique m such that for all T < T ∗,

(1) m ∈ C0(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)),

(2) |m(t, x)| = 1 in [0, T ]× Ω,

(3) m satisfies (1.2).

Without additional compatibility condition, we can construct solutions in H3(Ω).

Theorem 1.2 Let m0 ∈ H3(Ω, S2) such that

∂m0

∂ν
= 0 on ∂Ω.

Let v ∈ C0(R+;L∞(Ω) ∩W 1,3(Ω)) ∩ C1(R+;L2(Ω)). Let T ∗ > 0 and m ∈ L∞(0, T ;H2(Ω)) ∩

L2(0, T ;H3(Ω)) for T < T ∗ given by Theorem 1.1. Then, for all T < T ∗,

m ∈ C0(0, T ;H3(Ω)) ∩ L2(0, T ;H4(Ω)).

The key point for the proof of Theorems 1.1 and 1.2 is that the Landau-Lifschitz equation

(1.2) is equivalent, for solutions satisfying the saturation constraint (1.1), to the following

problem:






∂m

∂t
= ∆m+ |∇m|2m−m×∆m−m×H(m)−m× (m×H(m))

+(v · ∇)m+m× (v · ∇)m in R
+
t × Ω,

∂m

∂ν
= 0 on R

+
t × ∂Ω,

m(0, x) = m0(x) in Ω.

(1.4)

In order to obtain more regularity for the solutions of (1.4), we must assume compatibility

conditions on the initial data. Since (1.2) is equivalent to (1.4), and since our strategy consists

in working with this last equation, we write the compatibility conditions derived from (1.4).

First, we define formally the initial value of ∂ktm at t = 0.
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We set V0 = m0. We denote vi(x) := ∂itv(0, x).

Using Equation (1.4), if m is regular enough, we obtain the value of ∂tm|t=0
by taking (1.4)

at t = 0 and by writing that m|t=0
= m0. So, we define V1 by

V1 = ∆m0 + |∇m0|
2m0 −m0 × (∆m0 +H(m0))−m0 × (m0 × (H(m0)))

+ (v0 · ∇)m0 +m0 × (v0 · ∇)m0.

We remark that, if m0 ∈ Hk(Ω) and if v is sufficiently regular, then V1 ∈ Hk−2(Ω) for k ≥ 2.

In order to write the compatibility conditions, we recall the following formulas for the

derivation of a product:

∂Kt (ab) =

K∑

i=0

Ci
K∂

i
ta ∂

K−i
t b, Ci

K =
k!

(k − i)! i!
(1.5)

and

∂Kt (abc) =
∑

α∈AK

Cα∂α1

t a ∂
α2

t b ∂
α3

t c, (1.6)

with

(1) AK = {α = (α1, α2, α3) ∈ {0, · · · ,K}3, α1 + α2 + α3 = K},

(2) Cα = Cα1+α2

α1+α2+α3
· Cα1

α1+α2
.

By differentiating (1.4) k times with respect to t, and by taking the obtained result at t = 0,

we define recursively Vk+1 : Ω −→ R
3 by

Vk+1 = ∆Vk +
∑

α∈Ak

Cα(∇Vα1
· ∇Vα2

)Vα3
−

k∑

j=0

C
j
kVj × (∆Vk−j +H(Vk−j))

−
∑

α∈Ak

Cα(Vα1
× (Vα2

×H(Vα3
))− Vα1

× (vα2
· ∇)Vα3

)

+
k∑

j=0

C
j
k(vj · ∇)Vk−j . (1.7)

We remark that if m0 ∈ H2k+2+p(Ω), then Vk+1 ∈ Hp(Ω).

Definition 1.1 Let k ∈ N, m0 ∈ H2k+2(Ω;S2). We say that m0 satisfies the compatibility

condition at order k, if

∀i ∈ {0, 1, · · · , k},
∂Vi

∂ν
= 0 on ∂Ω.

Theorem 1.3 Let k ≥ 4. Let m0 ∈ Hk(Ω;S2) and let m and T ∗ given in Theorem 1.1. We

assume that m0 satisfies the compatibility condition at order
[
k
2

]
− 1. In addition, we assume

that

∀j ≤ k −
[k
2

]
− 1, ∂itv ∈ C0(0, T ;Hk−2j(Ω)) ∩ L2(0, T ;Hk−2j+1(Ω)).

Then, for all T < T ∗,

m ∈ L∞(0, T ;Hk(Ω)) ∩ L2(0, T ;Hk+1(Ω)),
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and

∀j ∈ 1, · · · ,
[k
2

]
− 1,

∂jm

∂tj
∈ L∞(0, T ;Hk−2j(Ω)) ∩ L2(0, T ;Hk−2j+1(Ω)).

The present paper is organized as follows.

In Section 2, we recall useful lemmas. In particular, we study the regularity properties for

the operator H .

Section 3 is devoted to the proof of Theorem 1.1. Basically, we follow the method of [7]. As

said above, the key point is that Equation (1.2) is equivalent to (1.4) for solutions satisfying

the saturation constraint (1.1). In this new formulation, the dissipation due to the exchange

field ∆m appears completely though it only appears m × ∆m in (1.2). We construct by the

Galerkin method a solution of (1.4) in L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)), and we prove that

this solution satisfies in addition the saturation constraint, so that it is a solution for (1.2).

Construction of more regular solutions for (1.2) is totally new and entails several difficulties.

In Section 4, in order to prove the H3 regularity for the solution of (1.4), a direct energy

estimate for the third order space derivatives is not possible because of the non-local term

H(m) which does not satisfy the homogeneous Neumann boundary condition. Our method

consists in differentiating the Galerkin approximation with respect to time and proving by this

way that ∂tm ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)). We recover the H3-regularity for m by

a bootstrap argument using Equation (1.4). This operation is complicated by the non-linear

term |∇m|2m.

Section 5 is devoted to the proof of Theorem 1.3. As already said for the proof of the H3-

regularity, variational estimates for high order space derivatives are not possible because of the

non-local term H(m) which does not satisfy the homogeneous Neumann boundary condition.

In addition, we are unable to perform H2 estimates for the time derivative of mn, solution for

the Galerkin approximation of (1.4). Indeed, we need for that compatibility conditions for all

n which are not satisfied because of the non-local term H(mn).

Let us explain briefly our strategy in the simplest case: k = 4. We already know from The-

orem 1.2 that the solution m is in L∞(0, T ;H3(Ω)) ∩ L2(0, T ;H4(Ω)). We derivate (1.4) with

respect to time. By a Galerkin process, using compatibility conditions on ∂tm(t = 0), we con-

struct a solution for the obtained problem in L∞(0, T ;H2(Ω))∩L2(0, T ;H3(Ω)). Now, ∂tm is a

solution of this problem and a uniqueness argument ensures then that ∂tm ∈ L∞(0, T ;H2(Ω))∩

L2(0, T ;H3(Ω)). Finally, we improve the regularity of m by elliptic regularity theorems writing

∆m in function of ∂tm.

In the general case, we proceed by induction with, roughly speaking, the same method.

2 Preliminary Results

2.1 Equivalent norms

We use the following notations:

‖u‖2,Ω = (‖u‖2L2 + ‖∆u‖2L2)
1

2
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and

‖∇u‖1,Ω = (‖∇u‖2L2 + ‖∆u‖2L2)
1

2 .

We recall the following result established in [7].

Lemma 2.1 Let Ω be a bounded regular open set. There exist c1 and c2 such that for all

u ∈ H2(Ω) such that ∂u
∂ν

= 0 on ∂Ω,

c1‖u‖2,Ω ≤ ‖u‖H2(Ω) ≤ c2‖u‖2,Ω,

c1‖∇u‖1,Ω ≤ ‖∇u‖H1(Ω) ≤ c2‖∇u‖1,Ω,

and for all u ∈ H3(Ω) such that ∂u
∂ν

= 0 on ∂Ω,

c1(‖∇u‖
2
1,Ω + ‖∇∆u‖2L2)

1

2 ≤ ‖∇u‖H2(Ω) ≤ c2(‖∇u‖
2
1,Ω + ‖∇∆u‖2L2)

1

2 .

From Lemma 2.1 and using the standard interpolation inequality, we rewrite Sobolev and

Gagliardo-Nirenberg inequalities on the following form.

Lemma 2.2 Let Ω be a regular bounded domain of R3. There exists a constant C such that

for all u ∈ H2(Ω) such that ∂u
∂ν

= 0 on ∂Ω,

‖u‖L∞ ≤ C‖u‖2,Ω,

‖∇u‖L6 ≤ C‖u‖2,Ω,

‖∇u‖2L4 ≤ C‖u‖L∞‖u‖2,Ω,

and for all u ∈ H3(Ω) such that ∂u
∂ν

= 0 on ∂Ω,

‖D2u‖L3 ≤ C(‖u‖2,Ω + ‖u‖
1

2

2,Ω‖∇∆u‖
1

2

L2).

The following lemma will be useful to estimate products of functions.

Lemma 2.3 If u ∈ H1(Ω) and v ∈ H2(Ω), then uv ∈ H1(Ω) and

‖uv‖H1(Ω) ≤ C‖u‖H1(Ω)‖v‖H2(Ω).

Proof Since Ω is a smooth bounded domain of R3, by Sobolev embedding, H2(Ω) ⊂ L∞(Ω)

so that uv ∈ L2(Ω).

In addition, ∇(uv) = (∇u)v+u∇v. By the same argument, (∇u)v ∈ L2(Ω). Since H1(Ω) ⊂

L4(Ω), then u∇v ∈ L2(Ω).

2.2 Comparison lemma

We recall without proof the following standard comparison lemma.

Lemma 2.4 Let f : R+×R −→ R, C0 and locally lipschtz with respect to its second variable.

Let z : [0, T ∗[−→ R be the maximal solution of the Cauchy problem:

{
z′ = f(t, z),
z(0) = z0.
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Let y : R+ −→ R, C1 such that

{
∀t ≥ 0, y′(t) ≤ f(t, y(t)),
y(0) ≤ z0.

Then

∀t ∈ [0, T ∗[, y(t) ≤ z(t).

2.3 Galerkin basis

Let us denote by Vn the finite space spanned on the n first eigenfunctions of the operator

A = −∆ + I with D(A) =
{
u ∈ H2(Ω) such that ∂u

∂ν
= 0 on ∂Ω

}
, and Pn, the orthogonal

projection from L2(Ω) onto Vn.

Proposition 2.1 There exists a constant C such that for all n, the orthogonal projection

Pn satisfies the following properties:

(1) For all u ∈ H1(Ω), ‖Pn(u)‖H1(Ω) ≤ ‖u‖H1(Ω).

(2) For all u ∈ H2(Ω) such that ∂u
∂ν

= 0, ‖Pn(u)‖H2(Ω) ≤ C‖u‖H2(Ω).

(3) For all u ∈ H3(Ω) such that ∂u
∂ν

= 0, ‖Pn(u)‖H3(Ω) ≤ C‖u‖H3(Ω).

Proof We write u on the form u = Pn(u) + Qn(u), where Qn(u) belongs to V ⊥
n . Since

‖u‖2L2 = ‖Pn(u)‖
2
L2 + ‖Qn(u)‖

2
L2 , we obtain

‖Pn(u)‖L2 ≤ ‖u‖L2 .

Using integration by parts and the fact that ∆Pn(u) belongs to Vn so that ∂Pn(u)
∂ν

= 0 on ∂Ω,

we obtain

‖∇Pn(u)‖
2
L2 = −

∫

Ω

∆Pn(u).Pn(u)dx

= −

∫

Ω

∆Pn(u).udx (since ∆Pn(u) and Qn(u) are orthogonal)

=

∫

Ω

∇Pn(u) · ∇udx (since Pn(u) ∈ Vn)

≤ ‖∇Pn(u)‖L2‖∇u‖L2.

So

‖∇Pn(u)‖L2 ≤ ‖∇u‖L2.

In the same way, for the H2 and the H3 estimates, we remark that ∂∆Pn(u)
∂ν

= ∂∆2Pn(u)
∂ν

= 0 on

the boundary. For the H2 estimate, we have

‖∆Pn(u)‖
2
L2 = −

∫

Ω

∇∆Pn(u) · ∇Pn(u)dx

=

∫

Ω

∆2Pn(u).Pn(u)dx

=

∫

Ω

∆2Pn(u).udx (since ∆2Pn(u) ∈ Vn)

= −

∫

Ω

∇∆Pn(u) · ∇udx
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=

∫

Ω

∆Pn(u).∆udx
(
since

∂u

∂ν
= 0 on ∂Ω

)

≤ ‖∆Pn(u)‖L2‖∆u‖L2.

So, ‖∆Pn(u)‖L2 ≤ ‖∆u‖L2 and therefore

‖Pn(u)‖H2 ≤ C‖u‖H2 .

For the H3 estimate,

‖∇∆Pn(u)‖
2
L2 = −

∫

Ω

∆2Pn(u) ·∆Pn(u)dx

=

∫

Ω

∇∆2Pn(u) · ∇Pn(u)dx

= −

∫

Ω

∆3Pn(u).Pn(u)dx

= −

∫

Ω

∆3Pn(u).udx (since ∆3Pn(u) ∈ Vn)

=

∫

Ω

∇∆2Pn(u) · ∇udx

= −

∫

Ω

∆2Pn(u).∆udx
(
using that

∂u

∂ν
= 0 on ∂Ω

)
,

=

∫

Ω

∇∆Pn(u) · ∇∆udx

≤ ‖∇∆Pn(u)‖L2‖∇∆u‖L2.

Therefore, using Lemma 2.1,

‖Pn(u)‖H3 ≤ ‖u‖H3.

2.4 Demagnetizing field

The operator H takes its values in the space L2(R3). We can observe that u 7→ −H(u) is

the orthogonal projection of u on the vector fields of gradients in L2(R3). Let us consider the

restriction of H to Ω. Classicaly, we have

‖H(u)‖Lp(Ω) ≤ C‖u‖Lp(Ω) for 1 < p < +∞.

In the proposition below, following Ladyshenskaya [10, p. 196], we can derive the following

regularity result which describe the continuity of the operator H on the spaces W k,p(Ω) for

p ∈ ]1,+∞[ and k ∈ N.

Proposition 2.2 Let p ∈ ]1,+∞[. Then for k ∈ N, if u belongs to W k,p(Ω), the restriction

of H(u) to Ω belongs to W k,p(Ω) and there exists a constant Ck,p such that

‖H(u)‖Wk,p(Ω) ≤ Ck,p‖u‖Wk,p(Ω).

Proof See [8].
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3 Proof of the H
2 Regularity

In [7], Carbou and Fabrie proved the existence of local strong solutions in L∞(0, T ;H2) ∩

L2(0, T ;H3) for the Landau-Lifschitz equation without electric current. Our proof for Theorem

1.1 is basically the same. For the convenience of the reader, we give the complete proof in the

present paper, emphasizing the changes due to the electric current.

3.1 Equivalent system

A dissipative term of the form ‖m×∆m‖L2 appears if we take the inner product in L2 of

(1.2) with ∆m. This dissipation is not sufficient to obtain energy estimate in the space H2(Ω).

We observe that, for m regular enough and |m| = 1 in Ω, then

m× (m×∆m) = (m ·∆m)m− |m|2∆m = −∆m− |∇m|2m.

So, if m is regular enough and satisfies the saturation constraint, then m is solution for the

Landau-Lifschitz equation (1.2) if and only if m satisfies the following system






∂m

∂t
−∆m = |∇m|2m−m×∆m−m×H(m)−m× (m×H(m))

+(v · ∇)m+m× (v · ∇)m in R
+
t × Ω,

∂m

∂ν
= 0 on R

+
t × ∂Ω,

m(0, x) = m0(x) in Ω.

(3.1)

This equation has the advantage to highlight the dissipative term and is more convenient to

build regular solutions for (1.2).

3.2 Galerkin approximation for the modified Landau-Lifschitz equation

We recall that we denote by Vn the finite space built on the n first eigenfunctions of the

operator A = −∆ + I with D(A) =
{
u ∈ H2(Ω) such that ∂u

∂ν
= 0 on ∂Ω

}
, and by Pn the

orthogonal projection from L2(Ω) on Vn. We aim to find a solution mn taking its values in Vn

for the following Galerkin approximation of (1.4):






∂mn

∂t
−∆mn = Pn(|∇mn|

2mn −mn ×∆mn)

−Pn(mn ×H(mn) +mn × (mn ×H(mn)))
+Pn((v · ∇)mn +mn × (v · ∇)mn),

mn(0) = Pn(m0).

(3.2)

Cauchy-Lipschitz theorem ensures the existence of a unique solution of (3.2) defined on [0, Tn[.

3.2.1 L2 estimate for (3.1)

Taking the inner product in L2(Ω) of (3.2) by mn, we obtain

1

2

d

dt
‖mn‖

2
L2 + ‖∇mn‖

2
L2 =

∫

Ω

(|∇mn|
2|mn|

2 + (v · ∇)mn ·mn)dx

≤ ‖∇mn‖
2
L2‖mn‖

2
L∞ + ‖v‖L∞‖∇mn‖L2‖mn‖L2
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≤ C‖mn‖
4
2,Ω + C ‖v‖L∞ ‖mn‖

2
2,Ω. (3.3)

3.2.2 H2 estimate for (3.1)

Now, we take the inner product in L2(Ω) of (3.2) with ∆2mn, and integrate by parts to get

1

2

d

dt
‖∆mn‖

2
L2 + ‖∇∆mn‖

2
L2 ≤

4∑

i=1

Ii,

where

I1 = −

∫

Ω

∇(|∇mn(t)|
2mn(t))∇∆mn(t)dx,

I2 =

∫

Ω

∇(mn(t)×∆mn(t))∇∆mn(t)dx,

I3 =

∫

Ω

∇(mn(t)×H(mn(t)) +mn(t)× (mn(t)×H(mn(t))))∇∆mn(t)dx,

I4 = −

∫

Ω

∇((v · ∇)mn(t) +mn(t)× (v · ∇)mn(t))∇∆mn(t)dx.

We bound separately each term.

The terms I1, I2 and I3 are estimated in [7]. For the convenience of the reader, we rewrite

these estimates. Using Lemma 2.2, we have

(1) Estimate on I1:

|I1| ≤ C

∫

Ω

(|mn||∇mn||D
2mn|+ |∇mn|

3)|∇∆mn|dx

≤ C(‖mn‖L∞‖D2mn‖L3‖∇mn‖L6 + ‖∇mn‖
3
L6)‖∇∆mn‖L2

≤ C‖mn‖
5

2

2,Ω‖∇∆mn‖
3

2

L2 + C‖mn‖
3
2,Ω‖∇∆mn‖L2 .

(2) Estimate on I2: We remark that (mn(t)×∇∆mn(t))∇∆mn(t) = 0, so

|I2| ≤ ‖∆mn‖L3‖∇mn‖L6‖∇∆mn‖L2

≤ C‖mn‖
2
2,Ω‖∇∆mn‖L2 + C‖mn‖

3

2

2,Ω‖∇∆mn‖
3

2

L2 .

(3) Estimate on I3:

I3 =

∫

Ω

(∇mn(t)×H(mn(t))∇∆mn(t)dx+

∫

Ω

(mn(t)×∇H(mn(t))∇∆mn(t)dx.

|I3| ≤ C

∫

Ω

(1 + |mn|)(|H(mn)||∇mn|+ |∇H(mn)||mn|)|∇∆mn|dx

≤ C(1 + ‖mn‖L∞)(‖H(mn)‖L3‖∇mn‖L6 + ‖∇H(mn)‖L6‖mn‖L3)‖∇∆mn‖L2

≤ C‖∇∆mn‖L2(1 + ‖mn‖
3
2,Ω).

(4) Estimate on I4:

|I4| ≤ C

∫

Ω

((1 + |mn|)(|∇mn||∇v|+ |D2mn||v|) + |∇mn|
2|v|)|∇∆mn|dx

≤ C(1 + ‖mn‖L∞)(‖∇mn‖L6‖∇v‖L3 + ‖D2mn‖L2‖v‖L∞)‖∇∆mn‖L2
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+ C‖∇mn‖
2
L4‖v‖L∞‖∇∆mn‖L2

≤ C(‖∇v‖L3 + ‖v‖L∞)(1 + ‖mn‖
2
2,Ω)‖∇∆mn‖L2.

By addition of all these estimates and using Young inequality, we obtain the following

inequality

d

dt
‖∆mn‖

2
L2 + ‖∇∆mn‖

2
L2 ≤ C(1 + ‖∇v‖2L3 + ‖v‖

2
L∞)(1 + ‖mn‖

10
2,Ω). (3.4)

3.2.3 Uniform estimate on the Galerkin approximation

Summing inequalities (3.3) and (3.4), we obtain that there exists a constant C such that

d

dt
‖mn‖

2
2,Ω + ‖∇mn‖

2
L2 + ‖∇∆mn‖

2
L2 ≤ C(1 + ‖∇v‖2L3 + ‖v‖

2
L∞)(1 + ‖mn‖

10
2,Ω), (3.5)

where C does not depend on n. We denote

c(t) = C(1 + ‖∇v(t)‖2L3 + ‖v(t)‖
2
L∞).

From the assumptions about v, c ∈ C0(R+).

In addition, mn(0) = Pn(m0), and since m0 satisfies the compatibility condition (1.3), by

Proposition 2.1, we obtain that for all n,

‖mn(0)‖2,Ω ≤ C‖m0‖2,Ω.

We set yn(t) = ‖mn‖
2
2,Ω. We have proven that for all n,






d

dt
yn(t) ≤ c(t)(1 + y5n(t)),

yn(0) ≤ C‖m0‖
2
2,Ω.

We consider z the maximal solution of the O.D.E.:






d

dt
z(t) = c(t)(1 + z5(t)),

z(0) = C‖m0‖
2
2,Ω,

and we denote by T ∗ the maximal existence time of z. By the comparison lemma, we have

∀t < T ∗, ∀n, yn(t) ≤ z(t).

Therefore, for all T < T ∗, there exists a constant C(T ) such that

sup
t≤T

‖mn(t)‖
2
H2(Ω) ≤ C(T ), (3.6)

and by integration of (3.5) on the interval [0, T ], we obtain

∫ T

0

(‖∇mn(t)‖
2
L2 + ‖∇∆mn(t)‖

2
L2)dt ≤ C(T ). (3.7)
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By Equation (3.2) we conclude that

sup
t≤T

∥∥∥
∂

∂t
mn(t)

∥∥∥
2

L2

≤ C(T )

and
∫ T

0

∥∥∥
∂

∂t
∇mn(τ)

∥∥∥
2

L2

dτ ≤ C(T ).

3.3 Limit when n tends to +∞

These uniform estimates insure the existence of a subsequence (mnk
) and a function m such

that

(1) mnk
⇀m in L2(0, T ;H3(Ω)) weak,

(2) mnk
⇀m in L∞(0, T ;H2(Ω)) weak ∗,

(3)
∂mnk

∂t
⇀ ∂m

∂t
in L2(0, T ;H1(Ω)) weak.

Thanks to Aubin-Simon compactness lemma (see [2, 12]), we can conclude that

mnk
−→ m in L∞(0, T ;H2(Ω)) strong

and

H(mnk
) −→ H(m) in L∞(0, T ;H2(Ω)) strong,

because H is a continuous map on Sobolev spaces Hs(Ω) for s = 0, 1, 2.

Taking the limit in (3.2), we obtain that m satisfies





∂m

∂t
−∆m = |∇m|2m−m×∆m−m×H(m)−m× (m×H(m))

+(v · ∇)m+m× (v · ∇)m in [0, T ∗[×Ω,

∂m

∂ν
= 0 on [0, T ∗[×∂Ω,

m(0, x) = m0(x) in Ω.

In addition, we remark that from [4, Theorem II.5.14],

m ∈ C0([0, T ∗[;H2(Ω)).

3.4 Conservation of the ponctual norm

We prove now that the solution m constructed in the previous part satisfies the physical

constraint |m| = 1, so that m satisfies the Landau-Lifschitz equation. Contrary to [7], a

transport term due to electric current appears in Equation (1.4).

Using the scalar product in R
3 of (1.4) by m, we get

1

2

d

dt
|m|2 −m.∆m− |∇m|2|m|2 −m.(v · ∇)m = 0 in [0, T [×Ω.

For d ≤ 3 and for all u ∈ L∞(0, T ;H2(Ω)), we have

∆|u|2 = 2u.∆u+ 2|∇u|2



Very Regular Solutions for the Landau-Lifschitz Equation with Electric Current 901

and m.(v · ∇)m = 1
2 (v · ∇)|m|2, then |m|2 satisfies the following equation

d

dt
|m|2 −∆|m|2 − 2|∇m|2(|m|2 − 1)−

1

2
v · ∇|m|2 = 0.

Taking a = |m|2 − 1, then a satisfies the system below





∂a

∂t
−∆a− 2|∇m|2a−

1

2
(v · ∇)a = 0 in Ω,

∂a

∂ν
= 0 on ∂Ω,

a(0) = |m0|
2 − 1 = 0 in Ω.

(3.8)

Taking the inner product of this equation by a, we obtain

1

2

d

dt
‖a‖2L2 + ‖∇a‖2L2 = 2

∫

Ω

|∇m|2a2dx+
1

2

∫

Ω

(v · ∇)a.adx

≤ C‖∇m‖2L∞ ‖a‖2L2 +
1

2
‖v‖L∞ ‖a‖L2 ‖∇a‖L2 ,

and by absorbing ‖∇a‖L2 , we obtain that

d

dt
‖a‖2L2 + ‖∇a‖2L2 ≤ C(‖∇m‖2L∞ + ‖v‖2L∞) ‖a‖2L2 .

Since m ∈ L2(0, T ;H3(Ω)), the map t 7→
(
‖∇m‖2L∞ + ‖v‖2L∞

)
is in L1([0, T ]). So by using

the Gronwall lemma, since a(0, x) = 0, we can conclude that ‖a‖2L2 = 0 and therefore the

ponctual norm of m is conserved.

Under the assumption |m| = 1, the equations (1.2) and (1.4) are equivalent. Hence, we have

proven the existence of a strong solution for (1.2) in the space L∞(0, T ;H2(Ω))∩L2(0, T ;H3(Ω))

for T < T ∗. It remains to prove that this solution is unique.

3.5 Uniqueness for the strong solution of (1.2)

Let m1 and m2 in L∞(0, T ;H2(Ω;S2)) ∩ L2(0, T ;H3(Ω)) satisfying (1.2). Since (1.2) pre-

serves the saturation constraint (1.1) for the strong solutions, they satisfy (1.4). We denote

w = m1 −m2. Then w ∈ L∞(0, T ;H2(Ω;S2)) ∩ L2(0, T ;H3(Ω)) and is a solution to





∂w

∂t
−∆w = S1 + S2 + S3 + S4,

∂w

∂ν
= 0 on ∂Ω,

w(0, x) = 0,

(3.9)

where

(1) S1 = −m2 ×∆w,

(2) S2 = m2(∇w · ∇(m1 +m2)) + (v · ∇)w −m2 × (v · ∇)w,

(3) S3 = |∇m1|2w − w ×∆m1 + w × (v · ∇)m1,

(4) S4 = −m1×H(w)−w×H(m1)−w×(m1×H(m1))−m2×(w×H(m1))−m2×(m2×H(w)).

We take the inner product of (3.9) with w. Since
∫

Ω

S1wdx = −

∫

Ω

∇m2 × v · ∇wdx,
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and using ‖m1‖L∞ = ‖m2‖L∞ = 1, we obtain

1

2

d

dt
‖w‖2L2 + ‖∇w‖2L2 ≤ ‖w‖2L2(‖∇m1‖L∞ + 1 + ‖H(m1)‖L∞)

+ c‖w‖L2‖∇w‖L2 [1 + ‖∇m1‖L∞ + ‖∇m2‖L∞

+ ‖v‖L∞ ].

So by using the Young inequality, we obtain

d

dt
‖w‖2L2 + ‖∇w‖2L2 ≤ C(1 + ‖m1‖2H3(Ω) + ‖m2‖2H3(Ω) + ‖v‖2L∞) ‖w‖

2
L2 , (3.10)

and since m1 and m2 are in L2(0, T ;H3(Ω)), we conclude by the comparison lemma that for

all t ≥ 0,

‖w(t)‖2L2 ≤ ‖w(0)‖2L2exp
(
C

∫ t

0

(1 + ‖m1(τ)‖2H3(Ω) + ‖m2(τ)‖2H3(Ω) + ‖v(τ)‖2L∞)dτ
)
,

and since w(0) = 0, we obtain that w = 0 for all t, which concludes the proof of Theorem 1.1.

4 Study of the Case s = 3

In order to obtain more regular solutions, it would be standard to multiply the Galerkin ap-

proximation (3.2) by ∆3mn to obtain a H3-estimate. Unfortunately, the non-local term H(mn)

does not satisfy the homogeneous Neumann boundary condition, so that the necessary double

integration by parts is not possible. Therefore, the H3 regularity is obtained by derivation of

(3.2) with respect to t in order to obtain a H1 estimate on ∂tm. We conclude the proof by a

bootstrap argument to obtain that ∆m and ∂tm have the same regularity.

4.1 H1 regularity for ∂tm

We differentiate the Galerkin approximation (3.2) with respect to t. Denoting by w1,n =

∂tmn the time derivative of mn, we obtain

∂w1,n

∂t
−∆w1,n =

6∑

i=1

Ti (4.1)

with

(1) T1 = −Pn(mn ×∆w1,n),

(2) T2 = Pn(|∇mn|
2w1,n + 2(∇mn · ∇w1,n)mn − w1,n ×∆mn),

(3) T3 = −Pn(w1,n ×H(mn) +mn ×H(w1,n)),

(4) T4 = −Pn(w1,n × (mn ×H(mn)) +mn × (w1,n ×H(mn)) +mn × (mn ×H(w1,n))),

(5) T5 = Pn((v · ∇)w1,n + w1,n × (v · ∇)mn +mn × (v · ∇)w1,n),

(6) T6 = Pn((∂tv · ∇)mn +mn × (∂tv · ∇)mn).

We multiply (4.1) by −∆w1,n and we integrate on Ω. Since mn × ∆w1,n · ∆w1,n = 0, we

obtain

1

2

d

dt
‖∇w1,n‖

2
L2 + ‖∆w1,n‖

2
L2 ≤ ‖∆w1,n‖L2

6∑

i=2

‖Ti‖L2 .
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Using the continuity of the operator H on Hk(Ω) for k = 0, 1, 2, we estimate each term:

‖T2‖L2 ≤ ‖∇mn‖
2
L6‖w1,n‖L6 + ‖∇mn‖L∞(Ω)‖∇w1,n‖L2(Ω)‖mn‖L∞(Ω)

+ ‖w1,n‖L6(Ω)‖∆mn‖L3(Ω)

≤ C(‖∇w1,n‖L2 + ‖w1,n‖L2)(1 + ‖mn‖
2
H2 + ‖mn‖H3(Ω)),

‖T3 +T4‖L2 ≤ C‖w1,n‖L2(Ω)(1 + ‖mn‖
2
H2(Ω)),

‖T5‖L2 ≤ ‖∇w1,n‖L2 (‖mn‖L∞(Ω) + 1)‖v‖L∞(Ω) + ‖w1,n‖L6(Ω)‖v‖L∞(Ω)‖∇mn‖L3(Ω)

≤ C(‖w1,n‖L2 + ‖∇w1,n‖L2)(‖mn‖H2(Ω) + 1)‖v‖L∞(Ω),

‖T6‖L2 ≤ ‖∂tv‖L2(Ω)‖∇mn‖L∞(Ω)(1 + ‖mn‖
2
L∞(Ω))

≤ C‖∂tv‖L2(Ω)(1 + ‖mn‖
2
H2(Ω))‖mn‖H3(Ω).

Since v is sufficiently regular, by absorbing ‖∆w1,n‖L2 , we obtain

d

dt
‖∇w1,n‖

2
L2 + ‖∆w1,n‖

2
L2 ≤ gn1 (t) ‖∇w1,n‖

2
L2 + gn2 (t), (4.2)

where

gn1 (t) = C(1 + ‖mn‖
2
H2(Ω))‖mn‖

2
H3(Ω) + C(1 + ‖mn‖

4
H2(Ω))

and

gn2 (t) = C ‖w1,n‖
2
L2 (1 + ‖mn‖

2
H3(Ω) + ‖mn‖

4
H2(Ω)) + C ‖∂tv‖

2
L2 (1 + ‖mn‖

4
H2(Ω))‖mn‖H3(Ω).

Let us now estimate the initial value of ∂tmn. By Equation (3.2) taken at t = 0, we have

w1,n(0) = ∂tmn(0)

= Pn(∆mn(0) + |∇mn(0)|
2mn(0)−mn(0)×∆mn(0))

− Pn(mn(0)×H(mn(0)) +mn(0)× (mn(0)×H(mn(0))))

+ Pn((v0 · ∇)mn(0) +mn(0)× (v0 · ∇)mn(0)). (4.3)

Here we recall that v0(x) = v(0, x).

Using Proposition 2.1, we can estimate the H1 norm of w1,n(0) without compatibility con-

dition on the following way:

‖w1,n(0)‖H1(Ω) ≤ ‖∆mn(0) + |∇mn(0)|
2mn(0)−mn(0)×∆mn(0)‖H1(Ω)

+ ‖mn(0)×H(mn(0)) +mn(0)× (mn(0)×H(mn(0)))‖H1(Ω)

+ ‖(v0 · ∇)mn(0) +mn(0)× (v0 · ∇)mn(0)‖H1(Ω)

≤ C(1 + ‖mn(0)‖
3
H3(Ω))

≤ C(1 + ‖m0‖
3
H3(Ω)),

using the compatibility condition (1.3) and Proposition 2.1.

Let us consider zn(t) = ‖∇w1,n‖
2
H1(Ω). We have

{
z′n(t) ≤ gn1 (t)zn(t) + gn2 (t),
zn(0) ≤ C(1 + ‖m0‖

3
H3(Ω)).
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Let ξn be the solution of {
ξ′n(t) = gn1 (t)ξn(t) + gn2 (t),
ξn(0) = C(1 + ‖m0‖

3
H3(Ω)).

We have

ξn(t) = ξn(0)exp
( ∫ t

0

gn1 (τ)dτ
)
+

∫ t

0

gn2 (τ)exp
(∫ t

τ

gn1 (s)ds
)
dτ.

From Estimates (3.6)–(3.7), we obtain that for all T < T ∗, there exists a constant C(T )

independent of n such that
∫ T

0

gn1 (τ)dτ ≤ C(T ),

∫ T

0

gn2 (τ)dτ ≤ C(T ),

so we infer that

∀T < T ∗, ∃C(T ), ∀n, ξn(T ) ≤ C(T ).

Therefore, by the comparison Lemma 2.4, we obtain that for every T < T ∗, there exists a

constant C(T ) independent of n such that

sup
t≤T

‖w1,n(t)‖
2
H1(Ω) ≤ C,

and by integration of (4.2) on the interval [0, T ], we obtain
∫ T

0

‖∆w1,n(t)‖
2
L2dt ≤ C.

From these inequalities, we can conclude that there exists a subsequence (w1,nk
) such that

(1) w1,nk
⇀ ∂tm in L2(0, T ;H2(Ω)) weak,

(2) w1,nk
⇀ ∂tm in L∞(0, T ;H1(Ω)) weak∗.

Therefore we obtain that ∂tm is bounded in the space L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)) for

all T < T ∗. Let us show that this estimate yields that m ∈ L∞(0, T ;H3(Ω))∩L2(0, T ;H4(Ω)).

4.2 Regularity of ∆m

In this paragraph, we prove

∆m ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

so that

m ∈ L∞(0, T ;H3(Ω)) ∩ L2(0, T ;H4(Ω)).

By the equation, we have

∆m−m×∆m = ∂tm− |∇m|2m+m× (H(m) +m×H(m))− (v · ∇)m−m× (v · ∇)m.

Let us consider gm the map defined by ξ −→ ξ −m× ξ. This map is linear bijective which

inverse ψm = g−1
m is given by

ψm(y) = ξ =
1

2
(y +m× y + (m.y)m).

Since |m| = 1, then ψm(∂tm) = 1
2 (∂tm+m× ∂tm), ψm(m) = m and we obtain

∆m =
1

2
(∂tm+m× ∂tm)− |∇m|2m+W, (4.4)

where W = m× (m×H(m))−m× (v · ∇)m.
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Lemma 4.1 For all T < T ∗, ψm(∂tm) ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Proof We recall that

ψm(∂tm) =
1

2
(∂tm+m× ∂tm).

In the previous section, we have proven that ∂tm ∈ L∞(0, T ;H1(Ω)) andm ∈ L∞(0, T ;H2(Ω)).

So by Lemma 2.3,

ψm(∂tm) ∈ L∞(0, T ;H1(Ω)).

Now, H2(Ω) is an algebra. Since m ∈ L∞(0, T ;H2(Ω)) and ∂tm ∈ L2(0, T ;H2(Ω)), we

obtain

ψm(∂tm) ∈ L2(0, T ;H2(Ω)).

Lemma 4.2 For all T < T ∗, W ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Proof We know that m ∈ L∞(0, T ;H2(Ω)). From Proposition 2.1, the same holds for

H(m). Since L∞(0, T ;H2(Ω)) is an algebra,

m× (m×H(m)) ∈ L∞(0, T ;H2(Ω)).

So a fortiori this term belongs to L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Concerning the other term, m and v are bounded in L∞(0;T ;H2(Ω)) and ∇m is bounded

in L∞(0, T ;H1(Ω)). So by Lemma 2.3,

m× (v · ∇)m ∈ L∞(0, T ;H1(Ω)).

On the other hand, m and v are bounded in L∞(0;T ;H2(Ω)) and ∇m is bounded in L2(0, T ;

H2(Ω)), thus, since H2(Ω) is an algebra,

m× (v · ∇)m ∈ L2(0, T ;H2(Ω)).

We aim to deduce from (4.4) more regularity for m. We have

|∇(|∇m|2m)| ≤ |∇m|3 + 2|m||∇m||D2m|,

so

∥∥∇(|∇m|2m)
∥∥
L2

≤ C(‖∇m‖3L6 + ‖m‖L∞ ‖∇m‖L6‖D2m‖L3)

≤ C‖ m‖3H2 + C‖ m‖
5

2

H2‖ m‖
1

2

H3

by Proposition 2.1. Since m ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)),

|∇m|2m ∈ L4(0, T ;H1(Ω)).

Using Lemmas 4.1–4.2, we obtain from (4.4) that

∆m ∈ L4(0, T ;H1(Ω)), m ∈ L4(0, T ;H3(Ω)).
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Now, ∇m ∈ L4(0, T ;H2(Ω)) and m ∈ L∞(0, T ;H2(Ω)). So

|∇m|2m ∈ L2(0, T ;H2(Ω)).

By using Lemmas 4.1–4.2, we obtain

∆m ∈ L2(0, T ;H2(Ω)),

and so

m ∈ L2(0, T ;H4(Ω)).

By [4, Theorem II.5.14], since ∂tm ∈ L2(0, T ;H2(Ω)), we obtain

m ∈ C0(0, T ;H3(Ω)).

This concludes the proof of Theorem 1.2.

5 Very Regular Solutions

It is not possible to obtain H2 estimates on w1,n = ∂tmn using Equation (4.1). Indeed,

we would need a uniform estimate on the initial value w1,n(0) in the H2 norm, and using

Proposition 2.1, it would be necessary to check a compatibility condition of the form:

∂

∂ν
(∆mn(0) + |∇mn(0)|

2mn(0)−mn(0)×∆mn(0)−mn(0)×H(mn(0))

+mn(0)× (mn(0)×H(mn(0))) + (v0 · ∇)mn(0) +mn(0)× (v0 · ∇)mn(0)) = 0.

Because of the non-local term H(mn(0)), this condition can not be satisfied for all n.

We assume that m0 ∈ H4(Ω;S2) and satisfies the compatibility condition at order one (see

Definition 1.1). In order to obtain more regular solutions, our strategy is the following:

(1) We compute the equation (5.2) (see below) satisfied by the time derivative ∂tm.

(2) We construct a solution w1 for this equation in L∞(0, T ;H2) ∩ L2(0, T ;H3). At this

step we need a compatibility condition at the boundary for ∂tm(t = 0).

(3) We already know that ∂tm ∈ L∞(0, T ;H1)∩L2(0, T ;H2) and satisfies (5.2). In addition,

we show a uniqueness result for the solutions of (5.2), so that w1 = ∂tm.

(4) Writing ∆m in function of ∂tm, we prove ∆m ∈ L∞(0, T ;H2) ∩ L2(0, T ;H3), so that

m ∈ L∞(0, T ;H4) ∩ L2(0, T ;H5).

If m0 ∈ H5(Ω;S2) satisfies the compatibility condition at order one, we obtain the desired

regularity by differentiating the Galerkin approximation of (5.2) with respect to time (in the

same spirit we obtained the H3 regularity for m in the previous part).

This strategy will be used at any order to obtain very regular solutions for the Landau-

Lifschitz equation.
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We detail this process at any order by proving by induction the following property P(k):

P(k)






If m0 ∈ H2k(Ω;S2) satisfies the compatibility condition at order k − 1, if for all j ≤

k − 1, ∂jt v ∈ C0(R+;H2k−2j(Ω)), then the solution m of the Landau-Lifschitz equation

(1.2) with initial data m0 satisfies

∀T < T ∗, ∀i ∈ {0, · · · , k}, ∂itm ∈ L∞(0, T ;H2k−2i(Ω)) ∩ L2(0, T ;H2k−2i+1(Ω));

If in addition m0 ∈ H2k+1(Ω;S2), if for all j ∈ {0, · · · , k},

∂
j
t v ∈ C0(R+;H2k−2j+1(Ω)),

then m satisfies

∀T < T ∗, ∀i ∈ {0, · · · , k}, ∂itm ∈ L∞(0, T ;H2k−2i+1(Ω)) ∩ L2(0, T ;H2k−2i+2(Ω)).

This property is proven for k = 1 in Sections 3–4.

Let k ≥ 1. Let us assume that P(k) is true, and let us establish P(k + 1).

Let m0 ∈ H2(k+1)(Ω;S2) satisfy the compatibility condition at order k. By the property

P(k), we already know that

∀T < T ∗, ∀i ∈ {0, · · · , k}, ∂itm ∈ L∞(0, T ;H2k−2i+1(Ω)) ∩ L2(0, T ;H2k−2i+2(Ω)).

We denote by wj = ∂
j
tm for j ∈ {0, · · · , k}. By differentiating (1.2) j times with respect to

t, we obtain that wj satisfies





∂wj

∂t
−∆wj = −m×∆wj +Km(∇wj) + Lm(wj) + Fj on R

+ × Ω,

∂wj

∂ν
= 0 on R

+ × ∂Ω,

wj(0, x) = Vj(x) for x ∈ Ω,

(5.1)

where

Km(∇w) = 2(∇m · ∇w)m+ (v · ∇)w +m× (v · ∇)w,

Lm(w) = |∇m|2w − w ×∆m− w ×H(m)−m×H(w) − w × (m×H(m))

−m× (w ×H(m))−m× (m×H(w)) + w × (v · ∇)m,

Fj =
∑

α∈Aj

Cα((∇wα1
· ∇wα2

)wα3
− wα1

× (wα2
×H(wα3

)))

−

j−1∑

i=1

Ci
j(wi ×∆wj−i + wi ×H(wj−i))

+

j−1∑

i=0

Ci
j(∂

j−i
t v · ∇)wi +

∑

α∈Ãj

Cαwα1
× (∂α2

t v · ∇)wα3

with

Aj = {(α1, α2, α3) ∈ {0, · · · , j − 1}3, α1 + α2 + α3 = j}

and

Ãj = {(α1, α2, α3) ∈ {0, · · · , j − 1} × {0, · · · , j} × {0, · · · , j − 1}, α1 + α2 + α3 = j}.
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In particular, wk = ∂kt w is in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) and satisfies






∂wk

∂t
−∆wk = −m×∆wk +Km(∇wk) + Lm(wk) + Fk on R

+ × Ω,

∂wk

∂ν
= 0 on R

+ × ∂Ω,

wk(0, x) = Vk(x) for x ∈ Ω.

(5.2)

We aim to construct a more regular solution for (5.2). We establish the following estimates.

Lemma 5.1 For all j ∈ {1, · · · , k}, and for all T < T ∗,

Fj ∈ L∞(0, T ;H2k−2j+1(Ω)) ∩ L2(0, T ;H2k−2j+2(Ω)).

Proof We fix j ≤ k. From the property P(k), for all i ∈ {0, · · · , j − 1},

wi ∈ L∞(0, T ;H2k−2j+3(Ω)) ∩ L2(0, T ;H2k−2j+4(Ω)).

For all α ∈ Aj , ∇wα1
, ∇wα2

, wα1
, wα2

, wα3
and H(wα3

) are in L∞(0, T ;H2k−2j+2(Ω))

which is an algebra since 2k − 2j + 2 ≥ 2. So

∑

α∈Aj

Cα((∇wα1
· ∇wα2

)wα3
− wα1

× (wα2
×H(wα3

))) ∈ L∞(0, T ;H2k−2j+2(Ω)),

and a fortiori this quantity is in L∞(0, T ;H2k−2j+1(Ω)) ∩ L2(0, T ;H2k−2j+2(Ω)).

In the same way,

j−1∑

i=1

Ci
jwi ×H(wj−i) ∈ L∞(0, T ;H2k−2j+1(Ω)) ∩ L2(0, T ;H2k−2j+2(Ω)).

On the other hand, for i ∈ {1, · · · , j − 1}, wi ∈ L∞(0, T ;H2k−2j+2(Ω)) and ∆wj−i ∈

L∞(0, T ;H2k−2j+1(Ω)) ∩ L2(0, T ;H2k−2j+2(Ω)). So, since Hs(Ω) is an algebra for s ≥ 2 or by

applying Lemma 2.3, we obtain

j−1∑

i=1

Ci
jwi ×∆wj−i ∈ L∞(0, T ;H2k−2j+1(Ω)) ∩ L2(0, T ;H2k−2j+2(Ω)).

Since for all i ≤ j, ∂itv ∈ C0(0, T ;H2k−2j+1(Ω)) ∩ L2(0, T ;H2k−2j+2(Ω)), with the same

arguments as below, we obtain that the remainder terms are in L∞(0, T ;H2k−2j+1(Ω)) ∩

L2(0, T ;H2k−2j+2(Ω)).

5.1 Construction of more regular solution for (5.3)

We consider the following Cauchy problem:





∂w

∂t
−∆w = −m×∆w +Km(∇w) + Lm(w) + Fk on R

+ × Ω,

∂w

∂ν
= 0 on R

+ × ∂Ω,

w(0, x) = Vk(x) for x ∈ Ω.

(5.3)
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We aim to construct a solution for (5.3) in L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

We recall that, from the compatibility condition at order k, Vk ∈ H2(Ω) and ∂Vk

∂ν
= 0 on

∂Ω.

We consider the following Galerkin approximation for (5.3):





wn ∈ C1([0, Tn[;Vn),
∂wn

∂t
−∆wn = Pn(−m×∆wn +Km(∇wn) + Lm(wn) + Fk),

wn(t = 0) = Pn(Vk).

(5.4)

Since the coefficients of this ordinary differential equation are continuous on [0, T ∗[, since the

equation is linear, the maximal existence time Tn equals T ∗. Let us obtain uniform estimates

on wn.

Bound for the initial data Using the compatibility condition at order k, we know that

Vk ∈ H2(Ω) and that ∂Vk

∂ν
= 0 on ∂Ω, so we can apply Proposition 2.1 and obtain

∃K, ∀n, ‖wn(0)‖H2 ≤ K. (5.5)

L2 estimate We multiply (5.4) by wn and obtain

1

2

d

dt
‖wn‖2L2 + ‖∇wn‖2L2 = M1 +M2 +M3 +M4,

where

M1 = −

∫

Ω

m×∆wn · wndx =

∫

Ω

m× wn ·∆wndx

= −

∫

Ω

∇(m× wn) · ∇wndx (using the homogeneous boundary conditions)

=

∫

Ω

(∇m)× wn · ∇wndx

≤ ‖∇m‖L∞ ‖wn‖L2 ‖∇w
n‖L2 ,

M2 =

∫

Ω

Km(∇wn)wndx

≤ ‖Km(∇wn)‖L2 ‖w
n‖L2

≤ (2‖∇m‖L∞ + 2‖v‖L∞) ‖wn‖L2 ‖∇w
n‖L2 (since ‖m‖L∞ = 1),

M3 =

∫

Ω

Lm(wn)wndx

≤ ‖Lm(wn)‖L2 ‖w
n‖L2 dx

≤ (‖∇m‖2L6 + ‖∆m‖L3 + ‖∇m‖L6‖v‖L∞)‖wn‖L6 ‖wn‖L2

+ C(‖H(m)‖L∞ + 1) ‖wn‖
2
L2 ,

M4 =

∫

Ω

Fk · wndx

≤ ‖Fk‖L2 ‖w
n‖L2 .
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H
2 estimate We multiply (5.4) by −∆2wn and obtain

1

2

d

dt
‖∆wn‖2L2 + ‖∇∆wn‖2L2 ≤ N1 +N2 +N3 +N4,

where

N1 = ‖(∇m)×∆wn‖L2 ‖∇∆wn‖L2

≤ ‖∇m‖L∞ ‖wn‖L2 ‖∇∆wn‖L2 ,

N2 =
∣∣∣
∫

Ω

∇(Km(∇wn))∇∆wndx
∣∣∣

≤ C

∫

Ω

(|D2m||∇wn|+ |∇m||D2wn|+ |∇m|2|∇wn|+ |∇v||∇wn|)|∇∆wn|dx

+

∫

Ω

(|v||D2wn|+ |∇m||v||∇wn|)|∇∆wn|dx

≤ C(‖D2m‖L3‖∇wn‖L6 + ‖∇m‖L∞‖D2wn‖L2 + ‖∇m‖2L6‖∇wn‖L6

+ ‖∇v‖L∞‖∇wn‖L2 + ‖v‖L∞‖D2wn‖L2 + ‖∇m‖L∞‖v‖L∞‖∇wn‖L2) ‖∇∆wn‖L2 ,

N3 =
∣∣∣
∫

Ω

∇(Lm(wn)) · ∇∆wndx
∣∣∣

≤ C

∫

Ω

(|D2m||∇wn|+ |∇m|2|∇wn|+ |∆m||∇wn|+ |∇∆m||wn|

+ |wn||∇H(m)|)|∇∆wn|dx+ C

∫

Ω

(|H(m)||∇wn|+ |∇m||wn|

+ |∇wn||v||∇m|+ |wn||∇v||∇m|+ |wn||v||D2m|)|∇∆wn|dx

≤ C(‖D2m‖L3 + ‖∇m‖2L6 + ‖H(m)‖L3 + ‖∇m‖L3 + ‖v‖L∞)‖∇wn‖L6 ‖∇∆wn‖L2

+ C(‖∇∆m‖L2 + ‖∇H(m)‖L2 + ‖∇m‖L2 + ‖∇v‖L4‖∇m‖L4)‖wn‖L∞ ‖∇∆wn‖L2

+ ‖v‖L∞‖D2m‖L4‖wn‖L∞ ‖∇∆wn‖L2 ,

N4 ≤ ‖∇Fk‖L2 ‖∇∆wn‖L2 .

By adding up the previous L2 and H2 estimates, after absorbing ‖∇∆wn‖L2 , we obtain

that

d

dt
‖wn‖22,Ω + ‖∇wn‖22,Ω ≤ g1(t)‖w

n‖22,Ω + gn2 (t), (5.6)

where

g1(t) = C(1 + ‖m‖2H2)(1 + ‖v‖H2) + C‖m‖2H3 ,

gn2 (t) = C‖Fk‖
2
H1 .

We already know that for all T < T ∗, m ∈ L∞(0, T ;H2(Ω))∩L2(0, T ;H3(Ω)), so g1 ∈ L1(0, T )

for all T < T ∗. In addition, by Lemma 5.1, gn2 is uniformly bounded (with respect to n) in

L1(0, T ) for all T < T ∗. Since (5.5) yields a uniform bound for ‖wn(0)‖22,Ω, by the comparison

lemma, we deduce that for all T < T ∗, there exists a constant C(T ) such that for all n,

‖wn‖L∞(0,T ;H2(Ω)) + ‖wn‖L2(0,T ;H3(Ω)) ≤ C(T ). (5.7)
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By Equation (5.4), we obtain in addition the following estimate on the time derivatives

∀T < T ∗, ∃ C(T ), ∀n, ‖∂tw
n‖L∞(0,T ;L2(Ω)) + ‖∂tw

n‖L2(0,T ;H1(Ω)) ≤ C(T ). (5.8)

By standard arguments (see Subsection 3.3), we obtain by extracting subsequences that

there exists w satisfying (5.3) such that

∀T < T ∗, w ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

5.2 Uniqueness for (5.3)

Let w1 and w2 be two solutions of (5.3) in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)). We denote

W = w1 − w2, and we remark that w satisfies the following problem:





∂W

∂t
−∆W = −m×∆W +Km(∇W ) + Lm(W ) on R

+ × Ω,

∂W

∂ν
= 0 on R

+ × ∂Ω,

W (0, x) = 0 for x ∈ Ω.

(5.9)

SinceW ∈ L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)) and since ∂tW ∈ L2(0, T ;L2(Ω)), we can perform

the following L2 estimate, taking the inner product of the equation with W :

d

dt
‖W‖2L2 + 2‖∇W‖2L2 ≤ C(‖∇m‖L∞ + ‖v‖L∞) ‖W‖L2 ‖∇W‖L2

+ (‖∇m‖2L6 + ‖∆m‖L3 + ‖∇m‖L6‖v‖L∞)‖W‖L6 ‖W‖L2

+ C(‖H(m)‖L∞ + 1) ‖W‖
2
L2 .

We multiply Equation (5.9) by −∆W and integrate on [0, T ]× Ω for all T < T ∗. We can

do it because ∆W and ∂W
∂t

are in L2([0, T ] × Ω). Using that W ∈ C0(0, T ;H1(Ω)) and that

W (0) = 0, we obtain

‖∇W (T )‖2L2 + 2

∫ T

0

∫

Ω

|∆W |2dxdt = −2

∫ T

0

∫

Ω

(Km(∇W ) + Lm(W ))∆Wdxdt.

We have

‖Km(∇W )‖L2 ≤ C‖∇m‖L∞ ‖∇W‖L2 + C‖v‖L∞ ‖W‖L2

and

‖Lm(W )‖L2 ≤ C‖∇m‖2L6‖W‖L6+C‖W‖L6‖∆m‖L3+C ‖W‖L2 (‖H(m)‖L∞+‖∇m‖L∞‖v‖L∞).

We integrate the L2 estimate from 0 to T . Adding up with the H1 estimate and using

Young formula, we obtain

‖W (T )‖
2
L2 + ‖∇W (T )‖

2
L2 +

∫ T

0

∫

Ω

(|∇W |2 + |∆W |2)dxdt

≤ C

∫ T

0

(‖∇W (t)‖
2
L2 + ‖W (t)‖

2
L2)g(t) dt,
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where

g(t) = 1 + ‖v(t)‖2L∞ + ‖m(t)‖42,Ω + ‖∇m(t)‖2L∞(1 + ‖v(t)‖2L∞).

By properties of m and v, g ∈ L1(0, T ) for all T < T ∗, we can use the Gronwall lemma to

conclude that

W = 0 on [0, T ∗[×Ω.

Now, w and ∂ktm are solutions for (5.3) in the space C0([0, T ∗[;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

By the previous uniqueness result, w = ∂kt m, so that

∀T < T ∗, ∂kt m ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)). (5.10)

5.3 Regularity for m

From the property P(k), we know that

∀j ∈ {0, · · · , k}, wj := ∂
j
tm ∈ L∞(0, T ;H2k−2j+1(Ω)) ∩ L2(0, T ;H2k−2j+2(Ω)).

In addition, we proved in the previous subsection that

∂ktm ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

Let us establish by induction the following claim.

Claim 5.1 For all T < T ∗, for j ∈ {0, · · · , k − 1}, wk−j ∈ L∞(0, T ;H2+2j(Ω)) ∩

L2(0, T ;H3+2j(Ω)).

Proof This property is true for j = 0 by (5.10).

Let j ∈ {1, · · · , k − 1}. Let us assume that the property is true at the rank j − 1. Then,

from Equation (5.1), replacing j by k − j, we have

∆wk−j −m×∆wk−j = ∂twk−j −Km(∇wk−j)− Lm(wk−j)− Fk−j ,

that is, since ∂twk−j = wk−j+1 ,

∆wk−j = ψm(wk−j+1 −Km(∇wk−j)− Lm(wk−j)− Fk−j),

where ψm is defined on page 904. We have

(1) m ∈ L∞(0, T ;H2k+1(Ω)),

(2) ∇m ∈ L∞(0, T ;H2k(Ω)),

(3) ∆m ∈ L∞(0, T ;H2k−1(Ω)),

(4) wk−j ∈ L∞(0, T ;H2j+1(Ω)),

(5) v ∈ L∞(0, T ;H2k(Ω)).

On the one hand, we recall that

Km(∇wk−j) = 2(∇m · ∇wk−j)m+ (v · ∇)wk−j +m× (v · ∇)wk−j .

Since 2j ≤ 2k, ∇m, ∇wk−j , v and m are in L∞(0, T ;H2j(Ω)), which is an algebra (since

j ≥ 1), we have

Km(∇wk−j) ∈ L∞(0, T ;H2j(Ω)).
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Since 2j + 1 ≤ 2k, ∇m, v and m are in L∞(0, T ;H2j+1(Ω)) and since

∇wk−j ∈ L2(0, T ;H2j+1(Ω)),

we have

Km(∇wk−j) ∈ L2(0, T ;H2j+1(Ω)).

On the other hand, we recall that

Lm(wk−j) = |∇m|2wk−j − wk−j ×∆m− wk−j ×H(m)−m×H(wk−j)

− wk−j × (m×H(m))−m× (wk−j ×H(m))−m× (m×H(wk−j))

+ wk−j × (v · ∇)m.

From Proposition 2.2, H(wk−j) and wk−j have the same regularity, i.e., they are in L∞(0, T ;

H2j+1(Ω)). We remark that j ≤ k − 1 so that 2j + 1 ≤ 2k − 1. So ∇m, H(m), m and ∆m are

in L∞(0, T ;H2j+1(Ω)). The same holds for v. Since this space is an algebra, we obtain

Lm(wk−j) ∈ L∞(0, T ;H2j+1(Ω)).

From Lemma 5.1,

Fk−j ∈ L∞(0, T ;H2j+1(Ω)).

From the property at rank j − 1,

wk−j+1 ∈ L∞(0, T ;H2j(Ω)) ∩ L2(0, T ;H2j+1(Ω)).

In addition, since m ∈ L∞(0, T ;H2j+1(Ω)), we keep the same regularity when we compose

with ψm, so

∆wk−j ∈ L∞(0, T ;H2j(Ω)) ∩ L2(0, T ;H2j+1(Ω)),

and by elliptic regularity results,

wk−j ∈ L∞(0, T ;H2j+2(Ω)) ∩ L2(0, T ;H2j+3(Ω)).

This concludes the proof of the claim.

In particular, we have proven that

w1 = ∂tm ∈ L∞(0, T ;H2k(Ω)) ∩ L2(0, T ;H2k+1(Ω)).

Now, we have

∆m =
1

2
(∂tm+m× ∂tm)− |∇m|2m+W,

where W = m× (m×H(m))−m× (v · ∇)m.

Since ∇m, m and H(m) are in L∞(0, T ;H2k(Ω)), the same holds for −|∇m|2m+W .

Since m ∈ L∞(0, T ;H2k+1(Ω)), ∂tm+m× ∂tm ∈ L∞(0, T ;H2k(Ω)) ∩ L2(0, T ;H2k+1(Ω)).

Therefore, ∆m ∈ L∞(0, T ;H2k(Ω)) ∩ L2(0, T ;H2k+1(Ω)), so

m ∈ L∞(0, T ;H2k+2(Ω)) ∩ L2(0, T ;H2k+3(Ω)).
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5.4 Regularity for ∂
k

t
m in the case m0 ∈ H

2k+3(Ω)

We assume now in addition thatm0 ∈ H2k+3(Ω;S2) and satisfies the compatibility condition

at order k. From the previous case, we already know that

∀j ∈ {0, · · · , k}, ∀T < T ∗, ∂
j
tm ∈ L∞(0, T ;H2k+2−2j(Ω)) ∩ L2(0, T ;H2k+3−2j(Ω)).

In addition, we know that ∂ktm is the unique solution for Equation (5.3). We can improve

the regularity of ∂ktm using the Galerkin formulation (5.4).

We derivate (5.4) with respect to time. Denoting by αn := ∂tw
n, we obtain






∂αn

∂t
−∆αn = −Pn(m×∆αn +Km(∇αn) + Lm(αn) + F̃k) on [0, Tn[,

αn(0) = Pn(∆(Pn(Vk))−m0 ×∆(Pn(Vk))

+Km0
(∇(Pn(Vk))) + Lm0

(Pn(Vk)) + Fk(t = 0)),

(5.11)

where

F̃k = −∂tm×∆wn + ∂t(Km)(∇wn) + ∂t(Lm)(wn) + ∂tFk.

We multiply (5.11) by ∆αn. After integration on Ω and using Young formula, we obtain

d

dt
‖∇αn‖

2
L2 + ‖∆αn‖

2
L2 ≤ C(‖Km(∇αn)‖

2
L2 + ‖Lm(αn)‖

2
L2 + ‖F̃k‖

2
L2).

We have

‖Km(∇αn)‖L2 = ‖2(∇m · ∇αn)m+ (v · ∇)αn +m× (v · ∇)αn‖L2

≤ C(‖∇m‖L∞ + ‖v‖L∞) ‖∇αn‖L2 ,

‖Lm(αn)‖ ≤ ‖|∇m|2αn − αn ×∆m− αn ×H(m)−m×H(αn)− αn × (m×H(m))‖

+ ‖m× (αn ×H(m)) +m× (m×H(αn)) + αn × (v · ∇)m‖L2

≤ C(‖∇m‖2L∞ + ‖∆m‖L∞ + ‖H(m)‖L∞ + ‖v‖L∞ ‖∇m‖L∞ + 1) ‖αn‖L2

≤ C(T )

for all T < T ∗, since m ∈ L∞(0, T ;H4(Ω)) and by (5.8).

Concerning F̃k, we have

‖∂tm×∆wn‖L2 ≤ C ‖∂tm‖L∞ ‖wn‖H2 ≤ C(T )

for all T < T ∗. Since ∂tm ∈ L∞(0, T ;H2k(Ω)) and by (5.7),

∂t(Km)(∇wk) = 2(∇∂tm · ∇wn)m+ 2(∇m · ∇wn)∂tm

+ (∂tv · ∇)wn + ∂tm× (v · ∇)wn +m× (∂tv · ∇)wn,

‖∂t(Km)(∇wk)‖ ≤ C‖∇wn‖L6(‖∇∂tm‖L3 + ‖∇m‖L∞‖∂tm‖L3 + ‖∂tv‖L3

+ ‖v‖L∞‖∂tm‖L3).

Since k ≥ 1 and ∂tm ∈ L∞(0, T ;H2(Ω)), we have ∇∂tm ∈ L∞(0, T ;H1(Ω)), so by embedding,

for all t ≤ T < T ∗, ‖∇∂tm(t)‖L3 ≤ K(T ).
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In addition,

‖∇wn‖L6 ≤ C‖wn‖H2 ≤ K(T )

by (5.7).

So,

‖∂t(Km)(∇wk)(t)‖ ≤ K(T )

for all t ≤ T < T ∗.

∂t(Lm)(wk) = 2(∇m · ∇∂tm)wn − wn ×∆∂tm− wn ×H(∂tm)− ∂tm×H(wn)

− wn × (∂tm×H(m))− wn × (m×H(∂tm))− ∂tm× (wn ×H(m))

−m× (wn ×H(∂tm))− ∂tm× (m×H(wn)) −m× (∂tm×H(wn))

+ wn × (∂tv · ∇)m+ wn × (v · ∇)∂tm,

‖∂t(Lm)(wk)‖L2 ≤ C ‖wn‖L∞ (‖∇m‖L∞ ‖∇∂tm‖L2 + ‖∆∂tm‖L2 + ‖H(∂tm)‖L2)

+ C ‖wn‖L∞ (‖∂tm‖L2 ‖H(m)‖L∞ + ‖∂tm‖L2 + ‖v‖L∞ ‖∇∂tm‖L2)

+ C ‖wn‖L∞ ‖∂tv‖L∞ ‖∇m‖L2 + C ‖H(wn)‖L2 ‖∂tm‖L2 .

Using Proposition 2.2, (5.7) and the known bounds on ∂tm, we obtain

∀T < T ∗, ∃C(T ), ∀n,
d

dt
‖αn‖

2
L2 + ‖∆αn‖

2
L2 ≤ C(T ) ‖∇αn‖

2
L2 + C(T ). (5.12)

Now from Proposition 2.1, we have

‖∇αn(0)‖L2 ≤ ‖∆(Pn(Vk))−m0 ×∆(Pn(Vk)) +Km0
(∇(Pn(Vk)))

+ Lm0
(Pn(Vk)) + Fk(t = 0)‖H1

≤ C(1 + ‖Pn(V
k)‖H3).

From the compatibility condition at order k, ∂V k

∂ν
= 0 on ∂Ω, so from Proposition 2.1,

‖Pn(V
k)‖H3 ≤ C‖V k‖H3

for all n. Therefore, there exists a constant C such that for all n,

‖∇αn(0)‖L2 ≤ C. (5.13)

Estimates (5.12) and (5.13) coupled with Lemma 2.4 yield

∀T < T ∗, ∃C(T ), ‖αn‖L∞(0,T ;H1(Ω)) + ‖αn‖L2(0,T ;H2(Ω)) ≤ C(T ).

Since αn ⇀ ∂k+1
t m in the distribution sense, we obtain

∀T < T ∗, ∂k+1
t m ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)). (5.14)
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5.5 Regularity for m in the case m0 ∈ H
2k+3(Ω)

We know from Subsection 5.3 that

∀j ∈ {0, · · · , k}, ∂
j
tm ∈ L∞(0, T ;H2k−2j+2(Ω)) ∩ L2(0, T ;H2k−2j+3(Ω)).

So coupling this estimate with (5.14), we gain one rank for the regularity of each wj , and exactly

with the same method as in Subsection 5.3, we prove

∀j ∈ {0, · · · , k + 1}, ∂
j
tm ∈ L∞(0, T ;H2k−2j+3(Ω)) ∩ L2(0, T ;H2k−2j+4(Ω)),

so that the proof of the property P(k + 1) is complete.
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